
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

583 | P a g e
www.ijacsa.thesai.org

Development of Architecture and Software

Implementation of Deep Neural Network Models

Repository for Spatial Data Analysis

Stanislav A. Yamashkin1

Institute of Electronic and Lighting Engineering

National Research Mordovia State University

Saransk, Russia

Anatoliy A. Yamashkin2

Geography Faculty

National Research Mordovia State University

Saransk, Russia

Ekaterina O. Yamashkina3

Institute of Information Technologies

MIREA — Russian Technological University

Moscow, Russia

Milan M. Radovanovic4

Geographical Institute "Jovan Cvijic"

Serbian Academy of Sciences and Arts

Belgrade, Serbia

Abstract—The article presents the key aspects of designing

and developing a repository of deep neural network models for

analyzing and predicting the development of spatial processes

based on spatial data. The framework of the system operates on

the basis of the MVC pattern, in which the framework is

decomposed into modules for working with the system's business

logic, its data and graphical interfaces. The characteristics of the

developed web interfaces, a module for visual programming for

editing of models, an application programming interface for

unified interaction with the repository are given. The stated aim

of the study determined the structure of the scientific article and

the results obtained. The paper describes the functional

requirements for the repository as a signific part of software

design, presents the developed formalized storage scheme for

neural network models, describes the aspects of development of a

repository of neural network models and an API of the

repository. The developed system allows us to approach the

solution of the scientific problem of integrating neural networks

with the possibility of their subsequent use to solve design
problems of the digital economy.

Keywords—Repository; deep learning; artificial neural

network; spatial data; visual programming; software design

I. INTRODUCTION

The development of spatial data infrastructures (SDI),
aimed at assessing the state of natural-socio-production
systems (NSPS) and forecasting emergency processes and
phenomena, plays a system-forming role in solving the
problem of strengthening the connectivity of the territories of
countries and regions [1]. The data integrated in systems of this
class is characterized by a large volume and heterogeneity, as a
result of which machine analysis algorithms become the core
of systems of this class, which make it possible to solve design
problems of various types in the field of analysis of spatial data
on natural, social and economic objects that have a distributed
geospatial organization [2]. Solving problems of classification,
clustering, pattern recognition [3], decision-making and
forecasting based on large arrays of spatial data [4] plays an

important role in the economies of countries and regions [5].
Artificial neural networks are of great importance among
models and algorithms for data analysis [6].

This article is devoted to solving the scientific problem of
the formation of architecture and the development of software
implementation of the repository of deep neural network
models for the analysis of spatial data, integrated into a single
system to support the process of making managerial decisions
in the field of ensuring conditions for sustainable development
of territories.

The solution to the problem of effective use of neural
networks meets many unresolved challenges, an important
place among which is the problem of integrating deep neural
network models into a single system in order to form a
convenient toolkit for specialists in the field of data analysis.
Currently, the generally accepted practice is the consolidation
of data analysis algorithms in repositories - information
systems focused on the formation of the ability to search, store,
develop and efficiently use the accumulated project-oriented
solutions.

The stated aim of the study determined the structure of the
scientific article and the results obtained. The paper describes
the functional requirements for the repository, presents the
developed formalized storage scheme for neural network
models, and describes the aspects of development of a
repository of neural network models and an API of the
repository.

II. RELATED WORKS, MATERIALS AND METHODS

The task of designing a repository of neural networks has
its own specifics, due to the fact that the process of training
deep models is often characterized by high requirements for
computational resources [7, 8]. On the other hand, the very
formation of the topology of neural networks, the selection of
hyper-parameters of models is a non-trivial task that can be
solved in many ways and requires the involvement of expert

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

584 | P a g e
www.ijacsa.thesai.org

systems to make decisions [9, 10]. Finally, the generated neural
network model repository should be deeply integrated with
existing machine learning frameworks (Tensorflow [11],
PyTorch [12]) to ensure high practical efficiency of the
repository and reduce the gap between data scientists and
software developers [13].

Currently, there are a number of examples in the field of
developing deep neural network model repositories, among
which Wolfram Neural Net Repository [14] and the Amazon
Web Services (AWS) marketplace [15] should be highlighted.
The presented repositories are characterized by different
architectural and structural organization, individual software
solutions. For example, Amazon Web Services matches each
model with a set of different criteria and filters to find the
model. At the same time, we note that when solving the
problem of analyzing spatial data, its own specificity is formed,
which imposes restrictions and new requirements on the
implementation of the repository of neural network models
presented in [16].

The development of the repository is based on the
ontological model of the repository [17], which defines the
principles of systematization of deep models for the analysis of
spatial data by classes of problems to be solved, the nature and
dimension of the analyzed data, architecture and topology, and
efficiency properties (Fig. 1). The deep neural network models
repository was created on the basis of the object-oriented

analysis and design paradigm using the unified modeling
language UML for visualization, specification, design and
documentation of software systems [18].

From the point of view of software implementation, the
described software system operates on the basis of the MVC
pattern [19], which presupposes the decomposition of the
project framework into controllers (modules designed to
describe software business logic), models (components for
manipulating data) and views (sets of templates for forming
adaptive web interfaces). To implement the functional of visual
editing of the model, the JavaScript programming language
was used, the component was tested in the formation of models
of neural network architectures.

An important function of the deep neural network model
repository is to provide end users with different roles in the
system adaptive web interfaces for quickly obtaining
systematized information about the optimal deep neural
network model to use, which should include a structured
description, performance indicators, architectural and
topological organization, and so on. the same recommendations
for flexible tuning of model hyperparameters, examples of
applied use in solving project-oriented problems. To organize
the work of the storage of neural network models, a multi-
model approach was used, and software interfaces for
exchanging data with external systems are implemented on the
basis of the GraphQL paradigm [20].

Fig. 1. Ontological Model of the Repository.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

585 | P a g e
www.ijacsa.thesai.org

III. RESEARCH RESULT

A. Functional Requirements for the Repository

In order to systematize the functional requirements for the
repository, we will form a UML use-case diagram (Fig. 2). The
initial use case of the repository is described by the precedent
"L. Authorization in the repository", the purpose of which is to
ensure the differentiation of rights to read, use and edit neural
network models. The designated functionality is implemented
by providing a form for entering authentication data to an
unauthorized user in the system.

After authorization in the system, the user gets access to
individual modules of the repository based on the existing
rights. From the point of view of software implementation, the
described software system operates on the basis of the MVC
pattern, which presupposes the decomposition of the project
framework into controllers, models and views, which makes it
possible to increase the cohesion of individual repository
modules and reduce the coupling between them.

The Administration use-case group includes two use cases:
"AU, User Management" (managing the distribution of roles,
adding, editing, deleting metadata about users) and "AL,
Management of logs" (forming the ability to view system logs
with the ability to search and filter in order to moderate the
operational processes of working with the repository).

The Neural Network Model Management use case group
includes the use cases that form the core of the system. The
integrating case "M. Model database management" is
decomposed into the "MN. Navigation in the catalog of
models" (through the filter system), including the "MR.
Recommended system for model selection" (allowing to
provide relevant search, selection and configuration of deep
neural networks, fine-tuning of models for solving specific
design problems in the field of spatial data analysis). The
model data management CRUD also includes the use case
"MA (Model addition)" and expanding its functionality "ME
(Model modification)", which allows you to create and edit
deep neural networks.

A separate description of the functional component "MV
Visual editing of the model" as a constituent block of the
described CRUD-subsystem, allows visualizing deep learning
neural network models in the form of a graph-diagram, with
the possibility of interactive online editing of the topology and
model architecture through a thin client (web browser). To
implement the functionality of visual editing of the model, the
JavaScript programming language was used, the component
was tested in the formation of models of neural network
architectures presented in the Keras open neural network
library (Fig. 3).

Fig. 2. Deep Neural Network Model Repository use Case Diagram.

Fig. 3. Visualization of a Neural Network Model in the Form of a Graph Diagram: A Model with Three Inputs and Two Outputs.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

586 | P a g e
www.ijacsa.thesai.org

According to the previously developed ontological model,
the domain of deep neural network models should be
associated with the domains of design tasks and analyzed data.
Use cases corresponding to the designated subject areas are
also implemented in the repository in the form of CRUD
subsystems "Administration of the task base" (based on the use
cases of "TN, Navigating the task registry", "TA, Adding task
information", "TE, Editing task information") and "Data
management" (formed by use cases "DN, Database
navigation", "DA, Adding data"; "DE, Editing data").

B. Formalized Storage Scheme for Neural Network Models

The development of a formalized storage scheme for
models of deep machine analysis of spatial data in the form of
a meta-language made it possible to convert them into
representations used by modern machine learning frameworks
[4].

In order to optimize the integration processes and the
practical use of deep neural network models, a formalized
scheme for storing models in the form of a meta-language was
developed, which makes it possible to convert them into
representations used by modern machine learning frameworks
(for example, Keras). Let us present the description of the
designed meta-language from the point of view of the set-
theoretic approach and take the set of repository models
𝑀𝑂𝐷𝐸𝐿𝑆 (1) (the power of which is determined by the number
of repository models) as a universal set:

𝑀𝑂𝐷𝐸𝐿𝑆 = {𝑀𝑂𝐷𝐸𝐿𝑖|1 ⩽ 𝑖 ⩽ 𝛮 ∧ 𝑖 ∈ ℤ} (1)

The topology of the model of a specific deep neural
network model MODELi can be represented in the form of a
graph-scheme GRAPHi and a structured meta-description
METAi (2). In turn, the meta-description of the model is
generated based on the DESCRIPTORSi descriptor array
(including the model name, annotated description, performance
metrics, etc.) and the COMPILATIONi assembly parameters.
The graph-diagram of the GRAPHi model is a directed graph,
the set of vertices LAYERSi of which determines the set of
layers of the deep neural network model, and the set of arcs
LINKSi determines the structure of the neural network,
establishes directional connections between the layers.

𝑀𝑂𝐷𝐸𝐿𝑖 = 〈𝑀𝐸𝑇𝐴𝑖 , 𝐺𝑅𝐴𝑃𝐻𝑖〉 = (2)

〈〈𝐷𝐸𝑆𝐶𝑅𝐼𝑃𝑇𝑂𝑅𝑆𝑖 , 𝐶𝑂𝑀𝑃𝐼𝐿𝐴𝑇𝐼𝑂𝑁𝑖〉,
〈𝐿𝐴𝑌𝐸𝑅𝑆𝑖 , 𝐿𝐼𝑁𝐾𝑆𝑖〉〉

A tuple of model assembly parameters COMPILATIONi ,
includes an object optimizeri , which describes methods and
algorithms for optimizing the neural network model (including
stochastic gradient descent (SGD), adaptive model estimation
(Adam), root mean square propagation (RMSProp) and others),
as well as parameters their functioning. The loss function lossi
defines the parameters that the model should strive to minimize
during training to solve regression and classification problems.
Finally, the metricsi object defines the function used to
evaluate the performance of the model, while the calculated
metrics values are not used in the training of the model.
Various metrics can be used in the formation of models for
solving problems of multiclass and binary classification,
regression, segmentation. The description of the tuple of model

assembly parameters from the point of view of the set-theoretic
approach is as follows (3):

𝐶𝑂𝑀𝑃𝐼𝐿𝐴𝑇𝐼𝑂𝑁 = 〈𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟𝑖 , 𝑙𝑜𝑠𝑠𝑖 , 𝑚𝑒𝑡𝑟𝑖𝑐𝑠𝑖〉 (3)

An important component of the graph model of a deep

neural network model i is the LAYERij layer (4), which, from

the point of view of a formalized description of the model, can
be represented as a set of objects that determine the type and

architecture of the layer TYPElayerij
, a set of interfaces of the

INTERFACESij layer, PROPERTIESij arguments that determine

the features the functioning of the layer, descriptors of the
VISUALij visualization, which determine the features of the

model visualization within the framework of adaptive web
interfaces:

𝐿𝐴𝑌𝐸𝑅𝑖𝑗 = 〈 𝑇𝑌𝑃𝐸𝑙𝑎𝑦𝑒𝑟𝑖𝑗
, 𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸𝑆𝑖𝑗 ,

𝑃𝑅𝑂𝑃𝐸𝑅𝑇𝐼𝐸𝑆𝑖𝑗 , 𝑉𝐼𝑆𝑈𝐴𝐿𝑖𝑗〉 (4)

The TYPElayer object defines the architecture of the layer

and decisively specifies the data processing and
hyperparameter settings when training the model. The base
layers of the model (the BASE group) are represented by the
following architectures: an input layer (Input), a fully
connected layer (Dense), as well as a custom programmable
layer (Custom Layer), the architectural organization of which
can be specified by the user. Layers for building convolutional
models (the CONVOLUTION group) includes convolutional
layers that process data of different dimensions (Convolution),
layers of separable convolution (Depthwise Separable
Convolution), as well as layers of subdescription (Pooling).
Recurrent layers are represented by architectures of fully
connected recurrent layer (RNN), long short-term memory
layer (LSTM), managed recurrent blocks (GRU), long short-
term memory convolutional layer (Convolutional LSTM).
Finally, the meta-language for describing deep neural network
models supports layers of reshaping (Reshape), merging and
merging (Fusion), element-wise merging based on
mathematical operations (Add, Average, Maximum, Minimum,
Multiply, Subtract). Finally, regularization layers) and
decimation (Regularization) Thus, many categories of the
architectural organization of the layers of the repository can be
represented as a tuple (4):

𝑇𝑌𝑃𝐸𝑙𝑎𝑦𝑒𝑟𝑖𝑗
= 〈𝐵𝐴𝑆𝐸, 𝐶𝑂𝑁𝑉𝑂𝐿𝑈𝑇𝐼𝑂𝑁,

𝑅𝐸𝐶𝑈𝑅𝑅𝐸𝑁𝑇, 𝑅𝐸𝑆𝐻𝐴𝑃𝐸, 𝐹𝑈𝑆𝐼𝑂𝑁, 𝑀𝐸𝑅𝐺𝐼𝑁𝐺,
𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝐼𝑍𝐴𝑇𝐼𝑂𝑁〉 (4)

The parameters of the interface INTERFACESij of the

LAYERij layer (inputs INPUTSij and outputs OUTPUTSij) are

defined by a tuple of parameters 〈name, type〉, where the name
object specifies the interface name, type is the data type and
dimension (5).

𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸𝑆𝑖𝑗 = 〈𝐼𝑁𝑃𝑈𝑇𝑆𝑖𝑗 , 𝑂𝑈𝑇𝑃𝑈𝑇𝑆𝑖𝑗〉 =

〈{𝐼𝑁𝑃𝑈𝑇𝑆𝑖𝑗𝜆|1 ⩽ 𝜆 ⩽ 𝛬 ∧ 𝜆 ∈ ℤ}, {𝑂𝑈𝑇𝑃𝑈𝑇𝑆𝑖𝑗𝜇|1 ⩽ 𝜇 ⩽

𝛭 ∧ 𝜇 ∈ ℤ}〉 (5)

The set of arguments 𝑃𝑅𝑂𝑃𝐸𝑅𝑇𝐼𝐸𝑆𝑖𝑗 sets the hyper-

parameters that determine the model of the layer 𝐿𝐴𝑌𝐸𝑅𝑖𝑗 (6).

This set of named arguments may differ for layers of different

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

587 | P a g e
www.ijacsa.thesai.org

architectures and may include, for example, specifying
methods and algorithms for initializing layer weights and
regularization, activation functions:

𝑃𝑅𝑂𝑃𝐸𝑅𝑇𝐼𝐸𝑆𝑖𝑗 = 〈𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑟, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛,

𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛, {𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠𝑘| 𝑘 ∈ ℤ}〉 (6)

Finally, in order to provide visualization of deep neural
network models within the framework of adaptive web
interfaces, the meta-language for describing the model involves
storing the parameters of the VISUALij group, which are not

responsible for the functional and qualitative features of the
neural network, but determines the aspects of its visual
graphical display (7). The object of the METAij group is

characterized by the title information titleij and the schemeij

rendering scheme, which determines the color scheme of the
layer within the framework of web interfaces and other styles.

The elements of the POSITIONij tuple define the topij and

leftij coordinates of the layer's location on the render canvas,

and the SIZEij tuple defines its widthij and heightij

dimensions.

𝑉𝐼𝑆𝑈𝐴𝐿𝑖𝑗 = 〈𝑀𝐸𝑇𝐴𝑖𝑗 , 𝑃𝑂𝑆𝐼𝑇𝐼𝑂𝑁𝑖𝑗 , 𝑆𝐼𝑍𝐸𝑖𝑗〉 =
〈〈𝑡𝑖𝑡𝑙𝑒𝑖𝑗 , 𝑠𝑐ℎ𝑒𝑚𝑒𝑖𝑗〉, 〈𝑡𝑜𝑝𝑖𝑗 , 𝑙𝑒𝑓𝑡𝑖𝑗〉, 〈𝑤𝑖𝑑𝑡ℎ𝑖𝑗 , ℎ𝑒𝑖𝑔ℎ𝑡𝑖𝑗〉〉 (7)

To combine the LAYERSi layers of the i model, a set of
LINKSi, links is introduced into a single model, in which each
object is characterized by a set of parameters defining the

source layer (LAYERorigin) and its output interface

(OUTPUTorigin), as well as the destination layer (LAYERtarget)

and its input interface (INPUTtarget) (8).

𝐿𝐼𝑁𝐾𝑖𝑗 = 〈〈𝐿𝐴𝑌𝐸𝑅𝑜𝑟𝑖𝑔𝑖𝑛 , 𝑂𝑈𝑇𝑃𝑈𝑇𝑜𝑟𝑖𝑔𝑖𝑛〉,
〈𝐿𝐴𝑌𝐸𝑅𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐼𝑁𝑃𝑈𝑇𝑡𝑎𝑟𝑔𝑒𝑡〉〉   (8)

An application programming interface designed on the
basis of the REST architectural pattern and GraphQL paradigm
provides the possibility of a unified interaction in order to
exchange data with a repository for importing and exporting
neural network models and obtaining information about them).

C. Development of a Repository of Neural Network Models

and an API of the Repository

A comparative analysis of documentation, use cases,
market needs made it possible to identify several databases
suitable for solving the problem of storing neural network
models and built on the basis of various paradigms:
PostgreSQL (an object-relational DBMS that can be
successfully used for structured presentation of data from
different knowledge domains of a repository) , Neo4j (graph
storage that can be used to store data about the topology of
neural network models), InfluxDB (a database for storing time
series that allows you to keep temporary training statistics,
track progress and save the trained weights during training).

Each individual paradigm for organizing a repository of
deep machine learning models does not answer all the
questions that arise when solving the problem of systematizing
information from data domains, deep neural network models
and design problems. A comprehensive answer to this problem
can be provided by multi-model database management

systems, which are hybrid storages that can be centralized in
the data center, or presented on a cloud scale, the operation of
which is based on the superposition of the capabilities of
different classes of DBMS. The result of the competent use of
multi-model data management systems for the repository of
deep neural network models should be a purposeful
enhancement of the qualitative characteristics of the generated
storage of neural networks, including scaling and modularity,
fault tolerance and reliability.

To solve the problem of deploying an application
programming API in order to exchange data about a specific
neural network for use in further computations, it is proposed
to use the GraphQL paradigm, which makes it possible to form
a group of microservices that are weakly related to each other.
This allows greater scalability, more precise customization for
user requests and reduces the load on the global nodes of the
system.

The application programming interface of the repository of
neural network models provides the possibility of unified
interaction with the system for data exchange in order to
import and export neural network models and obtain
information about them). It should describe the ways (that is, a
set of functions, classes, constants, or structures) through
which a software system can interact with a model store. The
API interface, implemented using GraphQL technology,
defines the syntax that describes the format for requesting data
from the repository server, and also provides an environment
for executing such requests. The advantages of using this
technology are as follows: GraphQL allows the user to specify
exactly what data he needs without reloading the request with
unnecessary information; making it easy to combine data from
different sources.

When organizing a microservice architecture, it becomes
possible to create a system of methods and algorithms for
obtaining data of various types, thereby reducing the load on
the system as a whole. GraphQL is also capable of providing
seamless access between existing services. The convenience of
using this technology is that after setting up GraphQL, the
entire set of microservices acts as a single whole, and GraphQL
regulates the flow of requests. This allows you to get a fully
automated system that does not require developers to write
additional interfaces when interacting between microservices
and system interfaces.

IV. CONCLUSION

The article describes a project devoted to solving the
scientific problem of accumulating and systematizing deep
neural network models by designing and developing a
repository of learning algorithms for analyzing and predicting
the development of spatial processes.

From the point of view of software implementation, the
framework of the system operates on the basis of the MVC
pattern, which involves the decomposition of the project
framework into controllers, models and views. Emphasis is
made on the development of adaptive web interfaces that allow
using the repository using a computer connected to the
Internet.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

588 | P a g e
www.ijacsa.thesai.org

The visual model editing module allows you to visualize
neural network models in the form of a graph diagram, with the
possibility of interactive online editing of the topology and
model architecture. An API based on the GraphQL paradigm
provides a unified interface to communicate with the repository
to import, export, and retrieve information about models.

The designed architecture of the repository of deep neural
network models and its software implementation allows us to
approach the solution of the scientific problem of integrating
neural networks, pre-trained models with the possibility of
their subsequent use to solve design problems of the digital
economy.

ACKNOWLEDGMENT

This work was supported by Grant of the President of the
Russian Federation under Project no. МК-199.2021.1.6.

REFERENCES

[1] M. F. Goodchild, “Citizens as voluntary sensors: spatial data

infrastructure in the world of Web 2.0,” International journal of spatial
data infrastructures research, vol. 2, no. 2, pp. 24–32, 2007.

[2] R. A. Schowengerdt, Remote sensing: models and methods for image

processing, 3rd ed. Orlando, FL, USA: Academic Press, 2006, pp. 387–
456.

[3] Cham, D. D., Son, N. T., Minh, N. Q., Thanh, N. T., Dung, T. T., “An

analysis of shoreline changes using combined multitemporal remote
sensing and digital evaluation model,” Civil Engineering Journal, vol. 6,

no. 1, pp. 1-10, Jan. 2020, DOI. 10.28991/cej-2020-03091448.

[4] Damuluri, S., Islam, K., Ahmadi, P., & Qureshi, N., “Analyzing
navigational data and predicting student grades using support vector

machine,” Emerging Science Journal, vol. 4, no. 4, pp. 243-252, Aug.
2020, DOI. 10.28991/esj-2020-01227.

[5] Hammal, S., Bourahla, N., & Laouami, N., “Neural-network based

prediction of inelastic response spectra,” Civil Engineering Journal, vol.
6, no. 6, pp. 1124-1135.

[6] X. X. Zhu, D. Tuia, L. Mou, G. S. Xia, L. Zhang, F. Xu, and F.

Fraundorfer, “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geoscience and Remote Sensing

Magazine, vol. 5, no. 4, pp. 8–36, Oct. 2017, DOI.
10.1109/MGRS.2017.2762307.

[7] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data:
A technical tutorial on the state of the art,” IEEE Geoscience and

Remote Sensing Magazine, vol. 4, no. 2, pp. 22–40, Jun. 2016, DOI.

10.1109/MGRS.2016.2540798.

[8] C. Tao, H. Pan, Y. Li, and Z. Zou, “Unsupervised spectral–spatial
feature learning with stacked sparse autoencoder for hyperspectral

imagery classification,” IEEE Geoscience and Remote Sensing Let., vol.
12, no. 12, pp. 2438–2442, Dec. 2015, DOI.

10.1109/LGRS.2015.2482520.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436, May 2015, DOI. 10.1038/nature14539.

[10] W. Li, H. Liu, Y. Wang, Z. Li, Y. Jia, and G. Gui “Deep learning-based

classification methods for remote sensing images in urban built-up
areas,” IEEE Access, no. 7, 36274-36284, Mar. 2019, DOI.

10.1109/ACCESS.2019.2903127.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, and X.
Zheng, “Tensorflow: A system for large-scale machine learning,” 12th

{USENIX} symposium on operating systems design and
implementation, pp. 265-283, 2016.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, S.
Chintala, “Pytorch: An imperative style, high-performance deep learning

library,” arXiv preprint arXiv:1912.01703, 2019.

[13] M. Xiu, Z. M. J. Jiang, B. Adams, “An Exploratory Study on Machine-
Learning Model Stores,” arXiv preprint, 1905.10677, 2020.

[14] Wolfram Repository of Neural Network Models, Apr. 2021, [online]

Available: http://resources.wolframcloud.com/NeuralNetRepository.

[15] Amazon Web Services Marketplace – Machine Learning. Accessed:
May. 2021. [Online]. Available: https://aws.amazon.com/marketplace/

solutions/machinelearning.

[16] E. Yamashkina, S. Kovalenko, and O. Platonova, “Development of
repository of deep neural networks for the analysis of geospatial data,”

IOP Conference Series: Materials Science and Engineering, vol. 1047,
no. 1, 012124, Feb. 2021.

[17] S. A. Yamashkin, A. A. Kamaeva, A. A. Yamashkin, E. O. Yamashkina,

“Matters of Neural Network Repository Designing for Analyzing and
Predicting of Spatial Processes,” International Journal of Advanced

Computer Science and Applications, vol. 12, no. 5, pp. 17–22, May
2021.

[18] M. Fowler, “UML distilled: a brief guide to the standard object
modeling language,” Addison-Wesley Professional, 2004.

[19] D. P. Pop, A. Altar, “Designing an MVC model for rapid web

application development,” Procedia Engineering, vol. 69, pp. 1172–
1179, 2014.

[20] O. Hartig, J. Pérez, “Semantics and complexity of GraphQL,” In

Proceedings of the 2018 World Wide Web Conference, pp. 1155-1164,
Apr. 2018.

http://resources.wolframcloud.com/NeuralNetRepository

