(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

Security Enhancement in Software Defined
Networking (SDN): A Threat Model

Pradeep Kumar Sharma, Dr. S.S Tyagi

Department of Computer Science and Engineering
Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India

Abstract—Software Defined Networking (SDN) has emerged
as a technology which can replace the prevalent vendor based
proprietary CLI networking devices. SDN has introduced
applications based network control and provided various
opportunities and challenges for research and innovation in these
networks. Despite many advantages and opportunities in SDN,
security is a matter of concern for developers who want to invest
in SDN. In this paper we are analyzing the SDN security issues
with their countermeasures. We have generalized four use cases
threat model that should cover security requirements of SDN.
These use cases are: (1) protect controllers from applications, (I1)
inter-controller protection, (111) protecting data plane or switches
from controller, (1V) protecting controllers from malicious
switches. We found that these SDN components are inter-related
if one is secure another one is already secure. We also compared
the SDN and traditional network security in terms of these four
use cases and provide the insights for protection mechanism and
security enhancements. A framework for the development of a
SDN security application has been presented based on ryu
controller. We believe that our threat model will help various
researchers and developers to understand current security
requirements and provide a ready reference to tackle
vulnerabilities and threats in this area. Finally, we identify some
open research problems and future research directions with a
proposed security architecture.

Keywords—Software defined networking (SDN); openflow;
control plane; data plane; controller; programmability

I. INTRODUCTION

Traditional network (TN) devices are very powerful and
provide various networking control functions in the form of
routers, switches, firewall and load balancer etc. But security is
always a big concern due to distributed nature of network
containing various devices for various networking functions
[1]. A lot of new models are being developed every year with
more processing powers and updated software versions by the
vendors and customer need to replace the previous hardware
for getting new updated software functions. These proprietary
devices are very costly and have their own way of
configuration through CLI, having some specific commands
and different vendors have different commands to
communicate with these devices. This may results in
configuration errors and various security breaches [2]. The
output of these commands is as per human operator in mind
and this output cannot be wused further to provide
programmability. Hence there is no scope for network
engineers and researchers who want to scale and automate their
network operations as per demands [3]. These hardware
dependent systems, tightly coupled with software have failed to

evolve the networking world as compare to system
administration where software is independent of the hardware.
In system administration, operating system is a piece of
software which is not tightly coupled with hardware. We are
free to install any operating system and applications on any
hardware as per the requirement. As a result, system
administration is evolving very fast. Today we can install many
servers on a single hardware by using hypervisor, which
manages several virtual machines with different host operating
system. Not even hypervisor, Docker is another solution which
provides high level resource utilization [4] as shown in Fig. 1
and 2 respectively.

In virtual machines concept as shown in Fig. 1, we assign
dedicated processing resources and operating system to a VM
image which is used by a dedicated service but Docker
provides containers for hosting the specific services or
applications which consumes very little resources as compare
to virtual machine as shown in Fig. 2. One Docker engine can
contain thousands of containers running various applications
specific servers on a single operation system. On the other
hand, in network administration we are still working on
hardware dependent networking devices which consume a lot
of processing power and time on manual configurations. There
is a need to redesign the present networking architecture which
can full fill the above said requirement with flexibility,
programmability and automation.

Virtual Machine Virtual Machine Virtual Machine

Fig. 1. Virtual Machines Hosted on Hypervisor.

208 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Containerized Applications

Fig. 2. Containerized Applications on Single OS through Docker.

Software Defined Networking [5] is a new concept which
provides an API for configuration and decouples software logic
from the devices. These devices work as simple data
forwarding devices. The software or logical intelligence has
been placed in a centralized controller. . The communication of
forwarding devices and controller is established through a
southbound APl e.g. openflow [3]. All the networking
functions like Routing, Security and Network monitoring etc.
are done through the applications in application plane. The
communication of application plane and controller is
coordinated by northbound API e.g. RESTful API [6]. This
provides the programmability approach and various
applications can be designed a per the network demands.
Network engineers can also use third party applications
irrespective of hardware based solution for managing their
network infrastructure. The idea of SDN is to use vendor
specific hardware and we are free to choose software as per
network demands irrespective of hardware. This arrangement
of network functionality provides various opportunities for
research and innovation in these networks. SDN is evolving
and it has various advantages or traditional networks like
dynamic control, programmability and a complete view of the
network. As it is a new technology security solutions in SDN
need to redefine and it provides various challenges and
opportunities.

The rest of the contents of paper have been presented as
under: Section Il discusses the related works; a proposed threat
model has been depicted in Section Il1l. Comparative analysis
of threats in SDN and traditional networks based on threat
model has been elaborated in Section V. Lessons learned and
security enhancements by developing a security application
have been discussed Section V. Section VI is dedicated to
future research directions with a proposed security model. In
Section VII we conclude our analysis with open research
problems.

Il. RELATED WORK

Although there are several papers which provide various
studies on SDN security, they do not focus on protecting SDN
components from each other as SDN components are
interlinked to each other and one component can attack the
another component. If one component is malicious it can harm
the other SDN components e.g. if application is malicious it

Vol. 12, No. 9, 2021

can attack the controller and vice versa. Based on this concept
we have derived four use cases to analyze the SDN security
requirements and their counter measures. Also we have applied
our threat model in traditional networks (TN) to analyze how
these use cases are tackled in TN. We also provide a
comparative analysis to find out the real threats in SDN and
their possible resolutions.

In [7] Ali et al undertook a survey of related work in the
area of SDN security. They presented programmable networks
as an opportunity to improve protection in enterprise network
through all the logical control at a centralized place. Real time
policy enforcement and flexibility are presented as key tenets
for controlling the behavior of network. They divided their
study in two parts, one offering the innovative ways for finding
the traffic anomalies, reaction to threats, flexibility in policy
formation and deployment. Second part of the work provides
security mechanism build up using SDN analytics which can
be applied to the networks in real time. But they do not discuss
the SDN security issues and its comparison with TNs. Dacier et
al [8] discussed the current security challenges and showed
how the traditional network architecture cannot fulfill the
today’s network demands. They discussed the various
opportunities and challenges for security advancements in
SDN. But they did not provide any way or model for SDN
threat analysis and their resolution. B. Ahmad et al [9]
discussed about Flow Table Entry Attack (FTEA), a kind of
DoS attack, when Flow Entry Table gets full it drops the
incoming packets or remove the prior flows. They assume that
the attacker has access to SDN domain and consumes the
controller resources by constantly engaging it to install attacker
initiated bogus entries in the FET. However it exhibits only
switches attack controller use case. Our work covers the four
most important use cases for SDN threat analysis and their
countermeasures.

I11. PROPOSED THREAT MODEL

Based on the SDN architecture we have derived a threat
model which reflects how the various threats can attack the
SDN components. SDN components are interlinked with each
other if one component is compromised; it is a threat to another
component and even for whole network. Our goal here is to
identify the various attacks which can be performed by the
attacker on a particular component of SDN. These components
are SDN applications (Application Plane), controllers (Control
Plane) and networking devices e.g. switches (Data Plane). In
Fig. 3 we have shown the block diagram of SDN featuring its
components. Based on this architecture we have derived four
use cases to analyze the threats.

Threat Model:

There are many ways to exhibit SDN security issues and
their resolutions [10][11]. Most of the authors discuss the same
with layer based approach but we believe SDN architecture is
different aspect from conventional network and we define a
new taxonomy to generalize the SDN security issues. We
consider a network scenario where there are n no. of controllers
C={cl,c2,....... cn}. Each controller ci LI C can run at least
one application from a set of applications A® = {al.a2,
...... an}. Each controller has limited resources which make

209|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

them vulnerable to denial of service attacks. We have derived
four use cases from SDN architecture. Each of the use case has
its own importance and security goals. Fig. 4 shows the Threat
model for security requirement of SDN. SDN architecture with
associated use cases is shown in Fig. 3 and 4 respectively. A
semi benign attack is a passive attack which may gather
information about network or processes but will not deviate
from protocol execution. A malevolent behavior is an active
threat which may deviate from protocol rules in order to
disrupt the system and attack the other components of the
system [12][13]. These four use cases are described as under.

A. Use Case 1: Securing Controller from Applications in
Application Plane

In this use case each application in the application plane
can be benign, semi benign, or malevolent. These applications
may be from different sources i.e. third party apps [14]. The
controller proffers an abstraction to application plane so that
application can read/edit network state which is generally a
degree of network control. If an attacker impersonates
application it can gain access to controller i.e. network control
and can hamper the network operations [15]. The absence of
trust and weak authentication between applications and
controllers may lead to spoofing attacks [16][17]. Our goal
here is to minimize the attacks on controllers through
applications. List of such type of attacks and suggested
solutions have been shown in Table I.

B. Use Case 2:Inter Controller Security

In SDN, control is logically centralized. It provides more
than one controller for providing scalability and avoiding
single point of failure [18]. As a result these controllers share
the resources and communicate with each other. It is necessary
to review the security of inter controller communication [19].
In this use case we assume one or more controller is semi
benign or malevolent. A semi benign controller could be able
to access the control data of other controllers, learn resource
utilization information and target the integrity of the network.
Moreover a malevolent controller can attack to semi benign
controller and perform a DoS attack on another controller. Our
goal is to protect controller from each other [20]. The possible
attack scenario and solutions have been discussed in Table II.

TABLE I.

Vol. 12, No. 9, 2021

C. Use Case 3: Securing Switches from Controller

In this use case it is assumed at least one controller is semi
benign or malevolent. We assume that applications which are
used through this controller can be semi benign or malevolent.
A semi benign controller can target switches in the data plane.
It can attack switch flow table with buffer overflow by
sending bogus entry [21]. Our goal here is to eliminate the
possibility of controller’s ability to target the switch with
bogus entry [22]. This case has been shown in Table 1l with
threats and their solutions.

Applicatian Blame

il -

Control Plane with multi controllers
N
] | vl

Data Plane with switches

Fig. 3. SDN Architecture.

Apps can be Controllers can be Switches can be
Usecase semi semi semi
. |malevolent beni beni
benign|Penien benign| P€N8N |malevolent [benign |°N'8N |malevolent
1. Securing
Controller from v v v v x x v x x
applications
2. Inter-controller
. v x x v v v v X X
Security
3. Securing
switches from v v v v v v v X "
controller
4. Securing
controller from v X X v X X v v v
switches

Fig. 4. Threat Model.

SECURING CONTROLLERS FROM APPLICATIONS (USE CASE 1)

Issues Possible Attack Scenario

Possible Solution

Remote code alteration and

Application vulnerabilities execution

An attacker can reprogram the application by
using vulnerability and run the malicious code.

Periodic vulnerability scanning for
applications

Spoofing the messages between

Use of Untrusted applications controller and applications

Absence of trust between controller and
applications may lead to spoofing attack

Apps authentication and authorization
must be implemented.

Unauthorized access to

Inappropriate authorization applications

If an application has weak authorization an
attacker can gain unauthorized access to
application and can attack the controller.

Use of AAA to protect the
unauthorized access to application and
controller

210|Page

www.ijacsa.thesai.org

TABLE Il

(IJACSA) International Journal of Advanced Computer Science and Applications,

INTER-CONTROLLER SECURITY (USE CASE 2)

Vol. 12, No. 9, 2021

Threat

Possible attack

Possible scenario

Possible Solution

Untrusted Controller

Attack controller within
cluster

Untrusted controller software can pose a serious
threat to other controllers.

Use the trusted controllers provided by the
trusted vendors.

Controllers
configuration defects

Unauthorized access and
network attacks

Providing unnecessary privileges to an app can
result in controller hijacking.

To review the default configuration of controller
and to do a proper controller hardening.

Embedded malware

Malware and spyware attacks

Spyware and ransomware gaining control to
controller

Monitoring and scanning the network with
trusted security applications.

Vulnerabilities within
controller runtime

Controller runtime attacks

In case of third party network applications,
vulnerabilities at run time can allow applications to
modify its default configuration.

Controller’s software should be updated
periodically with new patches and updated
versions.

Poorly separated
inter-controller traffic

DOS attack, ARP spoofing

In a multi controller environment If traffic between
controllers is poorly separated than it can allow a
compromised controller to perform a man in
middle or DoS attack.

Controllers in cluster should not be provided
unnecessary permissions and should be
monitored as per cluster rules

TABLE IIl.

SECURING SWITCHES FROM CONTROLLER (USE CASE 3)

Threat

Possible attack

Possible scenario

Possible Solution

Controller switch
communication channel.

Flooding attack on switch
flow table.

A compromised controller can flood a switch by
bogus entries by sending fake packets to switch.

The best way to secure the controller and switch
communication is use of TLS.

Malicious applications

Attack on switches due to

malicious application

An infected application may affect the controller
and attack the switch through misconfiguration

Use of trusted and stable application for
performing the network operations in SDN

D. Use Case 4: Securing Controller from Switches

In this case at least one switch is semi benign or malevolent
and it tries to attack the controller [23]. An attacker can send
fake message through this compromised switch to controller
and tries to exhaust the controller’s resources [24]. This
condition is called as data leakage where attacker tries to
discover the flow rules and forwarding policy information. If
an attacker can gain access on packet processing timings and
can determine the action related to specific type that are
forwarded to controller, attacker can produce the phony flow
messages causing to DoS attack [25][26]. Our goal here is to
protect controller from switches. If a switch goes out
malevolent or semi benign there should be a mechanism to
find out the malicious switch in the network. One of the recent
researches towards malicious switch detection has been
presented in [27]. The authors presented a new algorithm to
find a pernicious switch based on control path routing
approach. This method chooses two node disjoint control path
for every forwarding device in data plane so that a suspicious
node can be find out on basis of simple Packet In messages
delivered to control paths. In [28] a novel technique for
detecting the link flooding attack has been presented. Authors
designed LFA defense system called LFADefender using
SDN which contains features like programmability, complete
view of network and flow traceability. In LFADefender,
authors proposed a LFA target link selection approach and
design a LFA congestion monitoring mechanism to effectively
detect LFA.

IV. COMPARATIVE ANALYSIS OF SDN THREAT MODEL USE
CASES WITH TRADITIONAL NETWORK
Based on the above use cases we have identified the attack

scenario of various threats in SDN. Now we will compare the
same with traditional network architecture to find out that; are

these use cases available there in traditional networks? We will
Fig. 5 out if these use cases are available in traditional network
how we counter them. Then we will identify the SDN
protection mechanisms [29][30] based on this. Traditional
network architecture with four routers and two switches has
been shown in figure. In Traditional Network (TN) the
interface between two routers is called network to network
interface (NNI) while the router interface with end user is
called user network interface (UNI).

NNI

“

Fig. 5. Traditional Network Architecture.

The fundamental difference between SDN and TNs is
control plane [31]-[32]. In TNs network controlling elements
are inside the network devices e.g. routers and switches but in
SDN it has been decoupled from the devices to a central
controller. From the previous use cases in Section Il, we can
derive that controller security is most important and it can be
attacked by applications, by switches in data plane and can
even by other controller in multi controller environment [33].
In this section we will find how the network controlling
elements are protected in tradition networks. What types of the
attacks are faced in TNs and what are the protection
mechanisms. We will try to analyze four use cases in TNs

211|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

which we implemented in SDN in above section and it will
give a clear picture of security problems and challenges in
SDN with their possible solutions.

A. Use Case 1: Application Attacks Controller or Controlling
Elements

If we talk about the application layer of SDN in terms of
traditional network and its applications like mailing, FTP and
HTTP etc. then we realize that these are the network functions
for which lower layers in TCP/IP model have been designed.
We cannot compare these functions with applications in
application plane in SDN [34]. Applications in SDN are
network controlling elements which have been decoupled from
devices like routing, switching, security etc. and decoupled
control functions works as applications and perform related
network operations in coordination with controller. In TNs
applications are the part of network devices and controlling
part resides inside the devices. Hence application attacks
controller use case 1 does not apply in TNs. However TNs do
not provide any programmability to control the behavior of
network dynamically like SDN which provide this
functionality through applications in northbound API with an
alternative to use third party network applications to customize
the network as per demands [35].

B. Use Case 2: Controller Attacks other Controller

A controller in SDN performs the network control
functions like routing switching etc. In TNs a routing function
is performed by routers. A multi controller scenario in SDN
can be compared with TNs having multiple routers. In network
containing more than one router and various links from one
router to another, a routing protocol is used to find the best
path from source to destination. There are two types of
protocols one distance vector routing protocols Routing
Information Protocol (RIP) which find the best path to a
remote network by judging distance. Second is link state
routing protocols e.g. Open Shortest Path First (OSPF). These
routing protocols maintain a routing table and contain the
information about the neighbor subnets and links state. The
router updates it routing table and advertise the routing
information time to time and a best path is selected based on
this information. However different routing protocols suffer
from different attack methods but the common objective is to
pollute routing tables. A routing table poisoning attack is
performed to contaminate routing table and network topology
information by advertising or infusing a bogus route through
announcements. A malevolent router can publish a phony link
state advertisement (LSA) with fake link cost to effect rest of
the routers routing table calculations. This type of attacks are
not difficult to dispatch but has limited influence as adjoining
router will publish a right LSA with a new sequence entry
which will remove the bogus LSA and it will not be used again
for routing table route estimation. However a more powerful
attack can also be performed to pollute the functioning routing
table. To mitigate routing table poisoning, a routing protocol
should only run on NNI and route advertisements from UNI
need to be discarded. The origin of message should be checked
for authentication to forestall a vindictive router to imitating
another router. And routing updates need to be double checked
before applying them for route estimation by routing tables.

Vol. 12, No. 9, 2021

For example a link metric updated by one router need to be
double checked with link metric updated by other router on the
same link. Such type of defense techniques [36] can also be
considered in SDN and the same has been discussed in
Section II.

C. Use case 3: Controller Attacks Switches

In traditional network we can refer the L3 devices as
control plane. Now we will try to find out, Can a router attack
on the functionality of L2 devices? When a router sends a
packet to another router, the receiving router performs three
operations. First it eliminate the L2 header of packet, second
check the routing table for next router in sequence and third
bundles L2 header of packet for sending to next node. The next
node in the routing table might be a local interface or it is an IP
address. This routing process is continued till the next node is a
local interface. Upon finding a local interface it will looks up
for MAC address in ARP table of that interface. If it is unable
to get the MAC the router will run the ARP protocol to get the
MAC address associated to respective IP address. Because
address resolution protocol (ARP) is used by router to find the
MAC address associated with an IP address, an L3 router may
suffer with ARP cache poisoning attack [37]. In this attack the
attacker associates its own IP address with victim MAC
address and receives the traffic intended to for victim node. So
an attack can be placed from control devices i.e. from control
plane on L2 traffic in traditional networks.

D. Use case 4: Switches Attack Controller

In SDN there is no by default communication when an
open flow switch receive a new packet it sent it to the
controller using Packet_In message, which includes source and
destination address. If destination MAC address is not known
by the controller then controller asks the switch to broadcast
the packet through Packet_out message. The destination sends
the response to the source port and this reply also noted by
controller to fulfill the further requests from same source and
destination. This process is called host tracking service and is
equivalent to L2 MAC learning, in principle, with only
difference that MAC learning has been separated from switch
and included in controller. In SDN data plane switches
communicate with controller for L2 learning process and can
attack the same as discussed in Section II. But in TNs L2
learning is implemented inside the switches without any
controller. So attack on L2 learning is equivalent to attack on
controller from switches. A MAC table is learned from data
plane switches including host packets so it is subjected to
MAC attacks. An infected host can send a packet with fake
MAC address to poison switch’s MAC table. MAC spoofing
and MAC flooding are two strategies of attacks which affect
the L2 learning in traditional network [38]. Threats related to
MAC address can be minimize by disallowing the unknown
devices to enter the network. This can be done by a switch
feature port security. Port security is a technique which allows
only known MAC addresses (MAC binding) to be recognized
by the network switches). But there is a limit to bind the
number of MAC address associated with a switch port. But
port security requires a lot of manual configurations which
leads to possible overhead and misconfigurations [39].

212|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

V. LESSONS LEARNED AND SECURITY ENHANCEMENTS IN
SDN

We have compared four most important attack use cases in
SDN and traditional network. We have seen how the control
functions in TNs can be attacked in different use cases as
compare to attacks on controller in SDN [40]. Table 4 shows
the comparison of threat use cases in SDN and TNs. Now we
will discuss the lessons learned on comparing these use cases
in terms of threats and their defenses. We will explore how the
security can be enhanced [41] in SDN based on our threat
model. First we will elaborate each use case then a security
application will be developed based on attacks from above use
cases.

A. Use Case 1: Securing Controller from Applications

As we have discussed in previous section that network
control functions are part of network devices in traditional
network hence this case, does not apply on TNs. In SDN
network control functions are in the form of applications and
have been decoupled from network devices. These applications
work for the data plane devices in coordination with controller
[42]. As a matter of fact these applications communicate with
controller to fulfill the network requirement and an
unauthorized application can do a big damage to the controller
and even reconfigure the network [43]. In order to counter an
unauthorized application access controller and application
should maintain a trusted connection and authenticate the
identity of entities before exchanging control messages. Both
authentication and authorization of applications is to be
ensured before establishing a connection. This concern about
the untrusted applications authentication and securing the
controller has been discussed in [44]. Authors introduced a
hierarchical arrangement of controllers. This hierarchical
system can minimize the effect of pernicious application as
code of the application would run at the middle hierarchy
where there will be ample protection. Another work in this
direction is FortNox [45]. FortNox is an extension to the open
source controller NOX [29]. It is a security enforcement kernel
which checks the flow rules for security policy violation in real
time. Each openflow application is provided authorization
through a role based authentication concept. Three flow rule
producer roles are defined; OF Operator, OF Security, and OF
Application. In case of any flow rule conflict detected by
FortNox, a higher priority rule is accepted. The limitation of
FortNox is application identification and priority enforcement.
ROSEMARY [46] is the enhancement to controller resilience
to malicious applications. It is a high performance network
operating system which is robust and secure. It sandboxes the
each running instance of application to provide security to
control layer from any vulnerability. It also monitors and
control the resources consumed by each application. In
LegoSDN [47] authors explore about the effect of application
failure on controllers reliability. Authors proposed a isolation
layer between controller and applications to avoid the
consequences of failure of controller due to application failure.

B. Use Case 2: Inter-controller Protection

In SDN to avoid the single point failure a multiple
controllers has been suggested. There are two types of
controller placement schemes; one is flat controller deployment

Vol. 12, No. 9, 2021

and another is hierarchical controller deployment. In flat
controller concept each controller is assigned a separate sub
network. In this solution different operations may not be able
to communicate equally with different domains. But in
hierarchical mode the local controller is responsible for
respective network, and global controller is responsible for
local controller. The communication among different
controllers is done via global controller. A variety of works has
been done towards controller placement problem. In [48]
authors proposed an algorithm to find the minimum number of
controllers and maximum load on a controller. But this
arrangement did not work for the request with variable time. In
[49] author proposed an algorithm which divide the network in
to different subnets. Every small network contains a controller
based on the size of assigned network. It uses a clustering
algorithm based on switch density, and divides the network
accordingly. When the main link is broken it may use a backup
link. But it may result in unnecessary delay. In [50] authors
provide a multi controller solution with Byzantine fault tolerant
mechanism. When one controller goes down, the other
controller takes the charge of network and removes idle link of
previous controller. However this solution is good for small
network due to performance issues in relatively large networks.

C. Use Case 3: Protecting Switches from Controller

In traditional network, a control element router can attack
the switch functionality through the ARP spoofing attack as
discussed in Section Ill. But in SDN controlling element
controller has more functionality and a malicious controller can
do a lot of damage to the switches of data plane. A
compromised controller can attack the switch flow table by
generating unnecessary broadcast and overflow the switch flow
table. So protecting the controller to become malicious is the
main defense for data plane switches. In [26] authors proposed
a solution for detecting the malevolent SDN device in the
network. They implemented a backup controller and collect the
state information and updates from primary controller and
switches. They detect the malicious devices by recognizing the
unexpected and inconsistent behavior of primary controller,
backup controller and SDN switches.

TABLE IV. COMPARISON OF ATTACKS USE CASES
Use Cases SDN Traditional Network
Applications A malicious
attack application can attack | Not applicable
controller controller.
A compromised
Inter controller can attack A router can attack the other router
controller the other controller in | and can pollute
attack a multi controller its routing table by fake LSA.
environment.
A malicious A controlling element router can
Controller controller can attack Y
attack the
attacks the data plane .
- . L2 switches by ARP cache
switches switches and launch oisoning attack
flood attack. P 9 '
. . A malevolent switch In L2 network ,the control function
Switches in -
data plane can flood the MAC learning,
p controller by fake can be targeted by MAC spoofing
attacks on the .
controller flows may results in and MAC
DosS attack. Flooding attacks.

213|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

D. Use Case 4: Protecting Controller from Switches

The main protocol which provides the interface for
communication between data plane switches and controller is
open flow. In respect to southbound interface communication,
the open flow switch specifications discuss necessity of TLS
with mutual authentication between controller and switches
[51]. In [52] the lack of TLS adoption is real world
deployments has been discussed. This is very important
consideration when switches, controller and application
environment is deployed in trust domains. However it is to be
noted here that there is definite weakness introduced by
separating the control and data plane in SDN [53]. Various
solutions to avoid the DoS attack have been proposed.
AVANT-GUARD [48] provides the protection to the controller
from switches by limiting the number of flow requests sent to
the controller by using a connection migration tool. This
migration tool removes failed TCP sessions at the data plane
prior to any notification to controller. This prevents the
occurrences of DoS attack by sending only those flow requests
to the controller which completes the TCP handshake.

E. Security Enhancements

By the comparisons and discussion in the last two sections
it can be stated that there is a need to develop a security
mechanism to counter the security issues of SDN. As discussed
that the controlling functions in the SDN are performed by the
applications in application plane. For implementing the
security functions there is a need to design the security
application in SDN. In this section we develop a security
application as a part of SDN software. In traditional network if
we want to implement security functions then we need to use a
hardware device e.g. firewall for the same. But this is
advancement in SDN that network controlling functions like
security, routing, and monitoring etc., are in the form of
applications. For Design and implementation, we will use
mininet as network emulator and Ryu as a controller. First we
will focus basic steps and algorithm for designing an
application as per controller and data plane communication.

Python language is used to develop the network
applications based on Ryu controller. Ryu is a components
based controller which has various modules for application
design and control. In ryu controller setup at home/ubuntu/ryu
it has various folders; app, base and ofproto. App folder can
contain various applications like firewall, router and load
balancer. Base folder contains App_manager which helps to
run the different applications and prepares framework and
datapath for running the application. Ofproto deals with
openflow version related queries and matching capabilities. For
designing a SDN application we need to collect and understand
the initial requirements and booting process of SDN network
framework.

e In first step switch boots up and contact the controller
for openflow version related queries and check its
capabilities.

e The controller installs Packet In function and table miss
function and prepares itself for queries from switch.

e When receiving Packet In, Controller learns the source
MAC and mention the MAC and port information in

Vol. 12, No. 9, 2021

flow table. It checks for destination MAC address if it is
available in flow tables, it uses Packet Out function on
the port and installs the flow and stores the same for
future uses.

e If destination MAC address is not available in flow
table i.e. a table miss then controller uses packet out
function to broadcast the packet to all ports.

By using the ryu controller framework we can design and
deploy customized security applications. With
programmability approach in SDN we can have our own
security application in ryu app folder and program it as per
network demands and configure it through standard API.
Traditional security solutions, the vendor specific e.g. fortigate
and Cisco, they have their own proprietary code and
configuration methods which are fixed and cannot be
customized as per demands. Fig. 6 shows how the security app
can work in coordination with controller. When Host A wants
to communicate to Host B it sends a packet to switch. Switch
check for a matching entry in its flow table but when a
matching entry is not found in flow table then packet is
forwarded to controller. Controller sends the packet to security
application for policy check. First it parses the packet and
check if it matches to policy specified in firewall. As firewall
has a policy to block traffic from A to B (A-->B: Block). The
application enforces a rule through controller to drop the
packet and controller install a flow rule in switch flow table to
drop all the incoming traffic from Host A to Host B. This is
how we can block and allow flow in openflow through a
security application. It means through this app a switch can
work like a firewall i.e. technology allows us to decide the
functions of a switch. As a result additional security devices
are not required in SDN as security services can be enabled
within the devices. In traditional network another problem is
placement of firewall for optimized coverage of security
services. But it has been nullified as any device in the network
can be turned into a security device.

: B Enforce
Policy

Application Plane

Routing

Monitoring

Cpenflow Switch []
Host A Host B Host C
Fig. 6. Implementing Security Application in SDN.
214|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

VI. FUTURE RESEARCH DIRECTIONS AND PROPOSED
SECURITY ARCHITECTURE

Based on use cases presented in the paper and comparative
analysis with traditional network it may be admitted that SDN
has introduced some new security issues and challenges that
are not available in TNs. But programmable networks include a
level of adaptability and dynamic control that has enhanced the
network management and flexibility at scale. SDN has
emerged as a technology which may be taken as a replacement
of vendor based proprietary CLI networking devices where
there is no scope of programmability and automation due to
tightly coupled software and hardware concept of networking
devices. So it is to be noted that SDN is going to be stay here
and some more potential research proposals are required to
address the challenges of SDN security issues. Implementation
of mandatory TLS functionality a controller and deplane
communication channel can solve a lot of problems. Research
proposals like AVANT-GUARD [48] has provided a good
work by limiting the rate of number of requests sent to
controller which improve the controller performance.
Implementing some intelligence function to data plane
switches may be considered to minimize the controller load.
Such type of proposals is under discussion with research
community in the form of stateful data planes [54].

Another important area which needs the momentum in
research proposals is application-controller interface [55].
Without the presence of a standard open north bound API, it is
not possible to design and deploy SDN in enterprise network
[56]. The security enhancements explored in Section IV are of
no means if application-control interface is vulnerable. This
can also be evaluated from Table | of our threat model analysis
that the switches in data plane can be attacked if either the
applications or controller are malicious. In contrast we have
discussed the various innovative proposals which analyses the
protection requirements of north bound API. However this use
case (securing controller from application) exhibits a lot of
vulnerability to various attacks as discussed in Section Il. As a
results further research in this area are necessary and need to be
encouraged for finding a better northbound API. However use
of RESTful API [6] is also a good work and this may be
extended further. A multi controller solution for addressing the
scalability issue of controller has been provisioned in openflow
1.3. Various controllers need to communicate with controller in
other domain for performing various operations to fulfill the
network requirements [57]. A secure and real time
communication of controllers is an open research problem.
However a number of solutions have been discussed in section
Vth in view of further research directions in this area [58]. A
framework for network security application development has
been presented based on ryu controller and mininet. This work
can also be further explored by adding more security functions
if we have a new idea and algorithm as per demands.

A. Proposed Security Architecture

By threat model analysis it can be pointed out that SDN
security problem is not a problem of single SDN component, it

Vol. 12, No. 9, 2021

is scattered in all components of architecture and these
components are inter linked with each other and form a system.
So there is a need to design a security solution as per system
perspective rather than security for individual component.
Based on our analysis security architecture for SDN has been
proposed in Fig. 7.

Control-application interface is protected with AAA
security at application plane. We believe each application
should be developed as a module of controller so that it can
easily follow the security standard of northbound interface
designed to secure the communication. Even third party
applications should follow and support the security policy
standard at application-controller interface. A multi controller
solution with hierarchical control is provided to avoid the
single point failure of controller and resource sharing. A
backup controller has also been proposed for global controller
fault tolerance. At southbound API the communication of
controller and data plane switches should be secured with
mandatory TLS security function. For minimizing the load of
controller some state level intelligence is suggested in data
plane switches i.e. stateful data plane [53]. However the
management of states and packet level forwarding decisions
are taken from controller. Finally it is to be stated here
controller security is the prime tenet to secure overall SDN
platform and this is ultimately depends of secure applications
environment at northbound API. Development of a standard
northbound API is still an open research problem. Contribution
haven been made in the form of RESTful API but a more
research proposals are required in this direction to form a more
secure SDN network.

N

lecliceson 1 Sopbeaton 2

= =
I
Lochcaton 1

sophoaton &

' Northidound AP] with AAA protection ‘

Control Mane with security S5 -
policy enforcemeant i ——— —
p Cortrcler

Eacky

Contyoller

getsoler J ortmder

Qoenflow with Mancatary TLS implementatson at southbdund AP
- : - = T - ~% -
OF swech 1 OF qaech OF fwech 1 OF swech 4
i f

| |

Stateful Dataplane |

wle host 3 host 4

Fig. 7. A Proposed Security Model for SDN.

215|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

VI1.CONCLUSION

To identify the SDN security issues we developed four use
cases and discussed the several attack parameters with their
counter measures in tabular format. After identifying the
security issues we applied the same use cases in traditional
network for a comparative study of risk and security
technology in both the networks. After comparative study it
can be concluded that SDN has introduced new attack surfaces
which is not available in traditional networks. In contrast SDN
provides more flexibility, automation and control over the
network, traditional networks disappoint there. However
security solutions to address the SDN security issues have been
presented which includes protection from malicious
application, inter-controller protection, protection of data plane
and protecting controller from DoS attacks by data plane
switches. Based on analysis a framework for development of
SDN security application has been presented with ryu
controller and mininet network emulator. Insights for security
enhancement have been provided by presenting a proposed
security model based on recent research and threat model
analysis. Moreover research in SDN security is still in
beginning stage and there is lot more to do with. By designing
novel security techniques and extending the previous research
work for solving known problems, we can find the better SDN
networks which will be much more secure than traditional
networks.

REFERENCES

[1] M. Casado et al., “SANE: A protection architecture for enterprise
networks,” in Proc. USENIX Security Symp., 2006, p. 10.

[2] M. Casado et al., “Ethane: Taking control of the enterprise,” in ACM
SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp. 1-12, Oct.
2007.

[3] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69-74, Apr. 2008.

[4] R. R. Yadav, E. T. G. Sousa and G. R. A. Callou, “Performance
Comparison between Virtual Machines and Docker Containers”, IEEE
Latin America Transactions, VOL. 16, NO. 8, AUG. 2018, pp. 2282-
2288.

[5] S.Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in Proc. ACM SIGCOMM Conf., 2013, pp. 3-14.

[6] Li Li, Wu Chou, Wei Zhou and Min Luo, “ Design Patterns and
Extensibility of REST API for Networking Applications”, IEEE, TNSM,
2015, 00814.

[7] S. Taha Ali et. al “A Survey of Securing Networks using SDN”, IEEE
transactions on reliability, Vol 64, No. 3, 2015.

[8] Marc C. Dacier et al, “Security Challenges and Opportunities of
Software Defined Networking”, in IEEE Computer and Reliabilities
Societies, 2017, pp.96-100.

[9] B. Ahmad et al. “Fingerprinting SDN policy parameters : An Empirical
Study”, IEEE Access, Volume 8, 2020.

[10] D. Li, X. Hong, and J. Bowman, “Evaluation of security vulnerabilities
by using ProtoGENI as a launchpad,” in Proc. [EEEGLOBECOM, 2011,
pp. 1-6.

[11] S. Shin and G. Gu, “Attacking software-defined networks: The first
feasibility study,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw., 2013, pp. 165-166.

[12] L. Schehlmann, S. Abt, and H. Baier, “Blessing or curse? Revisiting
security aspects of software-defined networking,” in Proc. 10th Int.
CNSM, 2014, pp. 382-387.

[13] S. Sezer et al., “Are we ready for SDN? Implementation challenges for
software-defined networks,” IEEE Commun. Mag., vol. 51, no. 7, pp.
36-43, Jul. 2013.

Vol. 12, No. 9, 2021

[14] W. Han, H. Hu, and G.-J. Ahn, “LPM: Layered policy management for
software-defined networks,” Data and Applications Security and Privacy
XXVIII. Berlin, Germany: Springer-Verlag, 2014, pp. 356-363.

[15] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure
controller platform for OpenFlow applications,” in Proc. 2™ ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw., 2013, pp.
171-172.

[16] S. Scott-Hayward, C. Kane, and S. Sezer, “OperationCheckpoint: SDN
application control,” in Proc. 22nd IEEE ICNP, 2014, pp. 618-623.

[17] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
Securing the software-defined network control layer,” in Proc. NDSS,
San Diego, CA, USA, Feb. 2015, pp. 1-15.

[18] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in
Proc.3rd Workshop Hot Topics Softw. Defined Netw., 2014, pp. 1-6.

[19] M. M. O. Othman and K. Okamura, “Securing distributed control of
software defined networks,” Int. J. Comput. Sci. Netw. Security, vol. 13,
no. 9, pp. 5-14, Sep. 2013.

[20] F. Botelho, A. Bessani, F. M. Ramos, and P. Ferreira, “On the design of
practical fault-tolerant SDN controllers,” in Proc. 3rd EWSDN, 2014,
pp. 73-78.

[21] H. Mai et al., “Debugging the data plane with anteater,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 290-301, Aug.
2011.

[22] Ahmad, B. et al., “Fingerprinting SDN policy parameters : An Empirical
Study”, IEEE Access, Volume 8, 2020.

[23] C. Jeong, T. Ha, J. Narantuya, H. Lim, and J. Kim, “Scalable network
intrusion detection on virtual SDN environment,” in Proc. IEEE 3rd Int.
Conf. CloudNet, 2014, pp. 264-265.

[24] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Recent Advances in
Intrusion Detection. Berlin, Germany: Springer-Verlag, 2011, pp. 161
180.

[25] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in Proc. IEEE 35th Conf. LCN, 2010,
pp. 408-415.

[26] J. Suh et al., “Implementation of content-oriented networking
architecture (CONA): A focus on DDoS countermeasure,” in Proc.
European NetFPGA Developers Workshop, Cambridge, U.K., 2010, pp.
1-6.

[27] Purnima Murali Mohan et. al., “Towards resilient in-band control path
routing with malicious switch detection in SDN”, IEEE COMSNETS,
2018, PP.9-16.

[28] Haifeng Zhou et. al., "SDN-RDCD: A Real-Time and Reliable Method
for Detecting Compromised SDN Devices”, IEEE/ACM transactions on
networking, vol. 26, no. 5, october 2018 pp. 2048-2061

[29] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proc. 2nd ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw., 2013, pp. 55-60.

[30] S. Shin et al., “FRESCO: Modular composable security services for
software-defined networks,” in Proc. Netw. Distrib. Security Symp., San
Diego, CA, USA, 2013, pp. 1-16.

[31] N. Gude et al., “NOX: Towards an operating system for networks,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105-110,
Jul. 2008.

[32] D. Erickson, “The beacon OpenFlow controller,” in Proc. 2" ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw., 2013, pp. 13—
18.

[33] A. Guha, M. Reitblatt, and N. Foster, “Machine-verified network
controllers,” ACM SIGPLAN Notices, vol. 48, no. 6, pp. 483-494, Jun.
2013.

[34] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. 1st Workshop Hot
Topics Softw. Defined Netw., 2012, pp. 19-24.

[35] N. Foster et al., “Frenetic: A network programming language,” ACM
SIGPLAN Notices, vol. 46, no. 9, pp. 279-291, Sep. 2011.

[36] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. OSDI, 2010, vol. 10, pp. 1-6.

216 |Page

www.ijacsa.thesai.org

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Seung Yeob Nam, Dongwon Kim and Jeongeun Kim. “Enhanced ARP:
Preventing ARP Poisoning-Based Man-in-the-Middle Attacks” IEEE
Communications Letters, VVol. 14, No. 2, February 2010, pp. 187-189.

Songyi Liu, “MAC Spoofing Attack Detection Based on Physical Layer
Characteristics in Wireless Networks” IEEE, ICCEM, 2015.

Timo Kiravuo, Mikko S-arel’a, and Jukka Manner, “A Survey of
Ethernet LAN Security” IEEE Communications Surveys & Tutorials,
Vol. 15, No. 3, 2013,pp. 1477-1491.

A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “OrchSec: An
orchestrator-based architecture for enhancing network-security using
network monitoring and SDN control functions,” in Proc. IEEE NOMS,
2014, pp. 1-9.

Pradeep Kumar Sharma and S.S Tyagi “Improving Security through
Software Defined Networking (SDN): An SDN based Model”, IJRTE,
vol. 8, issue 4, 2019, pp. 295-300.

Marcelo Ruaro , Luciano Lores Caimi , and Fernando Gehm Moraes,
“SDN-Based Secure Application Admission and Execution for Many-
Cores”, IEEE Access, volume 8, 2020, pp. 177296- 177306.

D. Kreutz et al, “Software-defined networking: A comprehensive
survey,” arXiv preprint arXiv:1406.0440, 2014.

D. Yu, A. W. Moore, C. Hall, and R. Anderson, “Authentication for
resilience: The case of SDN,” in ser. Security Protocols XXI. Berlin,
Germany: Springer-Verlag, 2013, pp. 39-44.

P. Porras et al., “A security enforcement kernel for OpenFlow
networks,” in Proc. 1st Workshop Hot Topics Softw. Defined Netw.,
2012, pp. 121-126.

S. Shin et al,, “Rosemary: A robust, secure, and high-performance
network operating system,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2014, pp. 78-89.

B. Chandrasekaran and T. Benson, “Tolerating SDN application failures
with LegoSDN,” in Proc. 13th ACM Workshop Hot Topics Netw.,
2014, p. 22.

(48]

[49]

(50]

(51]
(52]

(53]

(54]

(55]

(56]

(57]

(58]

Vol. 12, No. 9, 2021

G. Yao, J. Bi, Y. Li, et al., “On the Capacitated Controller Placement
Problem in Software Defined Networks”, IEEE Communications
Letters,vol.18, no.8, 2014, pp. 1339-1342.

J. Liao, H. Sun, J. Wang, et al., “Density cluster based approach for
controller placement problem in large-scale software defined
networkings”, Computer Networks, vol.112, 2017, pp. 24-35.

H. Li, P. Li, S. Guo, et al., “Byzantine-resilient secure software-defined
networks with multiple controllers”, Proc. IEEE International
Conferenceon Communications, 2014, pp. 695-700.

OpenFlow Switch Specification Version 1.4, Open Network.

K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability
assessment,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw., 2013, pp. 151-152.

Josy Elsa Varghese and Balachandra uniyal, “An efficient IDS
framework for DDOS attacks in SDN environment”, IEEE Access,
2021, pp. 69680-69699.

Tooska Dargahi et. al., “A Survey on the Security of Stateful SDN Data
Planes” IEEE Communications Surveys & Tutorials, Vol. 19, No. 3,
2017, PP. 1701-1724.

A. A. Z. SOARES et. al., “3AS: Authentication, authorization, and
accountability for sdn-based smart grids ”, IEEE Access, volume 9,
2021, pp. 88621-88640

Kevin Barros Costa et al., “Enhancing Orchestration and Infrastructure
Programmability in SDN with NOTORIETY”, IEEE Access, Volume 8§,
2020, pp. 195487-195502.

Basem Almadani , Abdurrahman Beg and Ashraf Mahmoud, “DSF: A
Distributed SDN Control Plane Framework for the East/West Interface”
IEEE Access, Volume 9, 2021, pp. 26735-26754.

Ahmed Sallam , Ahmed Refaey,and Abdallah Shami, “On the Security
of SDN: A Completed Secure and Scalable Framework using the
Software-Defined Perimeter”, IEEE Access, volume 7, 2019. pp.
146577-146587.

217|Page

www.ijacsa.thesai.org

