
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

253 | P a g e

www.ijacsa.thesai.org

A Systematic Literature Review on Regression Test

Case Prioritization

Ani Rahmani
1
, Sabrina Ahmad

2
*

Intan Ermahani A. Jalil
3

Fakulti Teknologi Maklumat dan Komunikasi

Universiti Teknikal Malaysia Melaka

Melaka, Malaysia

Adhitia Putra Herawan
4

Tokopedia Indonesia

Jakarta, Indonesia

Abstract—Test case prioritization (TCP) is deemed valid to

improve testing efficiency, especially in regression testing, as

retest all is costly. The TCP schedule the test case execution order

to detect bugs faster. For such benefit, test case prioritization has

been intensively studied. This paper reviews the development of

TCP for regression testing with 48 papers from 2017 to 2020. In

this paper, we present four critical surveys. First is the

development of approaches and techniques in regression TCP

studies, second is the identification of software under test (SUT)

variations used in TCP studies, third is the trend of metrics used

to measure the TCP studies effectiveness, and fourth is the state-

of-the-art of requirements-based TCP. Furthermore, we discuss

development opportunities and potential future directions on

regression TCP. Our review provides evidence that TCP has

increasing interests. We also discovered that requirement-based

utilization would help to prepare test cases earlier to improve

TCP effectiveness.

Keywords—Software testing; test case prioritization; regression

testing; requirements-based test case prioritization; software

engineering

I. INTRODUCTION

Software testing is a significant stage to confirm the
quality of the software before it is released. Particularly in the
software maintenance process, the study [1] demonstrated that
the cost of testing implementation could reach 80% of the total
maintenance costs. Therefore, further efforts are needed to
reduce execution time in the testing process.

In the iterative-incremental process and the era of agile
software development, new functions are increased by a short
cycle [2]. Thereby, software development is also a process
that is carried out continuously because of adding user needs.
When there are changes in the software, new errors might
appear. This situation will disrupt the previous stable system
[3], [4]. For this reason, regression testing (RT) is needed,
because it will verify the software to find the impact of
changes to ensure its continued quality.

One of the popular techniques in RT is test case
prioritization (TCP). This technique will order test cases in the
test suite so that the testing execution will process the test
cases with the most potential to find errors. The advantage of
TCP implementation is that even if the testing process must be
stopped for certain reason, the most significant errors have
already been found. According to [5], there are two essential

aspects of building TCP: determining the TCP approach and
the technique to optimizing the TCP implementation.

In the past years, TCP studies gained significant attention
and achievements to improve regression testing effectiveness.
The study [6] emphasized that the researchers focus on five
aspects: coverage criteria, algorithms, practical concerns
involved, measurement techniques, and scenario to implement
the technique. On the other side, studies [7], [8] explained that
most of research efforts used source code as input resources to
obtain the maximum number of faults within a certain period.
Utilization of the code information is best applied to unit-level
or block-level tests. Therefore, these efforts have limitations
when applied to large systems since statements and block
levels in source code will be challenging to manage [9], [10].
Utilizing code information will be expensive to implement
because the tester must read and understand the source code,
and this will take a long time.

Besides code-based, other TCP approaches have also been
developed. According to a study [11], since a system is built
from many requirements, the use of information from the
requirements can increase error discovery. For this reason,
some researchers argue it is essential to develop requirements-
based TCP, while the studies in this area are still limited.

Therefore, the paper's main objective is to investigate TCP
research's state of the art, emphasizing requirements-based
TCP. The expected contributions of this study are:

1) To provide an overview of TCP developments in the

years range from 2017 to 2020. We intend to highlight

requirements-based TCP as one of the TCP approaches worth

considering, and as far as we are concern, this is the first

review on requirements-based TCP.

2) To present the variations of the TCP approaches and

techniques explored so far, the diversity of software under test

(SUT) used as an object for empirical evaluation, and the

variation of metrics utilization to measure the TCP

effectiveness. The results will be helpful to form a basis for

future requirements-based TCP research.

Although there have been many studies in the form of TCP
surveys, literature review, or mapping, each research has a
different emphasis and perspective. In this regard, we have
reviewed 48 credible papers from reputable journals and
proceedings. Section II explains this in more detail.

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

254 | P a g e

www.ijacsa.thesai.org

This paper is presented in stages, starting by looking at RT
in general, followed by a study of TCP, and finally exploring
the requirement-based TCP. Following the introduction,
Section II presents the motivation and related work in RT and
TCP. Section III describes the SLR method, including threats
to validity and Section IV presents results and discussion.
Subsequently, Section V describes the research findings, and
Section VI offers future work and conclusions.

II. MOTIVATION AND RELATED WORK

In this section, we explain the motivation and related work
of the study conducted.

A. The Motivation

The ideal implementation of RT is to "retest all" or execute
all test cases. However, in practice, not all test cases will be
retested, especially those implementing RT manually. Several
RT practice personal intuition based on experience, and even
randomly [12]. Complete testing is complicated, and even
worst, in several cases testing needs to be stopped. This
condition causes other RT implementation problems, such as
an error in the execution of the test case sequencing. On top of
that, the RT process may be prolonged, or it may also run out
of time. Studies [12], [13] stated that these approaches are
inefficient and require high costs.

In many cases, RT is performed in high-pressure situations
since testing execution requires a very long time. For example,
the testing process conducted in an industry takes up to seven
weeks to program with 20,000 lines [14]. In another case,
Google has reported that there are more than 20 code changes
every minute and that there is a change of 50% of files per
month, resulting in a very long execution [15], [16]. The other
example is a software development product with up to 30,000
functional test cases that need over 1000 hours. Besides,
engineers need hundreds of hours to oversee the
implementation of regression testing, supervise tests, monitor
test results, and maintain test cases, oracles, and everything
needed to support automated testing. Therefore, the study [17]
concluded that RT is costly due to thousands of effort hours.

It is then understandably if several researchers emphasize
that the common problem in RT is time constraint or
insufficient [8], [18]–[20]. Through various surveys, research
in the RT field will continue to grow, with the increasingly
diverse types of approach or a broader application domain, for
more effective methods.

RT techniques are divided into three types [2], [21]:
regression test minimizing (RTM), regression test selection
(RTS), and regression test prioritization (RTP), or also known
as test case prioritization (TCP). A study [22] summarizes the
comparison of the three techniques which are presented in
Table I.

TABLE I. THE COMPARISON OF REGRESSION TESTING APPROACH [22]

Component

Regression Test Approaches

Minimizing

(RTM)
Selection (RTS)

Prioritization

(TCP)

Strategy
Eliminate test

case

Modification aware

test case

Test case
permutation by

ordereing and

prioritizing

Strength
Effective in
reducing test

case

Effective in

selecting

modification-aware
test cases

Usefull when new
test case will

always be

considered in the
test case

permutation

Limitation

Test case are

not
modification-

aware

New test cases
might be missed out

in the temporary

selection that is

modification-aware

Time consuming,
larger test-suuite

RTM reduces test cases by removing many test cases for a
particular reason, such as redundant ones. Meanwhile, RTS
selects test cases that can potentially find errors. The selection
process refers to specific criteria. Both RTM and RTS will
permanently remove some test cases from the test suite.
Unlike RTS and RTM techniques, TCP does not remove test
cases but orders the test cases according to the criteria. The
test case with the most potential to find an error in the
program will have a higher priority and be executed earlier.

B. Related Work

Some surveys or reviews have been conducted on RT and
the TCP techniques. This section describes the study, SLR,
and mapping obtained from many digital libraries in 2010-
2021 range.

Regression testing survey is available in several studies [2],
[16], [21]. The study [2] surveyed RT in the scope of the
technical side, metrics, strategy, software under test (SUT),
and an overview of the optimization technique in the form of
automation, or using a traditional approach. Meanwhile, the
study [16] described the techniques and advantages of all
three types of regression testing. Study [21] on the other hand,
reviewed articles with the most extended ranges from 1977 to
2009. This study discussed the approaches and techniques
covering test case minimizing effort, test case selection, and
TCP in great detail.

The specific survey on TCP was performed in [5], [22],
[23] [24], [25], [26], 33], [27], [28], and [29]. Survey [22] and
[23] are two very detailed surveys and have been cited by
many TCP researchers to date. The study [22] reviewed 80
articles from 1999 to 2016, while [23] reviewed 65 papers
from 1997 to 2011. Generally, the aspects explored in the two
studies include approaches and techniques on TCP, metrics,
and software under test (SUT).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

255 | P a g e

www.ijacsa.thesai.org

In analysing TCP, study [5] explained that there are two
approaches to categorize TCP implementation: input resources
(the information sources for the TCP process) and
optimization strategies (methods or algorithms for executing
the TCP technique). This study classified the TCP approaches
and the TCP optimization strategies according to these two
categories. This method is a more straightforward step to
facilitate TCP classification. In measuring the TCP
effectiveness, this study proposes another view of the metric
used by many researchers, which is the average percentage
error detection (APFD). However, APFD has limitations
because it treats all test cases as having the same weight.

A survey [24] has mapped and reviewed 108 articles from
1999 to 2016. The author mapped article content into several
aspects: the place of publication, the number of articles on the
approach, and the number of metrics. Furthermore, the review
includes the use of tools, the TCP effectiveness for each study
investigated, the analysis of APFD factors, and a review of
APFD in some SUT applications.

The model-based TCP has been studied [25] which
reviewed 32 articles from 2005 to 2016. The authors classified
the TCP models based on approaches, their characteristics,
and how they can overcome obstacles in TCP implementation
using model-based as an input resource.

The study conducted by Mukherjee and Patnaik [26]
surveyed 90 TCP articles from 2001 to 2018. The purpose of
the survey is to investigate several aspects: TCP Metric, the
program or SUT, and identify the TCP method commonly
used. This study concludes three essential perspectives: 1) the
APFD metric is the most extensive to measure the
effectiveness of TCP, 2) the program in the SIR repository is
the most widely used as SUT, and 3) the coverage-aware,
requirements-based, and model-based are the three approaches
that are getting more attention, currently.

In 2019, Lio et al. [30] surveyed 191 articles on TCP
published in the 1997 to 2016 range. They analyzed TCP
trends based on six categories: constraints, algorithms, criteria,
measurements, scenarios, and empirical studies. In addition to
this, they highlighted several improvements during the
development of test cases in 2004–2005, 2008–2009, and
2014–2015. They analyzed the trends of the period from
various points of view as a basis. More specifically, the
analysis was related to the emergence of technologies that
allow online repositories to host software projects.

Meanwhile, a study [27] have reviewed TCP trends from
2017-2019. An essential aspect of this study is to answer
whether the taxonomy proposed in the previous study [22] is
still valid. This study further suggests other approaches:
location-based, machine learning-based, neural network-based,
and empirical, which are empirical studies of TCP in certain
domains, with specific guidelines or software.

Recently, two more literature reviews on TCP are
published in 2021. Samad et al. [28] reviewed TCP in general,
and Hasnain et al. [29] specifically reviewed TCP's functional
requirements. Samad et al. reviewed 52 TCP articles in the
2007-2020 range. Like most studies on regression testing and,
in particular, TCP, the RQ proposed in this study is a state-of-
the-art of TCP technique, parameters, dataset or object
software used, and metrics to verify TCP techniques. The
parameters used in the study include cost, code coverage, and
fault detection ability.

The study conducted by Hasnain et al. [29] focuses on
TCP studies that utilize the functional requirements approach,
with 35 article from 2009 to 2019. The study answered 7 RQs:
state-of-the-art regarding functional requirements-based TCP,
the key factors discussed in the TCP requirements-based study,
the essential aspects considered for proposing the TCP
approach, the crucial issues addressed in the TCP functional-
requirements study, test case size and type of defect, metrics
used, software under test (SUT), and whether these studies can
be applied in the real world or not.

There are five surveys on both RT and TCP for specific
purposes. The study [15] reviewed the trend of the TCP
approach in web applications and analysed the qualitative
assessment of web applications. The analysis was carried out
on three web application sizes: small, medium, and large, and
was analysed from two categories: simple and complex web
applications. Meanwhile, a study has been conducted [31] to
map the regression testing applications on web services. The
mapping aims to identify gaps between existing studies and
the future studies in each article reviewed. The study mapped
several things: stakeholders, SUT and related standards,
validation methods, and web services, as well as mapping to
validation services.

Moreover, to review the use of TCP techniques in web
services, a study [32] has identified statistical methods,
metrics to validate the proposed technique, and issues relating
to current TCP concerning web services. Furthermore, a study
[33] reviewed the scope of TCP's application for continuous
interaction (TCPCI) environment. Some important aspects
were analysed, including problems in continuous integration
(CI), sources of information (input resources) for TCP in
TCPCI, evaluating measures using metrics in TCP, and
analysis of research opportunities to guide future research.

A study by [34] analysed 98 articles to support the
research. The authors analysed and mapped several aspects,
including the techniques and the efforts to improve the test's
scope. The authors also construct a taxonomy that allows
researchers to consider the relevance and applicability of
regression testing to specific industries. Table II presents the
secondary studies, whether in the form of SLRs, surveys, or
mapping, from 2010 to 2020, grouped by RT, TCP technique,
and RT or TCP for specific purposes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

256 | P a g e

www.ijacsa.thesai.org

TABLE II. SECONDARY STUDIES IN REGRESSION TESTING (RT) AND TEST CASE PRIORITIZATION(TCP)

 #Study
Publication

Year

Type of

Studied
Year Coverage #of Primary Studies Other Information

RT

[21] 2010 Survey 1977-2009 159

[16] 2016 Survey - -

[2] 2016 Survey 2000-2014 25

TCP

[23] 2012 SLR 1997-2011 65

[24] 2017 Mapping 1999-2016 108

[22] 2017 SLR 1999-2016 80

[5] 2018 Survey - -

[26] 2018 Survey 2001-2018 90 TCP approaches

[25] 2018 SLR 2005-2016 32 Model-based TCP

[30] 2019 Survey 1997-2016 191

[27] 2020 SLR 2017-2019 320

[28] 2021 SLR 2007-2020 52

[29] 2021 SLR 2009 to 2019 35
Functional requirement-

based

RT / TCP for

Specific Purpose

[31] 2014 Mapping 2000-2013 30 RT for Web Service

[15] 2015 SLR 1995-2014 64 RT for Web Appl.

[34] 2019 SLR x-2016 98 RT in Industry-relevant

[33] 2020 Mapping 1979-2020 35
TCP in Continuous
Integration

[32] 2020 SLR 2001-2017 65 TCP for Web Service

III. REVIEW METHOD

We adopted a Systematic Literature Review (SLR)
strategy [35] as a method. SLR is a research method for
conducting a literature review with systematic and regular
steps. According to the method, Table III presents three stages
of review: the initial or planning stage, the selection and
review process, and the reporting of the resulting process.

A. Research Question

The research questions (RQs) are intended to find the
techniques, approaches, and empirical experiences from many
researchers to formulate an efficient way to process regression
testing using TCP techniques and requirement-based TCP.
The results of the SLR must be able to answer several
questions in Table IV.

B. Selecting and Review Process

This section explains several stages of activities in
implementing the SLR.

1) Literature resources: The articles used in this study are

taken only from journals and proceeding. We selected the

most common and influential database sources and the ones

most widely used by researchers, as listed below:

a) IEEE Xplore

b) Science Direct

c) Springer

d) Semantic Scholar

e) Google Scholar

TABLE III. SYSTEMATIC LITERATURE REVIEW STAGE

SLR Phase Steps

Planning Formulating the research questions

Selecting and

Review
Determining the data sources

 Determining search strings/keyword

 Applying inclusion and exclusion criteria

 Selecting, classifying, and analyzing the references.

Reporting Presenting the SLR result

TABLE IV. LIST OF RESEARCH QUESTIONS

#RQ Research Questions Motivations

RQ1

What is state of the art for

TCP in regression testing

based on TCP approaches
and techniques?

To discover the development

of approaches in TCP study

RQ2
What is the software under

test (SUTs) in TCP studies?

To identify the variation of

SUTs in TCP studies. This

will be useful for researchers

to prepare the SUT carefully.

RQ3

What is the trend of metrics

to measure TCP

effectiveness?

To provide insight into how

the effectiveness of
approaches or techniques is

measured.

RQ4
What is the state of the art of
requirement-based TCP in

literature?

To explore techniques or
approaches studied in the

requirements-based TCP.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

257 | P a g e

www.ijacsa.thesai.org

2) Search string criteria: We formulated a string for the

search process considering its relevance to the research

question. Sometimes we used several words by combining

them into a query for words with similar meanings, such as

"technique," "approach," or "strategy." Furthermore, to

emphasize a string, quotes are also used in a phrase, such as

"regression testing" or "test case," so that search results can be

more specific. The keywords for the query search string used

are: "test case" AND (prioritization OR prioritize) AND

(approach OR technique OR strategies) AND "regression

testing."

3) Inclusion/Exclusion criteria: The next stage is

selecting articles based on inclusion criteria (ICs) and

exclusion criteria (ECs). Table V explains four inclusion and

exclusion criteria.

4) Selection and quality assessment: We decided to

choose papers published started in 2017 to answer the

Research Questions. The reason is because studies conducted

from 1999 to 2016 [22] and from 1997 to 2011[23] have been

in detail reviewed, and researchers to date have widely cited

the results.

Using the query stated in sub-section 3.2.2, we discovered
501 papers in the primary studies from various databases.
These papers are published in both journals and proceedings.
Next, we selected the papers using the inclusion and exclusion
criteria as presented in Table V, resulted in 122 papers being
selected. Furthermore, we conducted a quality assessment
based on the following five parameters:

a) The objectives are clearly described.

b) The article clearly states the used approach or

technique.

c) There is sufficient information about the software

under test (SUT) as a research object.

d) The research design is appropriate to answer the

research question.

e) Conclusions are stated clearly and measurably using

one or more metrics.

The five above parameters must be "true," otherwise the
paper will be excluded to obtain the expected quality. At this
selection stage, 48 papers were finally listed. Fig. 1 describes
the process of sources search and selection.

5) Data extraction process: The data extraction stage

aims to collect data from selected papers, which is done by

extracting information to answer the research question (RQs)

defined. Table VI is a list of extraction parameters along with

the research question to be answered.

C. Threats to Validity

There is a risk of threats to validity in the review survey
even though careful measure has been taken care of
throughout the survey. In this survey, there are two threats of
validity as listed below:

1) There may be missing credible sources, which is

beyond our knowledge. To minimize the threat, we search

from the most common and influential database sources.

2) There is a possibility there exist relevant studies but are

not captured by the keywords due to the differences in

terminology and mentions. For this matter, we have searched,

and test various search string combinations as stated in

Section III.B.2.

TABLE V. LIST OF INCLUSION: EXCLUSION CRITERIA

#ICs Inclusion Criteria #ECs Exclusion Criteria

IC1

The document selected is an

article from a journal or
proceeding

EC1 Lecture note, book chapter

IC2

The articles taken are those
related to the focus study in

this research, whether

explicitly proposing new
approaches/techniques, or

studies that examine the

effectiveness of a technique,
through comparisons, or

empirical studies

EC2
Articles that discuss in the
form of an overview of

these concepts

IC3
The articles published 2017-

2020
EC3

The articles published

outside of 2017-2020

IC4
The articles written in

English
EC4

The articles in languages

other than English

Fig. 1. Search and Selection Process.

TABLE VI. THE DATA EXTRACTION PARAMETERS

Research Question Extraction Parameters

RQ1 TCP approaches and techniques

RQ2 SUT for empirical studies

RQ3 Metric used to measure the TCP effectiveness

RQ4
The strategies to implement the requirements-based
TCP

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

258 | P a g e

www.ijacsa.thesai.org

IV. RESULTS AND DISCUSSION

This section elaborates on the review results.

A. Primary Studies Overview

From the first search 501 articles were obtained from the
databases. There are 235 journal articles, and 266 proceedings
articles. Fig. 2 shows the distribution of articles obtained from
2017 to 2020. While Fig. 3 presents the comparison of the
journal and proceeding in the first-round search.

When taking the inclusion and exclusion criteria into
account, 122 papers were shortlisted, as shown in Table VII.
Next, we filtered the shortlisted papers using the five quality
assessment criteria, and only 48 were finalized (Table VIII).
The detailed information of selected articles can be found in
the Appendix.

Fig. 2. First Search Results.

Fig. 3. Journal Articles and Proceedings Distribution.

TABLE VII. TOTAL ARTICLES DURING THE INCLUSION / EXCLUSION

SELECTION

Year of

Publication

Total articles

selected

First-round

Included Excluded

2020 134 39 95

2019 137 37 100

2018 153 28 125

2017 77 18 59

TOTAL 501 122 379

TABLE VIII. TOTAL ARTICLES DURING THE QUALITY ASSESSMENT

Year
Result of the

first round

Second round

Included Excluded

2020 39 12 27

2019 37 16 21

2018 28 11 17

2017 18 9 9

TOTAL 122 48 73

The 48 primary studies consist of 31 journal articles and
17 proceedings, as illustrated in Fig. 4.

Fig. 4. Selected Papers through Two Rounds Selection.

Next, Fig. 5 shows the selected articles classification based
on the origin (journal or proceeding) and quartiles in Scimago
indexing. It is shown that 33.3% of articles are from Q1
journals, 18.8% are from Q2 journals, 8.3% are from Q3
journals, and 4.2 % are from Q4 journals.

Fig. 5. Selected Papers Sources.

B. Current Research Efforts to Improve TCP for Regression

Testing

This sub-section responds to RQ1, RQ2, and RQ3.

1) What is The State of the Art for TCP based on TCP

Approaches and Techniques? (RQ1): The answer to RQ1 also

covers the review done by Khatibsyarbini et al. [22] since it is

essential to consider the improvement of TCP research before

2017. The significant discovery is the TCP taxonomy which

portrays the regression testing types and some techniques in

TCP. Fig. 6 shows the TCP approaches taxonomy proposed by

[22] and portrays approaches added by [27]. Four items are

added into the initial taxonomy: ' Location-based,' 'Machine-

learning based,' 'Neural Network-based,' and 'Empirical.'

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

259 | P a g e

www.ijacsa.thesai.org

Fig. 6. Taxonomi of TCP Approach (Adapted from [22]).

Table IX presents the approaches in the TCP research
during 2017-2020. While Fig. 7 visualizes the approaches
distribution in the TCP research, it can be seen that several
approaches are gaining popularity as they appeared in several
researches.

TABLE IX. APPROACHES IN THE TCP RESEARCH

Approaches Research

Risk based [36][10]

Search based [37] [38] [39] [40] [41] [42][43]

Fault based [44] [45] [46] [47] [48]

Model based [49][50] [46][51]

Modification based [52][53][54]

Coverage based [55] [56] [57] [58] [59] [60]

Similarity based [61] [62][63] [64] [65][66] [67]

Requirement based [68][69][70] [13][71]

User Interface based [72]

History based [73] [74]

Mutation based [75]

Hybrid (combining more

than 1 method)
[76][20][77] [53] [75]

Fig. 7. The Trend of TCP Approaches.

In comparison to the approaches proposed by [22] and
[27], we discover several other approaches through our
survey: modification-based, user interface-based, model-
based, mutation-based, and similarity-based. This discovery
shows that researchers are still exploring and improving ways
to better TCP by introducing more approaches.

Input resource, technique, and algorithm determination are
essential to implement TCP [5]. Referring to the literature,
there is no dominant technique or algorithm for implementing
TCP. After we identified the TCP approaches, we then
identified the techniques that researchers used in their study.
Each researcher executes the chosen technique based on
specific analysis and considerations. Some of the algorithms
used include Greedy and Additional Greedy for search-based
TCP [37], [40], Firefly Algorithm [38], [78], Neural Network
Classifier [44], Ant Colony Optimization [55], [70], FAST
Algorithm [79], Support Vector Machine/SVM [80], Genetic
[42], [59], [76], [81], Fuzzy Expert [77], Dynamic
Programming [45], Recommender System [58], Clustering
Technique [73], [82], [83], Particle Swarm Optimization [61],
Natural Language Processing (NLP) [74], and Bat-inspired
Algorithm [48].

Based on our survey, we found that some researchers used
more than one approach or technique in their study. For
example, a study combined estimated risk value, coverage
information, and fault detection [53]. Another study compared
the mutation-based and diversity-aware [75]. Finally, there is
also a study that looked into requirement and risk-based [84].

2) What is The Software under Test (SUT) in TCP

Studies? (RQ2): Software or system under test (SUT) is a

complete system as the object or target of testing. A well-

structured and centralized SUT infrastructure can gradually

build knowledge [85]. In this study, SUTs for evaluation are

diverse. We classify the utilization of SUTs based on five

categories: 1) researchers build their SUTs using open source

from public resources, such as Github or other sources. In this

case, the researchers design the fault and test cases for a

specific purpose; 2) researchers utilize the SUT from the

dataset or repository such as SIR, Defects4J, or others. In this

case, researchers only need to explore and directly use the

SUT from the repository; 3) researchers use the software from

the industry as the cases with scale variations; 4) researchers

build a software, create some faults and some test cases; 5)

Others SUTs. Table X shows the distribution of SUT

utilization according to the five categories.

The SIR and Defect4J repositories are still widely used as
sources for SUTs. Besides, many researchers build and open-
source SUT as a research object. Fig. 8 illustrates the
distribution of SUT usage according to the five classifications
described in Table X.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

260 | P a g e

www.ijacsa.thesai.org

TABLE X. UTILIZATION OF SOFTWARE UNDER TEST (SUT)

SUT Research

Building SUT by utilizing

open source from public
sources such as Github or

the others

[86][20][1][45][41][58][60][48][42]

Utilizing SUT from the

available database such as
software - artifact

infrastructure repository

(SIR) and Defect4J

[37] [38] [39] [44] [49] [52] [55] [56] [40]
[62] [77] [83] [66] [87][10] [59] [79] [43]

[73] [61] [53] [64]

Real case from the industry [49][49][20][1][46][58][51][60][47][42] [74]

Software, faults, and test-

cases developed by the
researcher

[82]

Others software [36][71][76][69][81][70][13][71][42]

Fig. 8. Distribution of SUT Utilization.

3) What is the trend of metrics to measure the TCP

effectiveness? (RQ3): In TCP studies, researchers generally

aim to present the effectiveness of the developed techniques.

In this regard, some metrics are known, as shown in Table XI.

To answer what is the trend of metrics utilization to measure

the TCP effectiveness, we identify metric utilization in all

studies.

Several studies utilize more than one metric in their
research. As in previous studies [22] and [23], the average
percentage fault detection (APFD) was used dominantly in
many TCP studies, while other metrics are spread out in less
specific numbers. Table XII shows metric utilization in the
studies, and Fig. 9 visualizes the distribution of metrics used.

C. What is the State of The Art of Requirement based-TCP

(RQ4)?

Section 4.2 presents current research efforts to improve
TCP for RT, while this section narrows the focus on current
research efforts to improve requirements-based TCP.

Prior to conducting a review of the current research effort,
we consider it is necessary to review the development of
requirements-based TCP before 2017. Almost all TCP surveys
that discuss requirements-based TCP start with prioritizing
requirements for tests (PORT) [9] as the basis. The primary
references for requirements-based TCP prior to 2017 are from
studies [22] and [30]. The following is our exploration of the

requirements-based TCP development including studies prior
to 2017.

PORT is a value-driven approach to implementing TCP at
the system level. Study[9] prioritizes the test-cases refer to
four parameters: requirement volatility (RV), customer-
assigned priority on requirements (CP), fault proneness of
requirements (FP), and developer-perceived implementation
complexity (IC). To determine the test case prioritization, each
factor is carried out and given a score. For example, CP is
rated with a range of 0-10, where 10 is the highest priority
value. The evaluation result shows that the PORT technique
can increase the detection rate of severe errors compared to
executing a random test case. More specifically, CP is the
most influential factor in increasing the PORT effectiveness
and next IC. They used two metrics to measure the PORT
effectiveness: the average severity of faults detected (ASFD)
and total severity fault detection (TSFD).

TABLE XI. DESCRIPTION OF METRIC TO MEASURE THE TCP

EFFECTIVENESS

Metric Description

APFD Average Percentage Fault Detection

APFDC Average Percentage Fault Detection and Cost

Modified APFD Modified Average Percentage Fault Detection

NAPFD Normalize Average Percentage Fault Detection

EPS Epsilon

ECC Effectiveness of Change Coverage

PTRSW Percentage of Total Risk Severity Weight

APCC
The average percentage of λ-wise combinations covered/

Average Percentage of Combinatorial Coverage

RP The Average Relative Position

HMFD The harmonic means of the rate of fault detection

APTC Average percentage of test-point coverage

eAPWC Enhanced average percentage of win-Cost coverage

NTE The Number of Test to be Evaluated

HV

Hypervolume (HV) measures the volume in the objective

space covered by the
produced solutions with the range from 0 to 1 and a

higher value of HV denotes a better performance of the

algorithm

APSC Average Percentage of Statement Coverage

Requirement

coverage
The number of requirements covered by test

Code coverage

How many codes were executed while test performed?

Can be in the form of number of line (line coverage),

branch (branch coverage), or even path (path coverage).

Test case & patch

diff.

Difference between the number of test cases and patches

generated between approaches

Similarity
Test case similarity measures the distance between two
test cases and returns a value within the range [0,1].

Prior-aware

similarity

Prioritization-aware Test Case Similarity. Measures the

average similarity of each of the test cases with its

preceding test cases (i.e., test cases that were prioritized
before)

Severity
Severity detection per test case execution (early detection

of severe faults)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

261 | P a g e

www.ijacsa.thesai.org

TABLE XII. METRIC UTILIZATION IN THE TCP RESEARCH

Metric Research

APFD

[36][38][39][44][49][56][40][57][86]

[62][72][20][77][83][88][66][87][41]
[50] [79][43][73][75][60][82][47][48]

[61][53][74][64]

APFDc [38][80][1][45][87][51][10][59]

Modified APFD [44]

NAPFD [37][58]

EPS [39]

ECC [39]

Execution Time
[38][52][55][56][40][80][76][20][42] [41]

[65][48]

PTRSW [36]

APTC [70]

eAPWC [70]

APCC [57][64]

RP [54]

HMFD [86]

NTE [60]

Requirement coverage [13][42][68][69]

Code Coverage [55][56]

Fault detected [40][46][71]

Test case and patch diff. count [52]

APSC [59]

Similarity [42]

Prioritization-aware-Similarity [42]

Severity [45]

Fig. 9. Distribution of Metrics Utilization.

The following requirement-based TCP was introduced in
2009 [11], involving six factors: changes in requirements,
customer assigned priority of requirements, fault impact,
developer-perceived code implementation complexity,
application flow, and usability. The authors divided the six
factors into three factors for testing at the initial version stage
and three factors for the regression testing stage. Furthermore,
this study proposed a technique or steps to prioritize test cases

using requirements-based factors. This stage information can
be a reference for TCP requirement-based researchers.

A TCP through correlation of requirement and risk has
been studied by Yoon et al. [89]. They reported TCP's risk-
based testing (RBT) technique using defining risk items and
estimated the risk exposure value derived from the
requirement. The calculation of risk exposure value is
determined based on requirement risk weight and the value of
risk exposure. Specifically, they defined product risk items,
which are expected to be helpful for the risk identification
process. They also presented empirical studies comparing the
effectiveness of their approach with other prioritization
approaches. This empirical study shows that the utilization of
risk exposure is promising in terms of effectiveness and can
detect severe errors. This condition will have an impact on
efforts to save time and costs.

In addition, Arafeen and Do [90] reported about TCP
method using requirements-based clustering. They used a
machine-learning algorithm to cluster the textual similarity
among requirements. The clustering technique classified the
distribution of words that co-occurs in their requirements.
There are three tasks in this process: term-document matrix
construction, term extraction, and k-means clustering. Their
empirical study showed that the method could improve the
effectiveness of TCP. Their empirical study showed that the
method could improve the effectiveness of TCP.

Throughout years, several studies have been carried out to
deal with requirements-risk in requirements-based TCP [8],
[77], [91], [92]. These studies were seen as a series of efforts
to further improve TCP based on requirement risk. Since
PORT [9] was introduced, the researchers further explore the
fuzzy expert system to prioritize test cases systematically [92]
and later was investigated empirically with industry cases [77].

Many types of factors were utilized in the research
conducted on test-case prioritization [8], such as utilized
requirements modification status (RMS), requirements size
(RS), requirements complexity (RC), and potential security
threats (PST). Meanwhile, a study [77] reported four indicator
risks to propose their approach, which are RC, fuzzification, a
potential security risk (PSR), and requirements modification
level (RML).

The other types of requirement risk factors was explained
in [91], which proposed general steps to prioritize test: 1)
estimating the risk and requirements correlation; 2) calculate
the risk weight for all requirements; 3) calculate the exposure
value; 4) evaluate additional factors for requirements
prioritization; and 5) prioritize the requirements and test cases
for all requirements.

The researchers utilized some risk factors to implement
TCP, while the other researchers implemented the
requirement-risk TCP for specific software. For example, a
study has been carried out [36] to calculate the risk value from
some parameters of requirement complexity, such as methods
failure likelihood (MFL), method complexity (MC), change
requirements (CR), methods failure impact (MFI), and method
size (MS). The result of these calculations then used to
determine the prioritized test suite. Meanwhile, study [93]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

262 | P a g e

www.ijacsa.thesai.org

utilized five aspects of risk to formulate their framework: risk
item type, characteristic, measurement method, calculation
procedure, and risk level.

A study [94] utilized the correlation of requirements to
build the TCP technique. Their study calculated requirements
priority (RP) based on customer-perceive priority (CP),
development perceives priority (DP). RP of the i-th
calculation in the formula RPi = CPi + DPi. They assumed that
the CP and DP have equal weight. The authors claimed, this
TCP technique was efficient on a small-scale study, and their
method was better than the sorting process.

The discussion of requirements-based TCP since 2017 was
begun with an analysis of research [71] which implement the
TCP using requirement dependency with four parameters: test
cases, test requirements, errors, and costs. On the other hand,
they defined other elements related to functional requirements
and requirements dependencies. Therefore, the authors use the
algorithm to prioritize test cases considers the objectives of
optimization, error detection, and cost.

The study [68] presents the requirement-dependency TCP
by modeling the requirements and information of the test-
related and their relationships with some aspects such as
stakeholder affiliation, stakeholder's assigned priority, cost,
time, risk, and business value. In prioritizing the test cases,
they utilize the PageRank algorithm.

Study [69] utilized information coverage as an input
resource. The authors proposed the use of complex test cases
to test the requirements coverage. With complete coverage,
the error detection rate also increased. At the same time, study
[94] explained TCP's usage based on requirement correlations.
When the testing process detects errors in a functional
requirement, other correlated requirements may contain
similar errors or other errors depending on the correlation
between the two requirements. This study gives a better
understanding of requirements correlation and its impact to be
further explored in future TCP research. The parameters for
the prioritization process use customer priority (CP) and
developer priority (DP). Both of which are assessed by
humans to produce a requirement priority (RP) as the
initialization stage for the test case prioritization process.

In 2019, a study [77] utilized requirements risks in
requirements-based TCP which introduced the fuzzy logic to
reduce the humans' role in estimating risk factors for
prioritizing test cases. This study is a continuation of the
previous requirements-risk survey, which started in 2014[91].

We investigate more on TCP using requirement
dependencies researched by two studies [68] and [71]. These
studies are essential to explore because requirements-based
TCP research focuses on the use of information in
requirements, such as the interactions between requirements
that influence the feasibility of the functionalities. This
interaction is known as requirements dependency. The study
[71] compared the cost-effectiveness of testing between the
Greedy Method and the Genetic Algorithm (GA). The study
prioritizes the GA to form a test suite that ensures all the
defined requirements and has the lowest cost and highest fault
detection.

TABLE XIII. THE STUDY ON REQUIREMENT-BASED TCP

Studies
Requirement-

information

Software Under Test

(SUT)
Metric Used

[9]

requirements

volatility, customer

priority (CP),
Implementation

Complexity (IC),

and requirement‟s
fault proneness.

Four projects

developed by students

in the advanced
graduate

ASFD,

TSFD,

[11]

Customer assigned

priority of
requirements,

developer-

perceived, code, IC,
change requirement

(CR), application

flow, fault impact,
and usability

Five projects
(Phase1); Project with

5000 LOC

(Phase2); Industrial
Case, Cosmosoft

Technologies Limited

(Phase3)

TSFD,

ASFD,
TTEI, ATEI

[89] Requirement risk
Program from

Siemens
APFD

[90] Requirement clustering

Java programs

containing multiple
versions (two

program)

APFD

[91] Requirement risk
Open-source and
capstone project.

APFD

[8] Requirement risk
Enterprise-level IBM

analytics application.
APFD

[92] Requirement risk

Open-source and the

industrial (one

program)

APFD

[94] Requirement risk Industrial case study APFD

[71]
Requirement
dependency

A synthetic case study APFD

[68]
Requirement

dependency
Small example case

Requirement

coverage

[69] Requirement coverage Own case study APFD

[77] Requirement risk Industrial application APFD

Meanwhile, Abbas et al. [68] made a requirement
dependency meta-model on non-functional requirements and
performed TCP using the Page Rank Algorithm. This
requirement dependency value was used as an addition to the
priority ranking weight for these requirements. In summary,
Table XIII presents the requirement-based TCP research
conducted to date.

V. RESEARCH FINDING

Regression testing is a crucial stage in the software
development process especially in the era of Agile
development. TCP appears as the most popular technique in
regression testing due to testing efficiency. Even if testing
must be stopped for some reason, the high-priority test cases
have found the essential faults.

We have conducted a rigorous study through searchers
from reputable resources and carefully filtered the findings
through a quality assessment to review current efforts on TCP
for RT. In RQ1, we found that the existing TCP approaches
presented by [22] and later added by [27] are still of interest to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

263 | P a g e

www.ijacsa.thesai.org

researchers. We discover five new approaches through the
review: modification-based, user interface-based, model-
based, mutation-based, and similarity-based. The discovery
shows that the taxonomy is still progressing and further
explored by researchers. In terms of the technique for TCP
implementation, we discover that there is no dominant
algorithm used. Researchers have their reasons for choosing a
technique to implement TCP based on specific analysis and
motivations. However, it is noticeable that the Greedy and
Additional-Greedy Algorithm, which are classic search-based
TCP algorithms, are still in demand. Likewise, Genetic
Algorithms are also popular. On the other hand, we discover
that Machine Learning Algorithms seem to be growing in use
and gaining popularity.

As for RQ2, we have investigated that SIR is an SUT
repository database with an excellent and complete SUT
collection. However, although many researchers still use it,
some studies use SUT for empirical studies. Through the
review, we classify SUTs into six categories: SUTs built from
open-source software, SUTs from repositories such as SIR and
Defects, SUTs from industrial cases, SUTs constructed by
researchers.

Answering RQ3, in terms of using metrics to measure the
effectiveness of TCP, we did not find any significant progress.
Some researchers add aspects of measurement on a fixed basis
to the APFD. In this case, the APFD is dominantly used.

Finally, on RQ4, referring to reviews carried out by
previous surveys, we found the overall development on the
use of requirements-based TCP. Although requirements-based
TCP is not as popular as many other approaches, it can be
further developed. For example, referring to our survey, we
found that requirement risk TCP introduced by [77],
requirement dependency TCP by [71] and [68]. It is proven
that the research conducted has allowed growing further and
improving the effectiveness. As stated by [22], one of the
advantages of requirement-based TCP is the privilege of
utilizing information from requirements. Therefore, the
preparation of test cases can be done earlier to save time in the
testing process.

VI. CONCLUSION

This paper presents the SLR result on test case
prioritization for regression testing. The study's main
objective was to get the state of the art on TCP for regression
testing in 2017-2020. Furthermore, this study also investigates
the TCP explicitly based on requirements since the TCP was
first introduced until 2020.

We found more TCP approaches not mentioned in other
surveys, which have opportunities for further research. The
new TCP approaches are modification-based, user interface-
based, model-based, mutation-based, and similarity-based. In
the use of SUT, it appears that there are more diverse
variations of SUT. Even so, the utilization of SUT repositories
such as SIR and Defect4J is still in great demand. We also
discover that APFD is still a very dominant metric, and almost
no specific new metrics are found.

For future work, it is beneficial to explore the utilization of
requirements to improve TCP effectiveness. We view that

requirement-based utilization will help prepare test cases
earlier, so the testing process can be more efficient.
Requirement risk is an essential aspect of a requirement that is
considered in the test case prioritization development.
Meanwhile, the dependency between requirements is a crucial
issue to consider in software development, so it can be one of
the factors for prioritizing test cases. We cannot ignore the
relationship between requirements in the software
development process, including in the testing stage.
Requirement-based TCP still has many opportunities for
improvement. We believe that there are many attributes in
requirements that can improve TCP effectiveness.

VII. ACKNOWLEDGMENT

Thank you to Universiti Teknikal Malaysia Melaka for
providing supports and resources for this research.

REFERENCES

[1] Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, “Employing rule
mining and multi-objective search for dynamic test case prioritization,”
J. Syst. Softw., vol. 153, pp. 86–104, 2019, doi:
10.1016/j.jss.2019.03.064.

[2] [2] R. H. Rosero, O. S. Gómez, and G. Rodríguez, “15 Years of
Software Regression Testing Techniques - A Survey,” Int. J. Softw.
Eng. Knowl. Eng., vol. 26, no. 5, pp. 675–689, 2016, doi:
10.1142/S0218194016300013.

[3] Sebastian Ulewicz and Birgit Vogel-Heuser, “Industrially Applicable
System Regression Test Prioritization in Production Automation,” 2
IEEE Trans. Autom. Sci. Eng., pp. 1545–5955, 2018.

[4] S. Souto and M. d‟Amorim, “Time-space efficient regression testing for
configurable systems,” J. Syst. Softw., vol. 137, pp. 733–746, 2018, doi:
10.1016/j.jss.2017.08.010.

[5] H. Hemmati, Advances in Techniques for Test Prioritization, 1st ed.,
vol. 112. Elsevier Inc., 2019.

[6] D. Hao, L. Zhang, and H. Mei, “Test-case prioritization : achievements
and challenges,” pp. 1–9, 2016.

[7] M. J. Arafeen and H. Do, “Test case prioritization using requirements-
based clustering,” Proc. - IEEE 6th Int. Conf. Softw. Testing, Verif.
Validation, ICST 2013, pp. 312–321, 2013, doi: 10.1109/ICST.2013.12.

[8] H. Srikanth, C. Hettiarachchi, and H. Do, “Requirements based test
prioritization using risk factors: An industrial study,” Inf. Softw.
Technol., vol. 69, pp. 71–83, 2016, doi: 10.1016/j.infsof.2015.09.002.

[9] J. Srikanth, H, Williams, L, Osborne, “System Test Case Prioritization
of New and Regression Test Cases,” in IEEEE International Symposium
on Empirical Study, 2005, pp. 64–73.

[10] Y. Wang, Z. Zhu, B. Yang, F. Guo, and H. Yu, “Using reliability risk
analysis to prioritize test cases,” J. Syst. Softw., vol. 139, pp. 14–31,
2018, doi: 10.1016/j.jss.2018.01.033.

[11] R. Krishnamoorthi and S. A. Sahaaya Arul Mary, “Requirement based
system test case prioritization of new and regression test cases,” Int. J.
Softw. Eng. Knowl. Eng., vol. 19, no. 3, pp. 453–475, 2009, doi:
10.1142/S0218194009004222.

[12] V. Garousi, R. Özkan, and A. Betin-Can, “Multi-objective regression
test selection in practice: An empirical study in the defense software
industry,” Inf. Softw. Technol., vol. 103, pp. 40–54, 2018, doi:
10.1016/j.infsof.2018.06.007.

[13] S. Ulewicz, B. Vogel-heuser, and S. Member, “Industrially Applicable
System Regression Test Prioritization in Production Automation,” IEEE
Trans. Autom. Sci. Eng., pp. 1–13, 2018.

[14] G. Rothermel, R. H. Untcn, C. Chu, and M. J. Harrold, “Prioritizing test
cases for regression testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10,
pp. 929–948, 2001, doi: 10.1109/32.962562.

[15] A. Zarrad, “A Systematic Review on Regression Testing for Web-Based
Applications,” J. Softw., vol. 10, no. 8, pp. 971–990, 2015, doi:
10.17706/jsw.10.8.971-990.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

264 | P a g e

www.ijacsa.thesai.org

[16] H. Do, “Recent Advances in Regression Testing Techniques,” Adv.
Comput., vol. 103, pp. 53–77, 2016, doi:
10.1016/bs.adcom.2016.04.004.

[17] N. Sharma, Sujata, and G. N. Purohit, “Test case prioritization
techniques „an empirical study,‟” 2014 Int. Conf. High Perform.
Comput. Appl. ICHPCA 2014, 2015, doi:
10.1109/ICHPCA.2014.7045344.

[18] P. E. Strandberg, D. Sundmark, W. Afzal, T. J. Ostrand, and E. J.
Weyuker, “Experience Report: Automated System Level Regression
Test Prioritization Using Multiple Factors,” Proc. - Int. Symp. Softw.
Reliab. Eng. ISSRE, no. October, pp. 12–23, 2016, doi:
10.1109/ISSRE.2016.23.

[19] H. S. De Campos, C. A. De Paiva, R. Braga, M. A. P. Araujo, J. M. N.
David, and F. Campos, “Regression tests provenance data in the
continuous so ware engineering context,” ACM Int. Conf. Proceeding
Ser., vol. Part F1306, no. September 2018, 2017, doi:
10.1145/3128473.3128483.

[20] J. Anderson, M. Azizi, S. Salem, and H. Do, “On the use of usage
patterns from telemetry data for test case prioritization,” Inf. Softw.
Technol., vol. 113, pp. 110–130, 2019, doi:
10.1016/j.infsof.2019.05.008.

[21] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Softw. Test. Verif. Reliab., vol. 22, no. 2, pp.
67–120, 2012, doi: 10.1002/stv.430.

[22] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R. Tumeng, “Test
case prioritization approaches in regression testing: A systematic
literature review,” Inf. Softw. Technol., vol. 93, no. June 2018, pp. 74–
93, 2018, doi: 10.1016/j.infsof.2017.08.014.

[23] Y. Singh, A. Kaur, B. Suri, and S. Singhal, “Systematic literature review
on regression test prioritization techniques,” Inform., vol. 36, no. 4, pp.
379–408, 2012, doi: 10.31449/inf.v36i4.420.

[24] H. S. De Campos Junior, M. A. P. Arajo, J. M. N. David, R. Braga, F.
Campos, and V. Ströele, “Test case prioritization: A systematic review
and mapping of the literature,” ACM Int. Conf. Proceeding Ser., no.
August 2018, pp. 34–43, 2017, doi: 10.1145/3131151.3131170.

[25] M. L. Mohd Shafie and W. M. N. Wan Kadir, “Model-based test case
prioritization: A systematic literature review,” J. Theor. Appl. Inf.
Technol., vol. 96, no. 14, pp. 4548–4573, 2018.

[26] R. Mukherjee and K. S. Patnaik, “A survey on different approaches for
software test case prioritization,” J. King Saud Univ. - Comput. Inf. Sci.,
2018, doi: 10.1016/j.jksuci.2018.09.005.

[27] M. D. C. De Castro-Cabrera, A. García-Dominguez, and I. Medina-
Bulo, “Trends in prioritization of test cases: 2017-2019,” Proc. ACM
Symp. Appl. Comput., pp. 2005–2011, 2020, doi:
10.1145/3341105.3374036.

[28] A. Samad, H. Mahdin, R. Kazmi, and R. Ibrahim, “Regression Test Case
Prioritization: A Systematic Literature Review,” Int. J. Adv. Comput.
Sci. Appl., vol. 12, no. 2, pp. 655–663, 2021, doi:
10.14569/IJACSA.2021.0120282.

[29] M. Hasnain, M. F. Pasha, I. Ghani, and S. R. Jeong, Functional
Requirement-Based Test Case Prioritization in Regression Testing: A
Systematic Literature Review, vol. 2, no. 6. Springer Singapore, 2021.

[30] Y. Lou, J. Chen, L. Zhang, and D. Hao, A Survey on Regression Test-
Case Prioritization, 1st ed., vol. 113. Elsevier Inc., 2019.

[31] D. Qiu, B. Li, S. Ji, and H. Leung, “Regression testing of web service: A
systematic mapping study,” ACM Comput. Surv., vol. 47, no. 2, 2014,
doi: 10.1145/2631685.

[32] M. Hasnain, I. Ghani, M. F. Pasha, C. H. Lim, and S. R. Jeong, “A
Comprehensive Review on Regression Test Case Prioritization
Techniques for Web Services,” KSII Trans. Internet Inf. Syst., vol. 14,
no. 5, pp. 1861–1885, 2020, doi: 10.3837/tiis.2020.05.001.

[33] J. A. Prado Lima and S. R. Vergilio, “Test Case Prioritization in
Continuous Integration environments: A systematic mapping study,” Inf.
Softw. Technol., vol. 121, p. 106268, 2020, doi:
10.1016/j.infsof.2020.106268.

[34] N. bin Ali et al., On the search for industry-relevant regression testing
research, vol. 24, no. 4. 2019.

[35] B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Inf. Softw. Technol.,
vol. 55, no. 12, pp. 2049–2075, 2013, doi: 10.1016/j.infsof.2013.07.010.

[36] H. Jahan, Z. Feng, and S. M. H. Mahmud, “Risk-Based Test Case
Prioritization by Correlating System Methods and Their Associated
Risks,” Arab. J. Sci. Eng., vol. 45, no. 8, pp. 6125–6138, 2020, doi:
10.1007/s13369-020-04472-z.

[37] R. Wang, Z. Li, S. Jiang, and C. Tao, “Regression Test Case
Prioritization Based on Fixed Size Candidate Set ART Algorithm,” Int.
J. Softw. Eng. Knowl. Eng., vol. 30, no. 3, pp. 291–320, 2020, doi:
10.1142/S0218194020500138.

[38] W. Su, Z. Li, Z. Wang, and D. Yang, “A Meta-heuristic Test Case
Prioritization Method Based on Hybrid Model,” Proc. - 2020 Int. Conf.
Comput. Eng. Appl. ICCEA 2020, pp. 430–435, 2020, doi:
10.1109/ICCEA50009.2020.00099.

[39] S. Mondal and R. Nasre, “Hansie: Hybrid and consensus regression test
prioritization,” J. Syst. Softw., vol. 172, no. October, 2021, doi:
10.1016/j.jss.2020.110850.

[40] J. Chi et al., “Relation-based test case prioritization for regression
testing,” J. Syst. Softw., vol. 163, 2020, doi: 10.1016/j.jss.2020.110539.

[41] M. Khanna, N. Chauhan, and D. K. Sharma, “Search for prioritized test
cases during web application testing,” Int. J. Appl. Metaheuristic
Comput., vol. 10, no. 2, pp. 1–26, 2019, doi:
10.4018/IJAMC.2019040101.

[42] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, and L. Etxeberria,
“Employing Multi-Objective Search to Enhance Reactive Test Case
Generation and Prioritization for Testing Industrial Cyber-Physical
Systems,” IEEE Trans. Ind. Informatics, vol. 14, no. 3, pp. 1055–1066,
2018, doi: 10.1109/TII.2017.2788019.

[43] M. Azizi and H. Do, “Graphite: A Greedy Graph-Based Technique for
Regression Test Case Prioritization,” in 2018 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW),
2018, pp. 245–251, doi: 10.1109/ISSREW.2018.00014.

[44] M. Mahdieh, S. H. Mirian-Hosseinabadi, K. Etemadi, A. Nosrati, and S.
Jalali, “Incorporating fault-proneness estimations into coverage-based
test case prioritization methods,” Inf. Softw. Technol., vol. 121, no.
January, p. 106269, 2020, doi: 10.1016/j.infsof.2020.106269.

[45] M. Khanna, A. Chaudhary, A. Toofani, and A. Pawar, “Performance
Comparison of Multi-objective Algorithms for Test Case Prioritization
During Web Application Testing,” Arab. J. Sci. Eng., vol. 44, no. 11, pp.
9599–9625, 2019, doi: 10.1007/s13369-019-03817-7.

[46] I. Hajri, A. Goknil, F. Pastore, and L. C. Briand, “Automating system
test case classification and prioritization for use case-driven testing in
product lines,” Empir. Softw. Eng., vol. 25, no. 5, pp. 3711–3769, 2020,
doi: 10.1007/s10664-020-09853-4.

[47] S. Nayak, C. Kumar, and S. Tripathi, “Enhancing Efficiency of the Test
Case Prioritization Technique by Improving the Rate of Fault
Detection,” Arab. J. Sci. Eng., vol. 42, no. 8, pp. 3307–3323, 2017, doi:
10.1007/s13369-017-2466-6.

[48] M. M. Öztürk, “A bat-inspired algorithm for prioritizing test cases,”
Vietnam J. Comput. Sci., 2017, doi: 10.1007/s40595-017-0100-x.

[49] K. W. Shin and D. J. Lim, “Model-based test case prioritization using an
alternating variable method for regression testing of a UML-based
model,” Appl. Sci., vol. 10, no. 21, pp. 1–23, 2020, doi:
10.3390/app10217537.

[50] J. F. S. Ouriques, E. G. Cartaxo, and P. D. L. Machado, “Test case
prioritization techniques for model-based testing: a replicated study,”
Softw. Qual. J., vol. 26, no. 4, pp. 1451–1482, 2018, doi:
10.1007/s11219-017-9398-y.

[51] T. Zhang, X. Wang, D. Wei, and J. Fang, “Test Case Prioritization
Technique Based on Error Probability and Severity of UML Models,”
vol. 28, no. 6, pp. 831–844, 2018, doi: 10.1142/S0218194018500249.

[52] Y. Venugopal, P. Quang-Ngoc, and L. Eunseok, “Modification point
aware test prioritization and sampling to improve patch validation in
automatic program repair,” Appl. Sci., vol. 10, no. 5, pp. 1–14, 2020,
doi: 10.3390/app10051593.

[53] W. Fu, H. Yu, G. Fan, X. Ji, and X. Pei, “A Regression Test Case
Prioritization Algorithm Based on Program Changes and Method
Invocation Relationship,” Proc. - Asia-Pacific Softw. Eng. Conf.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

265 | P a g e

www.ijacsa.thesai.org

APSEC, vol. 2017-Decem, pp. 169–178, 2018, doi:
10.1109/APSEC.2017.23.

[54] H. Wang, M. Yang, L. Jiang, J. Xing, Q. Yang, and F. Yan, “Test Case
Prioritization for Service-Oriented Workflow Applications: A
Perspective of Modification Impact Analysis,” IEEE Access, vol. 8, pp.
101260–101273, 2020, doi: 10.1109/ACCESS.2020.2998545.

[55] M. K. Pachariya, “Building Ant System for Multi-Faceted Test Case
Prioritization: An Empirical Study,” Int. J. Softw. Innov., vol. 8, no. 2,
pp. 23–37, 2020, doi: 10.4018/IJSI.2020040102.

[56] R. Huang, Q. Zhang, D. Towey, W. Sun, and J. Chen, “Regression test
case prioritization by code combinations coverage,” J. Syst. Softw., vol.
169, p. 110712, 2020, doi: 10.1016/j.jss.2020.110712.

[57] R. Huang et al., “Abstract Test Case Prioritization Using Repeated
Small-Strength Level-Combination Coverage,” IEEE Trans. Reliab.,
vol. 69, no. 1, pp. 349–372, 2020, doi: 10.1109/TR.2019.2908068.

[58] M. Azizi, “A Collaborative Filtering Recommender System for Test
Case Prioritization in Web Applications,” pp. 1560–1567, 2018.

[59] D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “A Test Case
Prioritization Genetic Algorithm Guided by the Hypervolume
Indicator,” IEEE Trans. Softw. Eng., vol. 46, no. 6, pp. 674–696, 2020,
doi: 10.1109/TSE.2018.2868082.

[60] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Test
Generation and Test Prioritization for Simulink Models with Dynamic
Behavior,” IEEE Trans. Softw. Eng., vol. 45, no. 9, pp. 919–944, 2019,
doi: 10.1109/TSE.2018.2811489.

[61] M. Khatibsyarbini, M. A. Isa, and D. N. A. Jawawi, “A hybrid weight-
based and string distances using particle swarm optimization for
prioritizing test cases,” J. Theor. Appl. Inf. Technol., vol. 95, no. 12, pp.
2723–2732, 2017.

[62] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed, and M.
D. Mohamed Suffian, “Test Case Prioritization Using Firefly Algorithm
for Software Testing,” IEEE Access, vol. 7, pp. 132360–132373, 2019,
doi: 10.1109/access.2019.2940620.

[63] X. Lei, M. Huaikou, Z. Weiewei, and C. Shaojun, “An Empirical Study
on Clustering Approach Combining Fault Prediction for Test Case
Prioritization,” in International Conference on Information Systems,
2017, pp. 815–820, doi: 10.1109/ICIS.2017.7960105.

[64] R. Huang, Y. Zhou, W. Zong, D. Towey, and J. Chen, “An Empirical
Comparison of Similarity Measures for Abstract Test Case
Prioritization,” pp. 3–12, 2017, doi: 10.1109/COMPSAC.2017.271.

[65] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “FAST
approaches to scalable similarity-based test case prioritization,” Proc. -
Int. Conf. Softw. Eng., vol. 2018-Janua, pp. 222–232, 2018, doi:
10.1145/3180155.3180210.

[66] S. A. Halim, D. N. A. Jawawi, and M. Sahak, “Similarity distance
measure and prioritization algorithm for test case prioritization in
software product line testing,” J. Inf. Commun. Technol., vol. 18, no. 1,
pp. 57–75, 2019, doi: 10.32890/jict2019.18.1.4.

[67] A. D. Shrivathsan et al., “Novel fuzzy clustering methods for test case
prioritization in Software Projects,” Symmetry (Basel)., vol. 11, no. 11,
pp. 1–22, 2019, doi: 10.3390/sym11111400.

[68] M. Abbas, I. Inayat, M. Saadatmand, and N. Jan, “Requirements
Dependencies-Based Test Case Prioritization for Extra-Functional
Properties,” in 2019 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2019, pp.
159–163, doi: 10.1109/ICSTW.2019.00045.

[69] R. Butool, A. Nadeem, M. Sindhu, and O. u. Zaman, “Improving
Requirements Coverage in Test Case Prioritization for Regression
Testing,” in 2019 22nd International Multitopic Conference (INMIC),
2019, pp. 1–6, doi: 10.1109/INMIC48123.2019.9022761.

[70] W. Zhang, Y. Qi, X. Zhang, B. Wei, M. Zhang, and Z. Dou, “On Test
Case Prioritization Using Ant Colony Optimization Algorithm,” in 2019
IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2019, pp. 2767–2773, doi:
10.1109/HPCC/SmartCity/DSS.2019.00388.

[71] A. Vescan, C. Şerban, C. Chisǎliţǎ-Creţu, and L. Dioşan, “Requirement
dependencies-based formal approach for test case prioritization in

regression testing,” Proc. - 2017 IEEE 13th Int. Conf. Intell. Comput.
Commun. Process. ICCP 2017, no. September 2017, pp. 181–188, 2017,
doi: 10.1109/ICCP.2017.8117002.

[72] Z. Yu, F. Fahid, T. Menzies, G. Rothermel, K. Patrick, and S. Cherian,
“TERMINATOR: Better automated UI test case prioritization,”
ESEC/FSE 2019 - Proc. 2019 27th ACM Jt. Meet. Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., pp. 883–894, 2019, doi:
10.1145/3338906.3340448.

[73] M. Abdur, M. Abu, and M. Saeed, “Prioritizing Dissimilar Test Cases in
Regression Testing using Historical Failure Data,” Int. J. Comput. Appl.,
vol. 180, no. 14, pp. 1–8, 2018, doi: 10.5120/ijca2018916258.

[74] Y. Yang, X. Huang, X. Hao, Z. Liu, and Z. Chen, “An Industrial Study
of Natural Language Processing Based Test Case Prioritization,” in 2017
IEEE International Conference on Software Testing, Verification and
Validation (ICST), 2017, pp. 548–549, doi: 10.1109/ICST.2017.66.

[75] D. Shin, S. Yoo, M. Papadakis, and D. H. Bae, “Empirical evaluation of
mutation-based test case prioritization techniques,” Softw. Test. Verif.
Reliab., vol. 29, no. 1–2, pp. 1–28, 2019, doi: 10.1002/stvr.1695.

[76] D. B. Mishra, R. Mishra, A. A. Acharya, and K. N. Das, Test case
optimization and prioritization based on multi-objective genetic
algorithm, vol. 741. Springer Singapore, 2019.

[77] C. Hettiarachchi and H. Do, “A Systematic Requirements and Risks-
Based Test Case Prioritization Using a Fuzzy Expert System,” Proc. -
19th IEEE Int. Conf. Softw. Qual. Reliab. Secur. QRS 2019, pp. 374–
385, 2019, doi: 10.1109/QRS.2019.00054.

[78] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed, and M.
D. M. Suffian, “Test Case Prioritization Using Firefly Algorithm for
Software Testing,” IEEE Access, vol. 7, pp. 132360–132373, 2019, doi:
10.1109/ACCESS.2019.2940620.

[79] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “FAST
Approaches to Scalable Similarity-Based Test Case Prioritization,” in
2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), 2018, pp. 222–232, doi:
10.1145/3180155.3180210.

[80] Z. Yu and T. Menzies, “TERMINATOR : Better Automated UI Test
Case Prioritization.”

[81] D. Kumar and Y. Sandip, “Regression test case selection and
prioritization for object oriented software,” Microsyst. Technol., vol. 7,
2019, doi: 10.1007/s00542-019-04679-7.

[82] S. C. Lei Xiao, Huaikou, Weiwei Zhuang, “An Empirical Study on
Clustering Approach Combining Fault Prediction for Test Case
Prioritization,” in 2017 IEEE/ACIS 16th International Conference on
Computer and Information Science (ICIS), 2017, pp. 815–820, doi:
10.1109/ICIS.2017.7960105.

[83] A. D. Shrivathsan, K. S. Ravichandran, R. Krishankumar, V. Sangeetha,
and S. Kar, “Novel Fuzzy Clustering Methods for Test Case
Prioritization in Software Projects,” pp. 1–22.

[84] C. Hettiarachchi and H. Do, “A Systematic Requirements and Risks-
Based Test Case Prioritization Using a Fuzzy Expert System,” in 2019
IEEE 19th International Conference on Software Quality, Reliability and
Security (QRS), 2019, pp. 374–385, doi: 10.1109/QRS.2019.00054.

[85] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact,” Empir. Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005,
doi: 10.1007/s10664-005-3861-2.

[86] H. Wang, M. Yang, L. Jiang, J. Xing, Q. Yang, and F. Yan, “Test Case
Prioritization for Service-Oriented Workflow Applications: A
Perspective of Modification Impact Analysis,” IEEE Access, vol. 8, pp.
101260–101273, 2020, doi: 10.1109/ACCESS.2020.2998545.

[87] D. S. Silva, R. Rabelo, P. S. Neto, R. Britto, and P. A. Oliveira, “A test
case prioritization approach based on software component metrics,”
Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2019-Octob, no.
August, pp. 2939–2945, 2019, doi: 10.1109/SMC.2019.8914670.

[88] D. K. Yadav and S. Dutta, “Regression test case selection and
prioritization for object oriented software,” Microsyst. Technol., vol. 26,
no. 5, pp. 1463–1477, 2020, doi: 10.1007/s00542-019-04679-7.

[89] M. Yoon, E. Lee, M. Song, and B. Choi, “A Test Case Prioritization
through Correlation of Requirement and Risk,” J. Softw. Eng. Appl.,
vol. 05, no. 10, pp. 823–835, 2012, doi: 10.4236/jsea.2012.510095.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

266 | P a g e

www.ijacsa.thesai.org

[90] Arafeen and H. Do, “Test Case Prioritization using Requirement-Based
Clustering,” in 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, 2013, pp. 488–492, doi:
10.1109/ICST.2013.12.

[91] C. Hettiarachchi, H. Do, and B. Choi, “Effective regression testing using
requirements and risks,” Proc. - 8th Int. Conf. Softw. Secur. Reliab.
SERE 2014, pp. 157–166, 2014, doi: 10.1109/SERE.2014.29.

[92] C. Hettiarachchi, H. Do, and B. Choi, “Risk-based test case
prioritization using a fuzzy expert system,” Inf. Softw. Technol., vol. 69,
pp. 1–15, 2016, doi: 10.1016/j.infsof.2015.08.008.

[93] M. Felderer, C. Haisjackl, V. Pekar, and R. Breu, “A risk assessment
framework for software testing,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8803
Lever, pp. 292–308, 2014, doi: 10.1007/978-3-662-45231-8_21.

[94] T. Ma, H. Zeng, and X. Wang, “Test case prioritization based on
requirement correlations,” 2016 IEEE/ACIS 17th Int. Conf. Softw. Eng.
Artif. Intell. Netw. Parallel/Distributed Comput. SNPD 2016, no.
61170044, pp. 419–424, 2016, doi: 10.1109/SNPD.2016.7515934.

[95] W. Zhang, Y. Qi, X. Zhang, B. Wei, M. Zhang, and Z. Dou, “On test
case prioritization using ant colony optimization algorithm,” Proc. - 21st
IEEE Int. Conf. High Perform. Comput. Commun. 17th IEEE Int. Conf.
Smart City 5th IEEE Int. Conf. Data Sci. Syst. HPCC/SmartCity/DSS
2019, pp. 2767–2773, 2019, doi:
10.1109/HPCC/SmartCity/DSS.2019.00388.

APPENDIX

THE SELECTED ARTICLES

Study Publication type
Publication

year
Publisher

[36] Journal 2020 Arabian Journal for Science and Engineering

[37] Journal 2020 International Journal of Software Engineering and Knowledge Engineering

[38] Conference paper 2020 International Conference on Computer Engineering and Application (ICCEA)

[39] Journal 2020 Journal of Systems and Software

[44] Journal 2020 Information and Software Technology

[49] Journal 2020 Applied Sciences Multidisciplinary Digital Publishing Institute (MDPI)

[52] Journal 2020 Applied Sciences Multidisciplinary Digital Publishing Institute (MDPI)

[55] Journal 2020 International Journal of Software Innovation

[56] Journal 2020 The Journal of Systems & Software

[40] Journal 2020 The Journal of Systems and Software

[57] Journal 2020 Journal of LaTeX Class Files

[54] Journal 2020 IEEE Access

[78] Journal 2020 IEEE Access

[68] Conference paper 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

[72] Conference paper 2019 Association of Computing Machinery (ACM)

[76] Conference Paper 2019 International Conference on Harmony Search Algorithm (ICHSA)

[20] Journal 2019 Information and Software Technology

[69] Conference paper 2019 IEEE 2019 22nd International Multitopic Conference (INMIC)

[77] Conference paper 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)

[1] Journal 2019 The Journal of Systems and Software

[83] Journal 2019 Symmetry Multidisciplinary Digital Publishing Institute (MDPI)

[81] Journal 2019 Microsystems Technologies

[66] Journal 2019 Journal of Information and Communication Technology

[95] Conference paper 2019
IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th.

International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems

[45] Journal 2019 Arabian Journal for Science and Engineering

[87] Conference paper 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)

[46] Journal 2019 Empirical Software Engineering

[41] Journal 2019 International Journal of Applied Metaheuristic Computing

[58] Symposium paper 2018 Symposium on Applied Computing

[51] Journal 2018 International Journal of Software Engineering

[50] Journal 2018 Software Quality Journal

[10] Journal 2018 The Journal of Systems and Software

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

267 | P a g e

www.ijacsa.thesai.org

[59] Symposium paper 2018 Symposium on Search-Based Software Engineering 2015

[79] Conference paper 2018 IEEE 40th International Conference on Software Engineering

[43] Conference paper 2018 IEEE International Symposium on Software Reliability Engineering Workshops

[13] Journal 2018 IEEE Transactions on Automation Science And Engineering

[73] Journal 2018 International Journal of Computer Applications

[75] Journal 2018 Software Testing, Verification and Reliability

[60] Journal 2018 IEEE Transactions on Software Engineering

[82] Conference paper 2017 International Conference on Information Systems

[71] Conference paper 2017 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)

[47] Journal 2017 Arabian Journal for Science and Engineering

[48] Journal 2017 Vietnam Journal of Computer Science

[42] Journal 2017 IEEE Transactions on Industrial Informatics

[61] Journal 2017 Journal of Theoretical and Applied Information Technology

[53] Conference paper 2017 Asia-Pacific Software Engineering Conference

[74] Conference paper 2017 IEEE International Conference on Software Testing, Verification and Validation

[64] Conference paper 2017 IEEE 41st Annual Computer Software and Applications Conference

