
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

325 | P a g e

www.ijacsa.thesai.org

Online Programming Semantic Error Feedback using

Dynamic Template Matching

Razali M.K.A, S. Suhailan, Mohamed M.A, M.D. M. Sufian

Faculty of Informatics and Computing

Universiti Sultan Zainal Abidin (UniSZA)

Terengganu, Malaysia

Abstract—Many of automated computer programming

feedback is generated based on static template matching that

need to be provided by the experts. This research is focusing on

developing an automated online programming semantic error

feedback by using dynamic template matching models based on

students’ correct answers submission. Currently, there is a lack

of research using dynamic template matching model due to their

complexity and varies in terms of programming structure. To

solve the formulation of the dynamic templates, a new automated

feedback model using front and rear n-gram sequence as the

matching technique was developed to provide feedback to

students based on the missing structure of the best-matched

template. We have tested 60 student’s Java programming

answers on 3 different types of programming questions using all

the dynamic templates randomly chosen for each student. An

expert was assigned to manually match the student’s answer with

the 3 randomly chosen templates. The result shows that 80% of

the best-matched templates for each student using the technique

were similarly chosen by the expert. Based on the matched

template, the student will be given feedback notifying the possible

next programming instruction that can be included in the answer

to get it correct as was achieved by the template. This model can

contribute to automatically assist students in answering

computational programming exercises.

Keywords—Dynamic; feedback; online programming; semantic

error; template matching

I. INTRODUCTION

Computer science is a discipline that involves the
understanding and design of computers and computational
processes, including their theory, analysis, software and
hardware design, efficiency, implementation, and application
and effect on society [1]. In other words, computer science is
an emergent, scientific and practical method, which deals with
the theoretical basis of information and computation, and
combines its realization and application technology [2].
Computer programming is one of the core subjects that every
computer science student must be competent to become a good
programmer. Therefore, to obtain the programming skill, lots
of programming exercises need to be completed [3].

Students need to develop programming logic and thinking
skills to understand and solve the tasks especially on code
writing. Students also need to solve any encountered
programming errors in their coding regarding the syntax,
semantic, and also question requirements. From there, students
will get the knowledge and experiences on how to encounter
any common programming errors or mistakes. Learning

through practice is the best way to learn computer
programming and attract novice students [4].

Unfortunately, most computer science students face
difficulties in learning computer programming especially in
writing the programming scripts [5]. Despite the importance of
computer science, there is a high percentage of failures and
dropout rates in introductory programming courses recorded by
most educational institutions around the world [2]. Lecturers
must also be responsible for assisting and providing some
feedback to their students to resolve students’
misunderstandings or mistakes. Helping a large number of
students in providing personalized feedback during
programming exercises will be a difficult role for teachers [6].

Furthermore, there are a lot of automated programming
assessment tools with automated feedback that have been
continuously developed to help students practice programming
and build up logic skills and also programming syntax [7]. By
using any automated programming tools, a student can submit
a computer program on a problem-solving exercise while the
tool will promptly produce automated feedback to highlight
any encountered errors or mistakes during the compilation or
implementation of the program [8]. The error is produced by
the compiler known as Syntax Error. The compiler will
highlight which lines that contain errors. However, for a
beginner student, the syntax error j does not explain on how to
fix the code in solving the question problem. This research is
focusing on developing an online programming semantic error
feedback by using a dynamic template matching model.

II. RELATED WORK

The teacher-student ratio can reach thousands to one by
implementing the advancement of Massive Open Online
Courses (MOOCs) [14]. This makes the feedback design more
specific and personalized. Unfortunately, providing manual
teacher feedback for programming assignments is determined
as a traditional method and it is no longer suitable for MOOCs.
Current automatic feedback methods have some weaknesses,
such as the inability to extend to larger programs, manual
teacher involvement, and lack of accuracy in determining
errors.

There are two techniques to design the programming
feedback; static and dynamic approaches. Static approaches
identify and study the source code without running the
computer program [9]. It is used to evaluate the syntax and
semantic error and programming style. The dynamic approach

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

326 | P a g e

www.ijacsa.thesai.org

is based on the execution of the computer program [10]. It is
used to evaluate run-time errors, programming design, and
software metrics such as timing and resources utilization.

For beginners, static feedback is crucially needed in helping
them to visualize the logic of the computer program in solving
a question. As to master the programming skills, lots of
exercises need to be completed by a student. With the advance
of an e-learning platform, many platforms offer programming
exercises to be done online. There are a lot of programming
tools where users can learn and train their programming skills
by solving the given problem with some programming code to
find the best solution for that problem [11]. Most of these tools
are developed as web applications. Some of these tools are
CodingBat [12], betterprogrammer, Practice-It, and
CodeWorkout [13]. By using these systems, users can get
feedback about their submitted answers because these systems
already provide a set of practical programming problems to be
solved in the web browser and the results are evaluated by
checking them against unit tests or test cases. Unfortunately,
this dynamic feedback is difficult to be understood by the
beginner who wants to start learning the logic or flow of the
programming. The feedback is general in highlighting how the
output should be generated. Writing hints and preparing the
feedback in this way needs meta cognition and involves critical
thinking which is not yet developed among the beginners.

The novice programmer tries to imitate the steps prepared
by the teacher, and some errors that the novice programmer
could not solve appeared during compilation [15]. One of the
challenges in writing coding for novice programmers is
insufficient feedback error messages. The only feedback that is
available is the compiler-based error on the syntax errors [16].
Therefore, the best compiler errors are those that can deliver
important messages that are desperately needed by
programmers in response to all the errors they make. Decaf is a
Java editor that serves as a medium for improving javac
compiler error messages. An error message will be produced
by the compiler if there are some errors contains in the
student's source code. Then, the error codes and error messages
are analyzed to produce enhanced error messages that provide
more valuable information to students, in the hope that the
error can be corrected more effectively as compared to the
ordinary error messages alone.

With the existence of the standard error and enhanced
errors, students can avoid making the same error in the future
by referring to the both types of error Decaf is an enhanced
compiler error message as shown in Fig. 1 that elaborate the
common syntax error produced by Java.

However Decaf only provide feedback in clarifying the
error related to the programming syntax. A logic error which is
part of the semantic error is not presented in most of the
compilers as it depends on the individual question
requirements.

A semantic error feedback is meant to provide feedback
based on specific question requirements using a solution
template [17]. A template consists of a correct program
instructions sequence (keywords, symbols, numbers). This
computer programs need to be converted to certain features
numbers before it can be processed as a matching template. [8]

was using the instruction ratio (IGR) and the instruction count
ratio (ICR) as the features to represent the computer program.
IGR is the ratio of sequential instructions or symbol sequences
in a program to instructions or symbol sequences of templates
with some skippable instructions. Meanwhile, ICR is the
average ratio of the amount of all unique instructions within the
program that matches the amount of all unique instructions laid
out in the template. Based on these features, the K-Means
algorithm was used to assign similar computer programs to
certain clusters. Based on each cluster, programs that have a
similar Euclidean distance to the centroid in the cluster are
grouped. These groups represent unique rules that will be
associated with semantic feedback. Under this rule, an expert
will add an assisted feedback to add comments of what further
actions need to be done in solving the question.

Fig. 1. Example of an enhanced Compiler Error Message Produced by

Decaf.

However, the technique needs to design the enhanced
feedback manually to make sure their student understands the
way on how to fix the error in their code. It needs to be done on
pre-defined templates. This method requires more resources
from the teacher not only to prepare the template but also need
to manually assign students’ program clusters with feedback
from time to time. This research further enhanced this
technique by making the matching template more accurate by
comparing forward and reverse sequences of the n-gram
algorithm. It also provides automated feedback based on the
missing instruction sequence based on the selected dynamic
templates mining from the correct submission answers from
other students.

III. METHODOLOGY

The N-gram model is improved by calculating the sequence
N-gram in two different ways. The first approach is using front
N-grams where the value is gained by calculating the matched
sequences based on the forward parsing of the codes. The
second approach is using rear N-grams where the value is
gained by calculating matched sequences based on the reverse
parsing of the codes.

The combination of front and rear N-gram values which are
referred to as the FR-Grams model are then used to enhance
the similarity finding technique between two different
programs. Fig. 2 shows the framework of generating the
semantic error feedback using FR-Grams.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

327 | P a g e

www.ijacsa.thesai.org

Fig. 2. Semantic Error Feedback Framework using FR-Grams Technique.

FR-Grams Model is then used to match a student's program
with the dynamic program templates. The templates were auto-
generated based on the list of correct answers of the submitted
student’s program. The answers were graded automatically by
executing the answers and matched with the expected test
cases. Based on the best-matched program templates between
the student’s program, the student will get feedback notifying
any missing program instruction sequence that needs to be
added to the program in order to get the correct answers
according to the selected template.

A. Step 1: Pre-processing

The library of computer instructions keywords needs to be
prepared first before the computer program instruction’s
extraction can be generated. For example, a list of Java
instructions or keywords are "int", "if", "string", "nextInt()",
"public" and others. These keywords are inserted into a file to
be used as a key point to filter the submitted answers. In the
pre-processing process, any essential code before the program
body needs to be removed. In java, these codes are something
like "import java.util.Scanner", "public static void main". This
framework only considers the main program body.

B. Step 2: Instruction Extractions from Student’s Answer

Student programs need to be converted as a sequence of
instructions. The sequence of Java instructions from a student
example answer shown in Fig. 3 will be produced as the
following: -

"Scanner", "System", "String", "next()", "int"

Fig. 3. Sample of a Student’s Program.

Then, the total instruction (N) is calculated based on the
sequence of the program instructions.

C. Step 3: Instruction Extractions from Template

Templates are the collection of successful and accepted
computer program submissions made by the previous student
attempts to a question. These templates need to be converted
into a sequence of instructions similar to the Step 1 to 2.

D. Step 4: Calculate FR-Grams

The number of FR-grams from student answers and correct
answers is compared to calculate the sequence of
programming. The algorithm to calculate N-grams is given in
Fig. 4.

E. Step 5: Find the Best Template

All the correct students’ answer stored in the database will
be selected as the dynamic template matching. A student’s
attempt answer will be matched with these templates. The
highest total FR-grams among them will be the considered as
the most accurate template for further feedback generation.

F. Step 6: Feedback Generation

After the comparison, the total FR-grams value is produced
based on the template selected in step 4. After finishing
comparing the answers, the FR-Grams are calculated to get the
total FR-grams for each template. The highest total will be
processed as the feedback template.

Fig. 4. Algorithm to Calculate N-grams.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

328 | P a g e

www.ijacsa.thesai.org

Fig. 5. Automated Feedback based on Template Matching.

Fig. 5 shows that the student’s attempt consists of
instructions sequence of "Scanner", "System.in", "String",
".next()", "int" and "System.out". While comparing to the
template, a feedback will be generated by the system notifying
that “You need to add .nextInt() at line 10, position 154”. This
is the missing instruction sequence that the student needs to
add for the program to be tailored to the template. This
feedback can provide some clues for the student on how to
proceed and make the correction to the program.

IV. RESULT AND ANALYSIS

There were 60 student’s Java programming answers were
tested using all the dynamic templates. The answers were
based on 3 different set of programming questions. The
templates were randomly chosen for each student’s attempt by
the system. Table I is the sample feedback that was generated
by the system along with the template chosen by the system.

An expert was assigned to manually match the student’s
answer with the three randomly chosen templates. The experts
are chosen based on their experience in validating the source
code and marking the student’s programming answer. For each
student’s answer, the expert will be presented with the three
template that have highest total FR-grams to be compared with
the student’s answer. The expert was provided with a rubric in
order to choose which template should the student’s attempt be
referred most.

1) Check for similar variables: In a student's answer,

many variables contain in the source code such as "string",

"int", "char", "for” and others. If the student’s answer contains

a "string" variable, the experts will search this variable in the

correct answers to get the most accurate template.

2) Check for quantity and type of variable: If the student’s

answer contains a "string" variable but in the template use

"string[]" which is a string array type, the template will not be

chosen.

3) Check for the simpler with the student’s answer: If

each template has passed the first and second rules which

means that there is almost similarity between the templates,

the experts will choose the simplest template according to the

student’s answer.

TABLE I. SAMPLE FEEDBACK BY SYSTEM

Student

ID
Answer

Best

Feedback
Result

01

import java.util.Scanner;
public class Q2 {

public static void main(String[] args) {

Scanner k = new Scanner(System.in);
String a="Apology";

char [] b=new char[7];
int i=a.length();

System.out.print("*");

System.out.print(a.charAt(1)+"*****");
}

}

You need
to

add next()
at line 5,

position 43

True

The result shows that there were 48 out of 60 or 80%
similar decision made by the model and the expert. 9 from the
12 answers that were not matched with the expert’s decision
was due to the small difference of the total FR-Grams (only
one missing sequence different) among the templates. On the
other hand, these cases will also contribute difficulty for the
expert to decide which template should be considered as the
most matched. Based on the matched template, the student will
be given feedback notifying the possible next programming
instruction that can be included in the answer to get it correct
as was achieved by the template. This will be like personal
coaching to help students recover from any cluelessness on the
programming command sequences to answer computational
programming exercises.

However, there was a weakness for this sequence-based
model as it does not recognize the template based on the data
type usage. For example, answer that was using array data type
should have only seek template that using the same data type.
This will be the future research works need to be conducted in
identifying template context in order to get the best template
matching for a more accurate feedback.

V. CONCLUSION

In conclusion, the best semantic error feedback for the
student should meet these criteria:

1) Can guide the student on what is missing.

2) Can highlight to the student what student needs to

include in the source code to fix the error.

With this semantic error feedback, students can get a
valuable idea or hint to solve the error in their source code. The
critical thinking skills of students will increase based on
computational logic skills practice tools. The system
continuously collects feedback as a repository which
eventually fully automated interactive assisted learning system
can be achieved. Lastly, the student will keep interested and
motivated to self-practice programming exercises towards
problem-solving skill development.

ACKNOWLEDGMENT

Special thanks to the Ministry of Higher Education
Malaysia and Universiti Sultan Zainal Abidin (UniSZA) for
providing equipment and supporting this research project under
the grant number of UNISZA/2018/GOT/03.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

329 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Tucker, A. (Ed.). (2006). A model curriculum for K-12 computer
science: Final report of the ACM K-12 task force curriculum committee
(2nd ed.). New York: Association for Computing Machinery (ACM).

[2] Queiros, Ricardo. (2014). Innovative teaching strategies and new
learning paradigms in computer programming. 10.4018/978-1-4666-
7304-5.

[3] Kwiatkowska, M., 2016. Measuring the Difficulty of Test Items in
Computing Science Education. In: Proceedings of the 21st Western
Canadian Conference on Computing Education, BC, Canada, 6 - 7 May
2016. ACM Press.

[4] Gross, P., & Powers, K. (2015). Evaluating assessments of novice
programming environments. In Proceedings of the First International
Workshop on Computing Education Research (pp. 99-110). New York:
ACM. doi:10.1145/1089786.1089796.

[5] Anthony Robins, Janet Rountree and Nathan Rountree (2003). Learning
and Teaching Programming: A Review and Discussion. Computer
Science Education, Vol. 13, No. 2, pp. 137–172.

[6] S. Suhailan, M.K. Yusof, A.F.A. Abidin, S.A. Fadzli, M.S. Mat Deris
and S. Abdul Samad (2018). Automated Ranking Assessment based on
Completeness and Correctness of a Computer Program Solution.
International Journal of Engineering & Technology, 7 (3.28) (2018)
278-283.

[7] S. Suhailan, S. Abdul Samad, M.A. Berhannuddin (2015). A perspective
of Automated programming error feedback Approaches in problem
solving exercises. Journal of Theoretical and Applied Information
Technology. 70(1) 121-129.

[8] S. Suhailan, M.S. Mat Deris, S. Abdul Samad, M.A. Burhanuddin
(2019). A Recommended Feedback Model of a Programming Exercise

Using Clustering-Based Group Assistance. International Journal of
Recent Technology and Engineering (IJRTE), ISSN: 2277-3878,
Volume-7, Issue-5S4.

[9] Ala-Mutka, K. M. (2005). A survey of automated assessment
approaches for programming assignments. Computer science education,
15(2), 83-102.

[10] Adidah Lajis, Shahidatul Arfah Baharudin, Diyana Ab Kadir, Nadilah
Mohd Ralim, Haidawati Mohd Nasir and Normaziah Abdul Aziz (2018).
A Review of Techniques in Automatic Programming Assessment for
Practical Skill Test.

[11] Ashlesha Patil (2010). Automatic Grading of Programming
Assignments.

[12] Priyanka Mohan (2015). Student Perceptions of Various Hint Features
while Solving Coding Exercises.

[13] Kevin Buffardi and Stephen H. Edwards (2014). Adaptive and Social
Mechanisms for Automated Improvement of eLearning Materials.

[14] Ke Wang, Benjamin Lin, Bjorn Rettig, Paul Pardi, and Rishabh Singh
(2017). Data-Driven Feedback Generator for Online Programing
Courses.

[15] Aniket Bhawkar, Rohit Belsare, Fenil Gandhi and Pratiksha Somani
(2013). Analysis of Errors - A Support System for Teachers to Analyze
the Error Occurring to a Novice Programmer.

[16] Brett A. Becker (2016). An Effective Approach to Enhancing Compiler
Error Messages.

[17] S. Suhailan, S. Abdul Samad, M.A. Berhannuddin. Nazirah (2017).
Program Statement Parser for Computational Programming Feedback.
Journal of Engineering and Applied Sciences, 12(5S) 7057-7062.

