
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

575 | P a g e

www.ijacsa.thesai.org

Goal-oriented Email Stream Classifier with

A Multi-agent System Approach

Wenny Hojas-Mazo
1
, Mailyn Moreno-Espino

2

José Vicente Berná Martínez
3
, Francisco Maciá Pérez

4
, Iren Lorenzo Fonseca

5

Technological University of Havana “José Antonio Echeverria” – CUJAE, Havana, Cuba
1, 2

Department of Computer Science and Technology, University of Alicante, Alicante, Spain
3, 4, 5

Abstract—Now-a-days, email is often one of the most widely

used means of communication despite the rise of other

communication methods such as instant messaging or

communication via social networks. The need to automate the

email stream management increases for reasons such as multi-

folder categorization, and spam email classification. There are

solutions based on email content, capable of contemplating

elements such as the text subjective nature, adverse effects of

concept drift, among others. This paper presents an email stream

classifier with a goal-oriented approach to client and server

environment. The i* language was the basis for designing the

proposed email stream classifier. The email environment was

represented with the early requirements model and the proposed

classifier with the late requirements model. The classifier was

implemented following a multi-agent system approach supported

by JADE agent platform and Implementation_JADE pattern.

The behavior of agents was taking from an existing classifier.

The multi-agent classifier was evaluated using functional,

efficacy and performance tests, which compared the existing

classifier with the multi-agent approach. The results obtained

were satisfactory in all the tests. The performance of multi-agent

approach was better than the existing classifier due to the use of

multi-threads.

Keywords—Email stream classification; goal-oriented

requirements; i*; multi-agent system

I. INTRODUCTION

Email is one of the most widely used services by Internet
users. Moreover, the growth in the number of users makes this
service grow as well. [1]. Every user can receive around 40-50
emails per day [2]; but other professional users may receive
hundreds or thousands per day. Users spend a lot of time
processing the emails they receive on a daily basis. This
implies that email management is a major problem in
organisations and that it is therefore important to have tools,
preferably intelligent ones, to solve this problem. [1]. There are
many types of tools for automatic mail management; one of
them is the automatic email classifier [3, 4]. An automatic
email stream classifier allows for quick and agile classification
of emails into discrete sets of predefined categories [1]; for
example, to classify an incoming email into professional or
personal, spam or desirable, phishing or normal.

There are two levels where the email classification is
applied: user and server. Email classification can be considered
a goal that serves as a means to satisfy other goals. An example
of this is the email filtering that the mail user agent performs in
the client application or the spam email detector on the server.

This includes other actors who relate to each other to achieve
proper functioning, an aspect that could be represented through
social modelling [5].

Email is one of the communication media through which
most problems and security incidents occur due to spam and
phishing [1]. According to [6] up to 80% of the emails sent
worldwide are created by spam [6]. The adverse effect caused
by spam emails has resulted in the economic loss of billions of
dollars annually [7]. Several approaches have been proposed
for spam detection [8]. To evaluate the performance of the
filters, it has been published diverse corpus [9], different
measures [10] and evaluation methods [11] have been used.

Moreover, the classifier, to be deployed in real
environments, covers various aspects such as: the email pre-
processing, the features selection, the concept drift detection
and the classification itself that depends on the other aspects
mentioned above. Proposals facing the challenge of increasing
the adaptive capacity of email classification solutions tend to
focus on specific modules [12, 13, 14, 15, 6]. However, these
solutions do not provide a representation that relates the
objectives to be achieved with each of the aspects to achieve
the email classification. These relationships can lay the
foundations for reactive, proactive and social behaviors that
allow the classifier to increase his ability to adapt.

The main contribution of this work is a goal-oriented email
stream classifier for client and server environment with a
multi-agent system approach. Email environment requirements
and proposed classifier were modeled with early and late
requirements of i*. The email environment was represented
with the early requirements and the proposed classifier with the
late requirements. The classifier was implemented following a
multi-agent system approach supported by JADE agent
platform and Implementation_JADE pattern.

The paper is organized as follows: Section 2 offer
background and an overview of related work. Section 3
presents proposed solution. Section 4 describes proposed
solution evaluation. Section 5 gives conclusions.

II. BACKGROUND AND RELATED WORK

The architecture of the email system consists of two kinds
of subsystems [16]: Mail User Agents (MUAs) and the
Message Transfer Agents (MTA). MUA is a client application
that allows to the users to manage emails of their mailboxes. It
can be desktop application (e.g. Thunderbird) or web-based
(e.g. Gmail) and includes functionalities such as to compose, to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

576 | P a g e

www.ijacsa.thesai.org

display, to organize and to filter messages. MTA, informally
known as email servers, move the messages from the source to
the destination sometimes through Internet, or if the recipient's
server has been reached, to the Mail Deliver Agent (MDA). An
example of email architecture [4] is showing in Fig. 1.

Fig. 1. Example of Email Architecture.

Other components complement the MTA such as user
repository and content filter. User repository manages user
information such as their username, password and profile
information. Content filter evaluates incoming email to
determine the probability that the messages are legitimate. This
evaluation is supporting with filters such as antivirus filter and
spam filter.

Moreover, the email stream classifiers, to be deployed in
real environments, cover various aspects such as: the email
pre-processing, the features selection, the concept drift
detection and the classification itself that depends on the other
aspects mentioned above. For example, features selection is
intended to identify only those features with the highest
discriminatory capacity to improve classifier performance [6].
Proposals, that face the challenge of increasing the adaptive
capacity, tend to focus on specific modules [12, 13, 14, 15].
However, these solutions do not provide a representation that
relates the objectives to be achieved with each of the aspects to
achieve the classification of emails. These relationships can lay
the foundations for reactive, proactive and social behaviors that
allow the classifier to increase his ability to adapt. This
requires that the solutions have adaptive capacities [17] to
reduce the negative effects caused by noise, concept drift and
the constant appearance of new instances. Requirements
capture is an important action for developing an email stream
classifier with these characteristics.

Requirements are the first stage when developing a
software [18] and might be considered as one of the most
important stages [19]. In the requirements analysis stage, the
analysts detect the needs of the stakeholders to generate a
system description document. At this stage, the goals,
functionalities, and constraints (why is the system necessary)
of the system are elicited in order to implement the established
requirements [20]. Social modelling [21] is an option to
capture these requirements.

Social modeling is focusing in system social dimension, it
environment and adopts requirements with a goal-oriented
approach by seeing intentions and reasons behind a behavior
[21]. A detailed analysis of goals reveals desires, which shows
expectations or troubles. A goal-oriented model may help to
manage changes and allows evaluating alternative solutions by
showing strengths and weaknesses [22, 23]. Goals provide
criteria, support formal reasoning schemes during requirements
engineering and guides to evaluate possible solutions [22, 23]
and have been widely used and discussed in literature. Several
examples of how to use goal-oriented models and how to apply
them in real projects can be found in [21].

We can use the modeling language i* to introduces aspects
of social modeling on requirements stage, this modeling
follows a goal-oriented approach [24]. In i*, actors are seen as
intentional, i.e. they have abilities, goals, beliefs and
obligations. Thus, the analysis of each actor focuses on
capturing their objectives, considering the relationships
between the human actors and the future software system. This
analysis allows setting the strategic interests of actors [25].

When we use i*, the requirement stage is divided in two
other steeps [24]: step 1 Early Requirements and step 2 Late
Requirements. Early requirements identify the actors involved
in the context of the problem, their needs and their intentions.
Late Requirements models what the futures software system
should do and do this description using the most clear form as
possible [26]. i* uses the Strategic Dependence model (SD)
and the Strategic Rational model (SR) [24], each one with a
different level of abstraction. In the SD model, dependency-
relations existing among social actors are represented. In the
SR model dependencies among objects within an actor are
represente. Strength points of goal-oriented approach can be
exploiting by agent-oriented [21].

III. PROPOSED SOLUTION

During the email stream classifier development, three
fundamental activities were performed. The first and second
activities are focusing in to model in i* by using the tool
TAOM4E [27]. The activity third consists in to implement the
email stream classifier with a multi-agent system approach.

A. Activity 1

Use early requirements to model the requirements of the
email context. The following steps were performed and Table I
describes social actors identified:

1) Identify and model the social actors that are involved in

the business context. All the actors modeled are show in

Table I.

2) Represent the dependencies between actors using the

SD model.

3) Identify and represent the objectives of each actor

through the RS model.

In Fig. 2 are represented the SD and SR models obtained
during the step of early requirements.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

577 | P a g e

www.ijacsa.thesai.org

TABLE I. SOCIAL ACTORS IDENTIFIED IN EARLY REQUIREMENTS

Social actor Description

User Represents the people that use a MUA to manage emails.

MUA Is a client application that allows to the users manage emails. It can be desktop application (e.g. Thunderbird) or web-based (e.g. Gmail).

MTA
This server application receives emails from MUA, or from another MTA, transfers the mail to another MTA (e.g. using Internet) and if the

recipient's server has been reached, transfers the email to the MDA. Postfix is an extended example.

MDA This server program stores the mail received form servers´s MTA into the mailbox. An example is Dovecot.

Content Filter Evaluates incoming email to determine the probability that the messages are legitimate. An example is Amavis.

Antivirus Filter A server program to recognize virus so as to prevent its delivery.

Spam Filter A server program to recognize spam so as to prevent its delivery.

Internet A vast collection of different networks that use certain common protocols and provide certain common services.

User Repository Manages user information such as their username, password and profile information. It can be an SQL database, an LDAP or so on.

Fig. 2. SD and SR Models of Early Requirements.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

578 | P a g e

www.ijacsa.thesai.org

B. Activity 2

To model the email stream classifier with late requirements
we use the following steps:

1) Modelling social actors within the context of the

system.

2) Representing dependencies among actors in an SD

model.

3) Representing the goals of each actor in SR models.

Table II shows the social actors identified during late
requirements. In Fig. 3 are represented the SD and SR models
obtained during late requirements.

C. Activity 3

To implement the email stream classifier with a multi-agent
system approach.

In this activity, a Multi-Agent System (MAS) based in late
requirement modeling with i* to classify email (spam or ham)
is proposed. The MAS is useful for problem resolution in
distributed environments [28]. MAS agents are always active
and organize so that their behavior emerges from the bottom
up. This makes it easier to change the organizational structure
when appropriate, or to expand its use, which enhances
reusability. The agents of the proposed MAS are the actors
represented as systems in the modeling of the late
requirements, which can change their behavior without having
a negative impact on the rest of the system.

The implementation of the solution was based on an
existing spam email classifier, the JADE agent platform [29]
and the Implementation_JADE pattern [30]. The classifier was
used to take the behavior that each of the agents identified in
the late requirements diagram would have. The JADE platform
supports the development of the MAS, which provides
advantages such as [31]: simplifying the development of a
MAS, guaranteeing compliance with FIPA standards; high
cohesion and low coupling between the modules; simple
liability; independent threads to simultaneously perform
different functions; allows programmers to focus on the
specific parts of your problem; and adaptive and decision-
making capacity. The Implementation_JADE pattern [30]
encapsulates the processes and functionalities that can be
implemented with the JADE platform and implements and
solves those functionalities that are essential so that developers
can make use of this agent technology more easily.

TABLE II. SOCIAL ACTORS IDENTIFIED IN LATE REQUIREMENTS

Social actor Description

MUA
Mail User Agent is a client application that allows to the

users manages emails.

Spam Filter
A server program to recognize spam so as to prevent its
delivery.

Classifier A system that classifies emails at MUA and server level.

Preprocesser A system that preprocesses emails to extract features.

Features Selector A system that selects the most relevant features.

Fig. 3. SD and SR Models of Late Requirements.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

579 | P a g e

www.ijacsa.thesai.org

Fig. 4. Class Diagram of Multi-Agent System.

Fig. 4 represents the classes that make up the MAS. The
Classifier, Concept_Drift_Detector, Features_Selector, and
Preprocesser classes represent agents, while the listener classes
represent the fundamental behavior of each agent. In the
Listeners the message will be received and later an action will
be executed according to what was received in the message or
another behavior could also be executed. This implementation
makes it easier for agents to add new behaviors to subsequent
versions and to fully exploit their capabilities in the system.

IV. EVALUATION OF CLASSIFIER WITH MULTI-AGENT

SYSTEM APPROACH

To evaluate the solution, functional, efficacy and
performance tests were carried out, taking as a reference the
base spam classifier for the proposed MAS. The functional and
efficacy tests consist of classifying 35 emails with the
reference classifier and by the proposed MAS, with the aim of
verifying that the results of both classifications coincide and
therefore that the MAS works correctly. The results for the
existed classifier (Classifier) and the proposed MAS (MAS),
with respect to accuracy, True Positive Rate (TPR) and False
Positive Rate (FPR), are shown in Fig. 5. The coincidence of
the results both systems show the correct functioning of the
proposed MAS.

Moreover, performance tests consist of obtaining the times
in milliseconds (ms) that it takes to classify different amounts
of emails, the reference classifier and the proposed MAS, in
order to see how the processing time behaves. The results of
these tests are shown in Fig. 6 and a decrease in the processing
time is evident by the proposed MAS with respect to the
reference classifier. This decrease in time is due to the use of
multi-threads incorporated by JADE.

Fig. 5. Efficiency Test Results.

Fig. 6. Performance Tests Results.

V. CONCLUSION AND FUTURE WORK

With aspects of social modeling and the language i* was
representing actors, goals, tasks, resources and dependency-
relations existing among actors of the email environment and
designing an email stream classifier by following a goal-
oriented approach. The email stream classifier was
implemented with a multi-agent system approach. This will
allows establishing bases to future achieve reactive, proactive
and social behaviors, which allows the classifier to increase his
adaptability. The results obtained in functional, efficacy and
performance tests were satisfactory. The performance of multi-
agent approach was better than the existing classifier due to the
use of multi-threads incorporated by JADE. In future work, it
is recommended to incorporate behaviors into the multi-agent
system of existing solutions with better results and carry out a
more exhaustive evaluation of the classifier.

ACKNOWLEDGMENT

This work was performed as part of the Smart University
Project financed by the University of Alicante.

REFERENCES

[1] Mujtaba, G., Shuib, L., Raj, R. G., Majeed, N., & Al-Garadi, M. A.
(2017). Email classification research trends: Review and open issues.
IEEE Access, Vol. 5, pp. 9044-9064.

[2] Team, R. (2020). Email statistics report, 2020-2024. Technical report,
The Radicati Group, Inc. Palo Alto, CA, USA.

[3] Bhowmick, A. & Hazarika, S. M. (2018). E-mail spam filtering: A
review of techniques and trends. Kalam, A., Das, S., & Sharma, K.,
editors, Advances in Electronics, Communication and Computing,
Springer Singapore, Singapore, pp. 583-590.

[4] Dada, E. G., Bassi, J. S., Chiroma, H., Abdulhamid, S. M., Adetunmbi,
A. O., & Ajibuwa, O. E. (2019). Machine learning for email spam
filtering: review, approaches and open research problems. Heliyon, Vol.
5, pp. 1–23.

[5] Luh, R., Marschalek, S., Kaiser, M., Janicke, H., & Schrittwieser, S.
(2017). Semantics-aware detection of targeted attacks: a survey. Journal
of Computer Virology and Hacking Techniques, 13(1), 47-85.

[6] Sanghani, G. & Kotecha, K. (2019). Incremental personalized e-mail
spam filter using novel tfdcr feature selection with dynamic feature
update. Expert Systems With Applications, Vol. 115, pp. 287-299.

[7] Rao, J. M. & Reiley, D. H. (2012). The economics of spam. Journal of
Economic Perspectives, Vol. 26, pp. 87-110.

[8] Hussain, N., Turab Mirza, H., Rasool, G., Hussain, I., & Kaleem, M.
(2019). Spam review detection techniques: A systematic literature
review. Applied Sciences, 9(5), 987.

[9] Asdaghi, F., & Soleimani, A. (2019). An effective feature selection
method for web spam detection. Knowledge-Based Systems, 166, 198-
206.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

580 | P a g e

www.ijacsa.thesai.org

[10] Crawford, M., Khoshgoftaar, T. M., Prusa, J. D., Richter, A. N., & Al
Najada, H. (2015). Survey of review spam detection using machine
learning techniques. Journal of Big Data, 2(1), 23.

[11] Nandhini, S., & KS, J. M. (2020, February). Performance Evaluation of
Machine Learning Algorithms for Email Spam Detection. In 2020
International Conference on Emerging Trends in Information
Technology and Engineering (ic-ETITE) (pp. 1-4). IEEE.

[12] Bahgat, E. M., Rady, S., Gad, W., & Moawad, I. F. (2018). Efficient
email classification approach based on semantic methods. Ain Shams
Engineering Journal, Vol. 9, pp. 3259-3269.

[13] Barddal, J. P., Gomes, H. M., Enembreck, F., & Pfahringer, B. (2017). A
survey on feature drift adaptation: Definition, benchmark, challenges
and future directions. Journal of Systems and Software, Vol. 127, pp.
278-294.

[14] Diale, M., Celik, T., & Van-Der-Walt, C. (2019). Unsupervised feature
learning for spam email filtering. Computers and Electrical Engineering,
Vol. 74, pp. 89-104.

[15] Méndez, J. R., Cotos-Yañez, T. R., & Ruano-Ordás, D. (2019). A new
semantic-based feature selection method for spam filtering. Applied Soft
Computing Journal, Vol. 76, pp. 89-104.

[16] Tanenbaum, A. S., & Wetherall, D. J. (2011). Computer networks fifth
edition. In Pearson Education, Inc.

[17] Idris, I., Selamat, A., Nguyen, N. T., Omatu, S., Krejcar, O., Kuca, K., &
Penhaker, M. (2015). A combined negative selection algorithm–particle
swarm optimization for an email spam detection system. Engineering
Applications of Artificial Intelligence, 39, 33-44.

[18] Jacobson, I., Booch, G., & Rumbaugh, J. (2012). The Unified Software
Development Process. Prentice Hall.

[19] Pressman, R. S. (2010). Software engineering: a practitioner’s approach.
McGrawHill Higher Education.

[20] Haidar, H., Kolp, M., & Wautelet, Y. (2017). Goal-oriented requirement
engineering for agile software product lines: an overview. Louvain
School of Management Research Institute Working Paper Series,
Louvain, Belgium, 1-36.

[21] Yu, E., Giorgini, P., Maiden, N., & Mylopoulos, J. (2011). Social
Modeling for Requirements Engineering. The MIT Press.

[22] Horkoff, J., Aydemir, F. B., Cardoso, E., Li, T., Maté, A., Paja, E., ... &
Giorgini, P. (2019). Goal-oriented requirements engineering: an
extended systematic mapping study. Requirements Engineering, 24(2),
133-160.

[23] Cailliau, A., & Van Lamsweerde, A. (2012, September). A probabilistic
framework for goal-oriented risk analysis. In 2012 20th IEEE
International Requirements Engineering Conference (RE) (pp. 201-210).
IEEE.

[24] Eric, S. Y. (2009). Social Modeling and i. In Conceptual modeling:
Foundations and applications (pp. 99-121). Springer, Berlin, Heidelberg.

[25] AlhajHassan, S., Odeh, M., & Green, S. (2016, October). Aligning
systems of systems engineering with goal-oriented approaches using the
i∗ framework. In 2016 IEEE International Symposium on Systems
Engineering (ISSE) (pp. 1-7). IEEE.

[26] Danesh, M. H., & Yu, E. (2014, June). Modeling enterprise capabilities
with i*: reasoning on alternatives. In International Conference on
Advanced Information Systems Engineering (pp. 112-123). Springer,
Cham.

[27] Bertolini, D., Novikau, A., Susi, A., & Perini, A. (2006). Taom4e: an
eclipse ready tool for agent-oriented modeling. issue on the development
process. Technical report, Fondazione Bruno Kessler-irst.

[28] Jennings, N. (2000). On agent-based software engineering. Artificial
Intelligence, Vol. 117, No. 2, pp. 277-296.

[29] Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing
Multi-Agent Systems with JADE. Wiley.

[30] Moreno-Espino, M., Carrasco-Bustamante, A., Rosete-Suárez, A., &
Delgado-Dapena, M. D. (2013). Patrones de implementación para incluir
comportamientos proactivos. Polibits, Vol. 47, pp. 75-88.

[31] Khamis, M. A., & Nagi, K. (2013). Designing multi-agent unit tests
using systematic test design patterns-(extended version). Engineering
Applications of Artificial Intelligence, 26(9), 2128-2142.

