
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

610 | P a g e

www.ijacsa.thesai.org

Internet of Things Multi-protocol Interoperability

with Syntactic Translation Capability

Nedaa H. Ahmed
1

Information Systems Department

Faculty of Computers and Information

Fayoum University, Fayoum, Egypt

Ahmed M. Sadek
2

Computer Science Department

Faculty of Computers and Information

Fayoum University, Fayoum, Egypt

Haytham Al-Feel
3

Computer Science Department

Community College

Imam AbdulRahman Bin Faisal University, Saudi Arabia

Rania A. AbulSeoud
4

Electronic and Communication Department

Faculty of Engineering

Fayoum University, Fayoum, Egypt

Abstract—Because Internet of Things (IoT) systems contain

different devices, infrastructures, and data formats; its success

depends on the realization of full interoperability among these

systems. Interoperability is a communication challenge that

affects all the layers of the system. In this paper, a transparent

translator to solve interoperability issues in two layers of an IoT

system is proposed. The communication protocol layer is the first

layer. In this layer, it is necessary to overcome the difference

between the interaction patterns, such as request/response and

publish/subscribe. The second layer includes the syntactic layer,

which refers to data encoding. This type of interoperability is

achieved through the semantic sensor network (SSN) ontology.

Tests and evaluations of the proposed translator in comparison

with a similar translator were performed using the constrained

application protocol (CoAP), message queuing telemetry

transport (MQTT) protocol, and hypertext transfer (HTTP)

protocol, in addition to different data formats, such as JSON,

CSV, and XML. The results reveal the efficiency of the proposed

method in terms of application protocol interoperability. In

addition, the suggested translator has the added feature that it

supports different data encoding standards as compared to the

other translator.

Keywords—Internet of things (IoT); interoperability;

multiprotocol translation; message payload translation; SSN

ontology

I. INTRODUCTION

The IoT comprises a collection of different devices
connected using different Internet protocols. Examples of these
devices include the thermostats, air conditioners, and lightbulbs
that can be found in smart homes. In addition, the IoT plays an
important role in other domains, such as transportation,
healthcare, industrial automation, smart cities, and agriculture.
The IoT enables physical objects to perform actions and share
data. Therefore, IoT intelligence is bestowed on these objects
by using different technologies, such as cloud computing,
embedded devices, sensor networks, and Internet protocols.
Because of the diversity of IoT systems, many protocols have
been developed and applied. Interoperability between the
different systems represents an important factor in the success
of an IoT; however, it remains a significant challenge.

Interoperability problems can be found in different levels, such
as at the device, messaging protocol, syntactic, and semantic
levels.

Interoperability on the device level refers to the wide range
of devices located in an IoT. These may be high- or low-end.
Examples of high-end devices include Raspberry Pi and
smartphones, which have ample resources and computational
capabilities, whereas low-end devices include radio frequency
identification tags, sensors, and devices with constrained
resources [1]. These devices may support wired or wireless
networking protocols, such as Ethernet, ZigBee, Bluetooth,
ZWave, 3G/4G cellular technologies, and near-field
communication. In addition, these protocols can be standard
communication protocols or non-standard proprietary
protocols, such as long range (LoRa) and SIGFOX [1].
Sometimes, the devices that need to share information use
different network technologies, requiring that that the
interoperability among these different devices and network
technologies be resolved to enable their integration [1].

Interoperability on the messaging protocol level refers to
the multiple application protocols that exist, such as the
message queue telemetry transport (MQTT) protocol,
constrained application protocol (COAP), and hypertext
transfer protocol (HTTP), are used to provide communications.
Each protocol has characteristics that support different types of
IoT applications [2]. Nevertheless, the various IoT applications
should be able to exchange messages independently of
messaging protocols to allow a scalable IoT architecture and
cross-domain applications. Thus, the success of the
interoperability of messaging protocols is manifested in a
system’s ability to translate between these different messaging
protocols.

Syntactic interoperability refers to the fact that the content
types of the data sent through the communication protocols can
be of different types. Some of the most frequently used data
formats are extensible markup language (XML), JavaScript
object notation (JSON), and comma-separated values (CSV).
The syntactic interoperability problem arises when the sender
encodes the message in a specific format and the receiver can

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

611 | P a g e

www.ijacsa.thesai.org

decode received messages only in a different format. Thus, the
encoding rules of the sender are incompatible with the
decoding rules of the receiver, leading to mismatching of
messages [1]. Therefore, this level of interoperability is
important to allow a smooth transition of messages among
different IoT systems.

The final type of interoperability discussed in this paper is
semantic interoperability. The World Wide Web Consortium
(W3C) defined it as ``enabling different agents, services, and
applications to exchange information, data and knowledge in a
meaningful way, on and off the web‖ [3]. In the traditional IoT
scenario, raw sensor data from heterogeneous nodes are
provided to the software agent [1]. These data contain no
semantic annotations and an extensive effort is required to
build intelligent applications. In addition, they may be
represented in different units of measurements and have
additional information [1], resulting in semantic
interoperability problems. These semantic problems between
data and information models render IoT applications unable to
interoperate both automatically and dynamically because their
descriptions and understanding of resources differ [1].

The current middlewares used to achieve application
protocol interoperability have limitations, such as adding
interoperability problems when working in conjunction with
another middleware. Also, some proxies are used to solve the
same level of interoperability but have issues like low
bandwidth, low processing, and high cost of management. On
the other hand, the current works for solving syntactic
interoperability problems are very few. The existing solutions
can convert between encodings with similar syntax only. Also,
there is no current solution that achieves both application
protocol and syntactic interoperability together.

In this study, a software architecture was designed to solve
the interoperability problems related to both messaging
protocols and syntactic levels. The main contributions of this
paper are as follows.

1) An IoT translator that can achieve communication

protocol and syntactic interoperability is proposed. Semantic

interoperability will be addressed in a future paper.

2) The development of a multi-protocol translator that can

translate messages among the CoAP, MQTT, and HTTP

protocols is described.

3) The use of the semantic sensor network (SSN) ontology

to allow conversion among XML, JSON, and CSV data

formats to achieve syntactic interoperability is described. This

will enable clients to obtain the data they need in any required

format, even if they are stored in different formats on the

server.

4) A translator based on a hub-and-spoke model, which

supports scalability and modularity, is presented. The

scalability and modularity will allow the translator to be

extended to support more protocols easily, in addition to more

data formats.

5) An evaluation is presented that shows the effectiveness

of the proposed translator in comparison with the Arrowhead

translator.

The remainder of the paper is organized as follows. In
Section II, some related studies on solutions for interoperability
problems in the IoT are reviewed. Sections III and IV discuss
the software architecture and implementation of the proposed
solution, respectively. The results and evaluations are
presented in Section V. Finally, the conclusions and
suggestions for future work are provided in Section VI.

II. RELATED WORK

Different architectures and frameworks are used to solve
IoT interoperability on the various levels.

To address syntactic interoperability, Palm et al. [4]
presented a theoretical method for translating message
payloads among different endpoints. First, this method
constructs a syntax tree from the incoming message. Then, it
converts the syntax tree into an equivalent syntax tree of the
target encoding. The syntactic translation can convert only
between an encoding standard and intersecting syntaxes.

To provide messaging protocol interoperability, Derhamy
et al. [5] proposed a transparent protocol translator to allow
interoperability between communication protocols. This
translator depends on a service-oriented architecture (SOA),
not on middleware. Thus, it supports low latency and operates
transparently. It is also secured through the use of Arrowhead
authorization and authentication [6]. Its architecture consists of
two spokes and a central hub: the first spoke operates as a
service provider spoke and the second as a service consumer
spoke. The translator can support any number of protocols,
each of which has only two spokes. The authors tested their
architecture on the CoAP and HTTP protocols and determined
that it was faster than the Californium proxy [7].

Lee et al. [8] proposed an IoT framework based on the
software-defined network (SDN) that can intercept all packets
from CoAP to MQTT and vice versa. They defined URL rules
to specify the resource or the topic and distinguish between
homogeneous (e.g., from MQTT client to MQTT client) and
heterogeneous (e.g., from MQTT client to CoAP client) traffic.
In the homogeneous scenario, the SDN ignores the traffic and
these packets are operated as in the original scenario. In the
heterogeneous scenario, the SDN switch delivers the packets to
the SDN controller and redirects them to the cross proxy for
translation. The advantage of this framework is that it causes
no delay in a homogeneous scenario. However, the authors
provided no evaluation results for their suggested framework.

Ponte [9] is an Eclipse IoT project that provides open APIs
to create applications that support the CoAP, HTTP, and
MQTT communication protocols. Ponte provided a centralized
solution to enable clients using different communication
protocols to communicate easily with each other. Data
collected from the three different protocols are stored in SQL
or NoSQL databases. Therefore, all the clients can access all
resources, regardless of the communication protocol they use.
In the same direction, Khaled and Helal [10] proposed the
Atlas IoT framework to allow communication between clients
using MQTT, CoAP, and HTTP. The proposed protocol
translator can be deployed on either a cloud infrastructure or
the IoT device itself. This framework depends on the IoT
device description language [11] and was compared with Ponte

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

612 | P a g e

www.ijacsa.thesai.org

[9]. The results show that energy consumption is reduced in
comparison with that of Ponte [9]. A disadvantage of this
framework is that not all IoT devices can be part of this
interoperable ecosystem: the device should have an Internet
connection (e.g., Ethernet, cellular network, or Wi-Fi) and an
operating system that supports multithreading to integrate with
this ecosystem.

Desai et al. [2] proposed the Semantic Gateway as Service
architecture to achieve messaging protocol interoperability
among the CoAP, MQTT and XMPP protocols using a multi-
protocol proxy. Semantic reasoning using the SSN ontology to
solve interoperability was highlighted, but no description of
implementation details or evaluation methodology were
provided.

To address semantic level interoperability, Gyrard et al.
[12] proposed the machine-to-machine measurement (M3)
framework to develop semantic-based cross-domain IoT
projects and reuse the optimum number of ontologies and
rules. In their study, they focused on designing the Linked
Open Vocabularies for the Internet of Things dataset to
reference and classify semantic-based projects that are relevant
to the IoT. In addition, they designed a sensor-based linked
open rules dataset of domain rules to infer high-level
abstractions from sensor data. David Perez et al. [13]
developed an ontology for the smart city scenario, specifically
for the SusCity project [14], to facilitate the management of the
infrastructure. This ontology consists of several main classes,
such as IoT infrastructures, devices, communication interfaces
and links, and performance metrics. Evaluations proved the
correctness of this ontology. One of its disadvantages is that an
automatic ontology update mechanism is required. Gyrard and
Serrano [15] presented a methodology called SEG 3.0, a name
which comes from segmentation and Web 3.0, which depends
on semantic Web technologies. They defined the
characteristics and steps of this methodology and subsequently
implemented a framework for applying it. The purpose of this
framework is to achieve semantic interoperability among IoT
projects. In addition, they investigated various use cases to
show the correctness of the methodology and that it can be
applied to other domains, such as smart cities. Kleine et al. [16]
developed a Semantic Web of Things architecture including
virtual sensors, smart service proxy, and semantic entities to
measure the traffic density of a road. This architecture depends
on smartphones located in vehicles moving in the network and
represents the sensor data in resource description framework
(RDF) form. In the future, the authors plan to enable selective
privacy to identify the exact vehicles traveling on certain road
sections. Additionally, Kamilaris et al. [17] proposed an eco-
system for urban computing, using the concept of the Web of
Things together with event processing, mobile computing,
semantic Web, and big data analysis techniques to record the
real information of smart cities for their residents. They
conducted a case study in the city of Aarhus, Denmark. One of
the disadvantages of the suggested ecosystem is its lack of
privacy or security aspects.

Kamilaris et al. [18] proposed a semantic framework called
Agr-IoT for smart farming applications. This framework uses
semantic Web techniques to allow reasoning and to facilitate
increased information collection and more accurate decision

making. In addition, semantic Web techniques help achieve
interoperability among different data sources, such as sensors,
social media, governmental alerts, connected farms, and
regulations. The ontologies used in the framework are the SSN
ontology, complex event service ontology, and an agriculture
ontology, called AgOnt.

In the healthcare domain, Zgheib et al. [19] presented an
IoT system to detect the risk of bedsores, using SSN ontology
to achieve interoperability between system components. This
system is based on message-oriented middleware to process
some constraints, such as the security, scalability, and privacy
of medical information.

The above review shows that the methods that achieve
messaging protocol and syntactic interoperability remain few
in number. Therefore, the proposed architecture is focused on
these two levels of interoperability.

III. PROPOSED ARCHITECTURE

The proposed architecture is based on that presented in [5].
As shown in Fig. 1, it consists of three parts: the clients,
translator, and servers. The clients are service consumers who
send different requests to different servers. They can also
receive data in any format they need, even if these data are
stored in a different format on the server. The proposed
translator is used to allow a client using a specific protocol to
communicate with a server using a different protocol. It
consists of a hub and multiple spokes. As this translator can
translate among three different protocols, it has six spokes. It
can support additional protocols by adding only the two spokes
needed for each of these protocols. At each operation, only two
spokes are used according to the request. The hub is a
conceptual representation and is represented using an
intermediate format and SSN ontology. The intermediate
format is used to convert one protocol to another. Each
protocol is represented by two spokes. The first spoke is a
server spoke, which listens to different requests on a specific
port, and the second is the client spoke, which creates a new
request according to the information received from the
intermediate format in the hub. Inside the hub, the SSN
ontology is also located, which is used to describe sensors and
their observations, the features of interest, the observed
properties, and the actuators [20]. It is used only to achieve
syntactic interoperability and is converted into different data
formats. The final part of the architecture is the server, which
contains the service providers that serve different clients. The
proposed translator can be used with different clients and with
servers acquired from different vendors.

The following scenarios clarify the architecture.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar:

A. Request from Representational State Transfer (REST)

Client to REST Server

In this scenario, the representational state transfer (REST)
points to the HTTP and CoAP protocols. Therefore, this
scenario illustrates the events that occur when a CoAP client
sends a request to an HTTP server or an HTTP client sends a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

613 | P a g e

www.ijacsa.thesai.org

request to a CoAP server. As shown in Fig. 2, the server spoke,
a CoAP server in this case, listens to the requests from a CoAP
service consumer. A CoAP request is converted to the
appropriate HTTP request using the intermediate format.
Subsequently, the HTTP request is forwarded to the HTTP
service provider.

If the syntactic interoperability service is required, the SSN
ontology is used. In this case, if the request is PUT or POST,
an INSERT or UPDATE statement modifies the SSN ontology.
However, if the request is GET, there exist two situations. The
first is where the service consumer requires the payload of a
specific resource in the same format as that of the service
provider. In this case, the service provider replies directly with
the payload to the HTTP client spoke without needing to use
the SSN ontology. When the HTTP client spoke receives the
response, a CoAP response is generated by the CoAP server
spoke using the intermediate format and is forwarded to the
CoAP consumer. In the second situation, the service consumer

requires the payload of a specific resource in a format different
from that which exists in the service provider. In this case, the
service provider replies with a ―NOT ACCEPTABLE‖ code to
the HTTP client spoke. If the CoAP server spoke receives a
―NOT ACCEPTABLE‖ message, it generates a SELECT
query to obtain the specified resource data in a standard format,
converts this format to the required format, and finally
responds to the CoAP client consumer with these data. The
same steps are taken when the HTTP client requires a service
from the CoAP server. The only difference is that the service
consumer in this case is an HTTP client and the service
provider is a CoAP server. An additional difference is that,
inside the translator, the two spokes that should be used in this
case are the HTTP server and the CoAP client spokes. The
mapping between the HTTP and CoAP protocols is shown in
Table I. However, it is important to note that the CoAP
protocol contains an OBSERVE request that does not exist in
the HTTP protocol. The CoAP OBSERVE request was used
only with the MQTT protocol.

Fig. 1. Proposed Architecture.

Fig. 2. Request from Constrained Application Protocol Client to Hypertext Transfer Protocol Server.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

614 | P a g e

www.ijacsa.thesai.org

B. Publishing a Resource in Representational State Transfer

Server (Constrained Application Protocol or Hypertext

Transfer Protocol)

As shown in Fig. 3, in this scenario the service consumer is
an MQTT client and the service provider is a REST server.
Thus, the MQTT client must publish a message on any
resource in the REST server.

The MQTT broker spoke listens to the PUBLISH messages
from the MQTT service consumer. The MQTT message is
converted to the PUT REST request using the intermediate
format in the hub. Subsequently, the PUT request is forwarded
to the REST service provider. In addition, the SSN ontology is
required only if the syntactic interoperability is activated. In
that case, the MQTT server spoke updates the value of the
resource in the SSN ontology. Note that UPDATE query exists
in the SPARQL query language, and therefore, DELETE and
INSERT queries must be used together to update the data in the
SSN ontology. As the MQTT protocol does not contain a
content format field in its header, the content format is checked
manually. According to the content format, it is possible to
determine the manner in which the message should be
processed to extract the resource or topic name with its payload
and store them in the SSN ontology. The pseudocode for this is
shown in Algorithm 1. When the REST client spoke receives a
response, an MQTT message response is generated by the
MQTT server spoke and forwarded to the MQTT publisher.
The response of the PUBLISH message can be either a None or
PUBACK packet or a PUBREC packet according to the quality
of service (QoS) level [21].

C. Subscribing a Resource in Constrained Application

Protocol Server

The subscription of a message to the CoAP server differs
slightly from that to the HTTP server, because the HTTP
protocol does not have an OBSERVE request as does the
CoAP server. As shown in Fig. 4, the main steps in this
scenario are the same as described previously. The difference is
that the SUBSCRIBE message in the MQTT protocol
corresponds to the OBSERVE request in the CoAP protocol.
As the MQTT protocol does not contain the content format
field in its header, it is not necessary to use the SSN ontology,
although syntactic interoperability is activated.

Fig. 3. PUBLISH Message from Message Queue Telemetry Transport Client

to Representational State Transfer Server.

Fig. 4. SUBSCRIBE Message from Message Queue Telemetry Client to

Constrained Application Protocol Constrained Application Protocol Server.

D. Subscribing a Resource in the Hypertext Transfer Protocol

Server

As mentioned above, the HTTP protocol does not have an
OBSERVE request. Therefore, the GET request, which is
implemented periodically, is used. As shown in Fig. 5, when
the MQTT client subscribes to a specific resource in the HTTP
server, an HTTP client makes a GET request with a pre-
configured periodic time. If the returned payload is different
from the last payload, the MQTT broker publishes internally.

Algorithm 1: Checking the content format for the MQTT protocol

Input: A string variable message which is MQTT payload
Output: An integer variable type which is the format of MQTT payload

initialization;

if message begins with ―{‖ and ends with ―}‖ then

 type ←0; // zero means it is JSON format
end

else if message begins with ―<‖ and ends with ―>‖ then

 type ←1; // one means it is XML format
end

else if the number of commas is equal in each line then

 type ←2; // two means it is CSV format
end

else

 type ←3; // three means it is not supported format
end

return type

with the new payload to the MQTT client. The periodic
GET request would be canceled if the MQTT client
unsubscribed on this topic.

Fig. 5. SUBSCRIBE Message from Message Queue Telemetry Transport

Client to Hypertext Transfer Protocol Server.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

615 | P a g e

www.ijacsa.thesai.org

IV. IMPLEMENTATION

The architecture was implemented using the JAVA
language, and the spokes were implemented using the Java
libraries. For example, the CoAP spokes, for both client and
server, were implemented using the Californium CoAP library
[7]. The CoAP server spoke contained only the CoAP server
with RootResource [7]. The CoAP client spoke was used to
perform the CoAP request and return the response to the
calling spoke. For the MQTT protocol, the MQTT server spoke
was implemented using the Mosquitto broker [22], and the
MQTT client spoke was implemented using the Eclipse.

Paho client developed by Eclipse Foundation; however, the
Jersey open-source libraries created by Eclipse Foundation and
Oracle Corporation for the HTTP protocol were used to
implement the HTTP server and HTTP client spokes.

A. Mapping among different Protocols

The mapping among the three different protocol spokes
was implemented as shown in Table I.

B. Intermediate Format

The intermediate format was used in the hub to enable
interchanges between the protocol spokes. It holds the basic
header fields of request and response. The structure of the
intermediate format is presented in Table II.

C. Semantic Sensor Network Ontology

The SSN ontology [20] is an ontology developed by W3C
to provide standard modeling for sensor devices, actuators,
sensor platforms, their observations, and so on. It was used in
the RDF format [23]. The purpose of using the SSN ontology
is to achieve syntactic and semantic interoperability. Here, the
syntactic interoperability was achieved to solve the problem of
encoding and decoding messages between the sender and
receiver in different formats. By doing so, if, for example, the
payload is stored in the plaintext format at the REST server, the
REST client can obtain the payload in different formats, such
as JSON or XML. This study converted three different formats:
CSV, JSON, and XML. In Fig. 6, a subset of this ontology is
shown. It represents the classes and properties that used in the
proposed architecture.

Fig. 6. Subset of Semantic Sensor Network Ontology.

TABLE I. MAPPING AMONG THREE PROTOCOLS

 HTTP CoAP MQTT

Code Request

GET request in case of mapping with

GET request of CoAP and with the
MQTT SUBSCRIBE.

GET request in case of mapping with
GET request of HTTP.

OBSERVE request in case of

mapping with MQTT SUBSCRIBE

SUBSCRIBE

PUT request PUT request PUBLISH retained message

POST request POST request PUBLISH retained message

DELETE request DELETE request PUBLISH retained message with zero-byte payload

Code Response

―200‖ OK ―2.00‖ OK
0x00 - Success - Maximum QoS 0
0x01 - Success - Maximum QoS 1

0x02 - Success - Maximum QoS 2

―404‖ NOT FOUND ―4.04‖ NOT FOUND Not supported

―406‖ NOT ACCEPTABLE ―4.06‖ NOT ACCEPTABLE Not supported

―204‖ NO CONTENT ―2.04‖ CHANGED Not supported

Code Error

―400‖ BAD REQUEST ―4.00‖ BAD REQUEST 0x02 Connection Refused, identifier rejected

―401‖ UNAUTHORIZED ―4.01‖ UNAUTHORIZED 0x05 Connection Refused, not authorized

“500” INTERNAL SERVER ERROR 5.00” INTERNAL SERVER ERROR 0x03 Connection Refused, Server unavailable

Object Resource name Resource name Topic name

TABLE II. DEFINITION OF INTERMEDIATE FORMAT

Variable Name Type Discussion

uniqueKey int is the message Id

Code String is the CRUD operation in case of request and response code or error code in case of response

Object String is the resource or topic to be operated on

Payload String is the body of the message

payloadFormat String is the format of the payload

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

616 | P a g e

www.ijacsa.thesai.org

V. TESTING AND EVALUATION

In this simulation, a CoAP server, HTTP server and MQTT
broker were used in a weather information service transmitting
information from different geographic locations. This service
measured the temperature, humidity, pressure, wind direction,
and wind speed. The HTTP and CoAP protocols could support
different formats of the payload, such as plaintext, CSV, JSON,
and XML formats. However, in the MQTT protocol, the
content format was application-specific, as this protocol does
not contain the content format or accept fields in its header. If
the service used one sensor and provided only the value, the
plaintext format was used; otherwise, any one of the three
formats was used. The XML, CSV, and JSON payload
structures are shown in Fig. 7(a), Fig. 7(b), and Fig. 7(c),
respectively. The approximate lengths of each format are listed
in Table III.

For converting the payload from one format to another, the
intermediary ontology was used, as it represents the data in a
structured form.

The delay caused by the translator for protocol translation
and format conversion was measured and evaluated. All the
tested scenarios are shown in Fig. 8. In test 8-a), a CoAP
request was generated from a CoAP client to the translator,
which then generated the corresponding HTTP request to the
HTTP server.

Test 8-b) followed the form of test 8-a), except that the
translator generated the corresponding MQTT message to the
MQTT broker. However, test 8-c) involved an HTTP request
generated from an HTTP client to the translator, which then
generated the corresponding CoAP request to the CoAP server.
Test 8-d) was similar to test 8-c), except that the translator
generated the corresponding MQTT message to the MQTT
broker. Test 8-e) involved an MQTT message generated from
an MQTT client to the translator, which then generated the
corresponding HTTP request to the HTTP server. Finally, test
8-f) followed the form of test 8-e), except that the translator
generated the corresponding CoAP request to the CoAP server.

The translator was run on a laptop with an Intel Core i5-
2520M processor running Windows 8 at 2.50 GHz and 4.00
GB RAM. The delay introduced by the translator and the delay
caused by using the SSN ontology were measured. As shown
in Fig. 9, six Java milliseconds timers (

1t -
6t) were used to

compute these delays. The descriptions of these timers are
listed in Table IV.

The following equations were used in the delay
calculations, where (1) represents the time the packet takes
within the translator and (2) the time required to perform
processing on the different formats of data plus the execution
time of the SPARQL query.

 () () (1)

 (2)

The tests were performed 1000 times per scenario. The
average time required for protocol translation is summarized in
Table V.

Fig. 7. Different Payload Structure Formats.

TABLE III. LENGTH OF PAYLOADS IN BYTES

The Payload Structure Length (bytes)

XML 236

JSON 246

CSV 234

Fig. 8. Test Scenarios.

Fig. 9. Time Stamp for Delay Measurements.

As shown in Table V, the time required to convert the
protocols is very short. Scenarios (e) and (f) have the minimum
delay because the server spoke in this case is the MQTT
broker. The MQTT broker operates as a pipeline and does not
perform any processing, as do HTTP and CoAP servers.
Therefore, the MQTT broker is very simple as compared to the
CoAP and HTTP servers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

617 | P a g e

www.ijacsa.thesai.org

TABLE IV. TIMING INSTRUMENTATION

1t =
Request arrives at the application server spoke of the

translator.

2t =
Request leaves the application client spoke of the

translator.

3t =
Response arrives at the application client spoke of the

translator.

4t =
Response leaves the application server spoke of the

translator.

5t =
Query leaves the server to the SSN ontology plus

preprocessing the data if needed.

6t =
Response from the SSN ontology plus processing the

data if needed.

TABLE V. AVERAGE DELAY OF THE PROTOCOL TRANSLATION

Scenario Client Server Method Delay (ms)

a)
CoAP

Client

HTTP

Server

GET 3.96

PUT 4.03

b)
CoAP

Client

MQTT

Broker

GET 3.10

PUT 3.05

c)
HTTP

Client

CoAP

Server

GET 3.21

PUT 3.38

d)
HTTP

Client

MQTT

Broker

GET 3.81

PUT 3.09

e)
MQTT

Client

HTTP

Server

Subscribe 3.10

Publish 2.64

f)
MQTT

Client

CoAP

Server

Subscribe 2.45

Publish 2.21

TABLE VI. AVERAGE PROCESSING TIME

Scenario From To Delay (ms)

1) JSON

SSN

23.69

2) XML 23.57

3) CSV 30.19

4)

SSN

JSON 11.78

5) XML 11.86

6) CSV 11.71

In Table VI, the average computed delay in achieving
syntactic interoperability is shown. Scenarios 1, 2, and 3
represent the delay in processing and updating the data in the
SSN ontology. These three scenarios are used when performing

a POST, PUT, or PUBLISH request. Scenarios 4, 5, and 6
represent the average delays caused by selecting the data from
the SSN ontology and converting it to the required format.
These scenarios were used when performing GET requests. As
can be seen in this table, updating the ontology (Scenarios 1–3)
consumes more time than selecting the data from it (Scenarios
4–6). However, this delay is acceptable in IoT applications and
does not affect the performance of the architecture. Using the
SSN ontology, different clients can receive the payload in any
format they require, even if this payload exists in the server in
a different content format.

VI. DISCUSSION

To validate the efficiency of the suggested translator, the
delay caused by the proposed translator was compared with
that caused by the Arrowhead translator [5]. The comparison
was applied only to scenario (c) in Fig. 8, as the authors
implemented only this scenario. The Arrowhead translator was
run on hardware that was different from that used here on the
proposed translator. For this reason, it was unavailable to
compare the proposed translator with the Arrowhead translator
directly. In the case of the Arrowhead translator, the authors
measured and evaluated the delay introduced in comparison
with the Californium proxy [22]. They ran the Californium
proxy on the same hardware they used for running their
proposed translator. The same procedure was followed to
evaluate the proposed translator in comparison with the
Arrowhead translator.

As can be seen in Table VII, the Arrowhead translator’s
delay is about 43.5\% of that of the Californium proxy when
implemented on the same platform, whereas the suggested
translator`s delay is only about 23.6\% of that of the
Californium proxy on the same platform. In addition, the
proposed translator can map between different data encoding
standards, a capability that is not available in the Arrowhead
translator. In Fig. 10 and 11, the results of 1000 requests for
each scenario are shown.

The histogram charts show that there exists some anomaly.
However, this anomaly is due to the Java libraries that were
used, and therefore, it was beyond control.

TABLE VII. COMPARISON OF THE PROPOSED AND THE ARROWHEAD

TRANSLATOR

The suggested Translator The Arrowhead Translator

Delay of it (ms)
Delay of CP on the same hardware
(ms)

Delay of it (ms)

3.21 13.59 177 77

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

618 | P a g e

www.ijacsa.thesai.org

(a)

(b)

(c)

Fig. 10. Average Translation Time among different Protocols.

0

200

400

600

800

1000

0 1.45 2.9 4.35 5.8 7.25 8.7 10.15 11.6 13.05 14.5 15.95
F

re
q

u
en

cy

Time (ms)

Average Translation Time from CoAP to HTTP and MQTT

CoAPtoHTTP_PUT_Frequency CoAPto HTTP_GET_Frequency

CoAPtoMQTT_PUT_Frequency CoAPtoMQTT_GET_Frequency

0
100
200
300
400
500
600
700
800
900

1000

0 1.45 2.9 4.35 5.8 7.25 8.7 10.15 11.6 13.05 14.5 15.95

F
re

q
u
en

cy

Time (ms)

Average Translation Time from HTTP to CoAP and MQTT

HTTPtoCoAP_PUT_Frequency HTTPtoCoAP_GET_Frequency

HTTPtoMQTT_PUT_Frequency HTTPtoMQTT_GET_Frequency

0
100
200
300
400
500
600
700
800
900

1000

0 1.45 2.9 4.35 5.8 7.25 8.7 10.15 11.6 13.05 14.5 15.95

F
re

q
u
en

cy

Time (ms)

Average Translation Time from MQTT to CoAP and HTTP

MQTTtoHTTP_Publish_Frequency MQTTtoCoAP_Publish_Frequency

MQTTtoHTTP_Subscribe_Frequency MQTTtoCoAP_Subscribe_Frequency

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

619 | P a g e

www.ijacsa.thesai.org

(a)

(b)

Fig. 11. Average Delay of Query on Semantic Sensor Network Ontology and Processing Data.

VII. CONCLUSION

One of the greatest challenges in the IoT is to achieve
interoperability. A transparent and reliable architecture based
on SOAs was suggested in this paper. The goal was to achieve
protocol and syntactic interoperability using the SSN ontology.
The proposed architecture can integrate different IoT
application protocols, such as MQTT, HTTP, and CoAP. In
addition, it can convert between different payload formats,
such as JSON, XML, and CSV.

The evaluations showed that the proposed translator’s
performance is better than that of the Arrowhead translator and
introduced a shorter delay. The proposed translator`s delay is
approximately 19.9\% of that of the Arrowhead translator. This
difference in delay is due to the simplicity of the
implementation. In addition, the suggested translator has an
advantage over the Arrowhead translator in that it can achieve
syntactic interoperability, unlike the Arrowhead translator
using SSN ontology.

Future work will attempt to achieve semantic
interoperability using the current architecture by reasoning the
data stored in the SSN ontology. For this reason, it was

preferred to use semantic Web technology to achieve syntactic
interoperability rather than any other database. This allowed us
to achieve two types of interoperability using one technology
without introducing a long delay.

REFERENCES

[1] M. Noura, M. Atiquzzaman, and M. Gaedke, ―Interoperability in
internet of things: taxonomies and open challenges,‖ Mob. Networks
Appl., vol. 24, no. 3, pp. 796–809, 2019.

[2] P. Desai, A. Sheth, P. Anantharam, ―Semantic gateway as a service
architecture for IoT interoperability,‖ Proc. - 2015 IEEE 3rd Int. Conf.
Mob. Serv. MS 2015, pp. 313–319, Aug. 2015.

[3] A. D. P. Venceslau, R. M. C. Andrade, V. M. P. Vidal, T. P. Nogueira,
and V. M. Pequeno, ―IoT semantic interoperability: A systematic
mapping study,‖ ICEIS 2019 - Proc. 21st Int. Conf. Enterp. Inf. Syst.,
vol. 1, no. Iceis, pp. 523–532, 2019.

[4] E. Palm, C. Paniagua, U. Bodin, O. Schel en, ―Syntactic translation of
message payloads between at least partially equivalent encodings,‖ Proc.
IEEE Int. Conf. Ind. Technol., vol. 2019-Febru, pp. 812–817, 2019.

[5] H. Derhamy, J. Eliasson, J. Delsing, ―IoT interoperability—on-demand
and low latency transparent multiprotocol translator,‖ IEEE Internet
Things J., vol. 4, no. 5, pp. 1754–1763, 2017.

[6] P. Varga et al., ―Making system of systems interoperable – The core
components of the arrowhead framework,‖ J. Netw. Comput. Appl., vol.
81, pp. 85–95, Mar. 2017.

0

200

400

600

800

1000

0 1.45 2.9 4.35 5.8 7.25 8.7 10.15 11.6 13.05 14.5 15.95

F
re

q
u
en

cy

Time (ms)

Average Select Query + Post-processing Data

XML_Frequency JSON_Frequency CSV_Frequency

0
100
200
300
400
500
600
700
800
900

1000

21.75 23.2 24.65 26.1 27.55 29 30.45 31.9 33.35 34.8 36.25 37.7 39.15

F
re

q
u
en

cy

Time (ms)

Average Update Query + Pre-processing data

XML_Frequency JSON_Frequency CSV_Frequency

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

620 | P a g e

www.ijacsa.thesai.org

[7] M. Kovatsch, M. Lanter, Z. Shelby, ―Californium: scalable cloud
services for the internet of things with coap,‖ 2014 Int. Conf. Internet
Things, IOT 2014, pp. 1–6, 2014.

[8] C.-H. Lee, Y.-W. Chang, C.-C. Chuang, Y. H. Lai, ―Interoperability
enhancement for internet of things protocols based on software-defined
network,‖ 2016 IEEE 5th Glob. Conf. Consum. Electron. GCCE 2016,
pp. 4–5, 2016.

[9] M. Dave, M. Patel, J. Doshi, and H. Arolkar, ―Ponte Message Broker
Bridge Configuration Using MQTT and CoAP Protocol for
Interoperability of IoT,‖ Commun. Comput. Inf. Sci., vol. 1235 CCIS,
pp. 184–195, Mar. 2020.

[10] A. E. Khaled, S. Helal, ―Interoperable communication framework for
bridging restful and topic-based communication in IoT,‖ Futur. Gener.
Comput. Syst., vol. 92, pp. 628–643, 2019.

[11] A. E. Khaled, A. Helal, W. Lindquist, C. Lee, ―Iot-ddl–device
description language for the ―t‖ in IoT,‖ IEEE Access, vol. 6, pp.
24048–24063, 2018.

[12] A. Gyrard, C. Bonnet, K. Boudaoud, M. Serrano, ―LOV4IoT:a second
life for ontology-based domain knowledge to build semantic web of
things applications,‖ Proc. - 2016 IEEE 4th Int. Conf. Futur. Internet
Things Cloud, FiCloud 2016, pp. 254–261, 2016.

[13] D. P. Abreu, K. Velasquez, A. M. Pinto, M. Curado, E. Mon-teiro,
―Describing the internet of things with an ontology: The suscity project
case study,‖ Proc. 2017 20th Conf. Innov. Clouds, Internet Networks,
ICIN 2017, pp. 294–299, 2017.

[14] J. Fernandes et al., ―Building a smart city IoT platform - the suscity
approach‖, 48nd Spanish Congr. Acoust. Iber. Encount. Acoust., pp.
557–566, 2017.

[15] A. Gyrard, M. Serrano, ―Connected smart cities: interoperability with
seg 3.0 for the internet of things,‖ Proc. - IEEE 30th Int. Conf. Adv. Inf.
Netw. Appl. Work. WAINA 2016, no. 2, pp. 796–802, 2016.

[16] O. Kleine, S. Ebers, M. Leggieri, ―Monitoring urban traffic using
semantic web services on smartphones - a case study,‖ 2015 12th Annu.
IEEE Int. Conf. Sensing, Commun. Netw. - Work. SECON Work. 2015,
pp. 1–6, 2015.

[17] A. Kamilaris, A. Pitsillides, F. X. Prenafeta-Bold, M. I. Ali, ―A web of
things based eco-system for urban computing-towards smarter cities,‖
Proc. 24th Int. Conf. Telecommun. Intell. Every Form, ICT 2017, 2017.

[18] A. Kamilaris, F. Gao, F. X. Prenafeta-Boldu, M. I. Ali, ―Agri-IoT: a
semantic framework for internet of things-enabled smart farming
applications,‖ 2016 IEEE 3rd World Forum Internet Things, WF-IoT
2016, pp. 442–447, 2017.

[19] R. Zgheib, R. Bastide, E. Conchon, ―A semantic web-of-things
architecture for monitoring the risk of bedsores,‖ Proc. - 2015 Int. Conf.
Comput. Sci. Comput. Intell. CSCI 2015, pp. 318–323, 2016.

[20] M. Compton et al., ―The SSN ontology of the W3C semantic sensor
network incubator group,‖ J. Web Semant., vol. 17, pp. 25–32, Dec.
2012.

[21] J. Toldinas, B. Lozinskis, E. Baranauskas, and A. Dobrovolskis, ―MQTT
Quality of Service versus Energy Consumption,‖ Proc. 23rd Int. Conf.
Electron. 2019, Electron. 2019, Jun. 2019.

[22] R. A. Light, ―Mosquitto : server and client implementation of the MQTT
protocol,‖ J. Open Source Softw., vol. 2, pp. 1–2, 2017.

[23] J. Z. Pan, ―Resource Description Framework,‖ in Handbook on
Ontologies, Springer, Berlin, Heidelberg, 2009, pp. 71–90.

