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Abstract—Because Internet of Things (IoT) systems contain 

different devices, infrastructures, and data formats; its success 

depends on the realization of full interoperability among these 

systems. Interoperability is a communication challenge that 

affects all the layers of the system. In this paper, a transparent 

translator to solve interoperability issues in two layers of an IoT 

system is proposed. The communication protocol layer is the first 

layer. In this layer, it is necessary to overcome the difference 

between the interaction patterns, such as request/response and 

publish/subscribe. The second layer includes the syntactic layer, 

which refers to data encoding. This type of interoperability is 

achieved through the semantic sensor network (SSN) ontology. 

Tests and evaluations of the proposed translator in comparison 

with a similar translator were performed using the constrained 

application protocol (CoAP), message queuing telemetry 

transport (MQTT) protocol, and hypertext transfer (HTTP) 

protocol, in addition to different data formats, such as JSON, 

CSV, and XML. The results reveal the efficiency of the proposed 

method in terms of application protocol interoperability. In 

addition, the suggested translator has the added feature that it 

supports different data encoding standards as compared to the 

other translator. 

Keywords—Internet of things (IoT); interoperability; 

multiprotocol translation; message payload translation; SSN 

ontology 

I. INTRODUCTION 

The IoT comprises a collection of different devices 
connected using different Internet protocols. Examples of these 
devices include the thermostats, air conditioners, and lightbulbs 
that can be found in smart homes. In addition, the IoT plays an 
important role in other domains, such as transportation, 
healthcare, industrial automation, smart cities, and agriculture. 
The IoT enables physical objects to perform actions and share 
data. Therefore, IoT intelligence is bestowed on these objects 
by using different technologies, such as cloud computing, 
embedded devices, sensor networks, and Internet protocols. 
Because of the diversity of IoT systems, many protocols have 
been developed and applied. Interoperability between the 
different systems represents an important factor in the success 
of an IoT; however, it remains a significant challenge. 

Interoperability problems can be found in different levels, such 
as at the device, messaging protocol, syntactic, and semantic 
levels. 

Interoperability on the device level refers to the wide range 
of devices located in an IoT. These may be high- or low-end. 
Examples of high-end devices include Raspberry Pi and 
smartphones, which have ample resources and computational 
capabilities, whereas low-end devices include radio frequency 
identification tags, sensors, and devices with constrained 
resources [1]. These devices may support wired or wireless 
networking protocols, such as Ethernet, ZigBee, Bluetooth, 
ZWave, 3G/4G cellular technologies, and near-field 
communication. In addition, these protocols can be standard 
communication protocols or non-standard proprietary 
protocols, such as long range (LoRa) and SIGFOX [1]. 
Sometimes, the devices that need to share information use 
different network technologies, requiring that that the 
interoperability among these different devices and network 
technologies be resolved to enable their integration [1]. 

Interoperability on the messaging protocol level refers to 
the multiple application protocols that exist, such as the 
message queue telemetry transport (MQTT) protocol, 
constrained application protocol (COAP), and hypertext 
transfer protocol (HTTP), are used to provide communications. 
Each protocol has characteristics that support different types of 
IoT applications [2]. Nevertheless, the various IoT applications 
should be able to exchange messages independently of 
messaging protocols to allow a scalable IoT architecture and 
cross-domain applications. Thus, the success of the 
interoperability of messaging protocols is manifested in a 
system’s ability to translate between these different messaging 
protocols. 

Syntactic interoperability refers to the fact that the content 
types of the data sent through the communication protocols can 
be of different types. Some of the most frequently used data 
formats are extensible markup language (XML), JavaScript 
object notation (JSON), and comma-separated values (CSV). 
The syntactic interoperability problem arises when the sender 
encodes the message in a specific format and the receiver can 
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decode received messages only in a different format. Thus, the 
encoding rules of the sender are incompatible with the 
decoding rules of the receiver, leading to mismatching of 
messages [1]. Therefore, this level of interoperability is 
important to allow a smooth transition of messages among 
different IoT systems. 

The final type of interoperability discussed in this paper is 
semantic interoperability. The World Wide Web Consortium 
(W3C) defined it as ``enabling different agents, services, and 
applications to exchange information, data and knowledge in a 
meaningful way, on and off the web‖ [3]. In the traditional IoT 
scenario, raw sensor data from heterogeneous nodes are 
provided to the software agent [1]. These data contain no 
semantic annotations and an extensive effort is required to 
build intelligent applications. In addition, they may be 
represented in different units of measurements and have 
additional information [1], resulting in semantic 
interoperability problems. These semantic problems between 
data and information models render IoT applications unable to 
interoperate both automatically and dynamically because their 
descriptions and understanding of resources differ [1]. 

The current middlewares used to achieve application 
protocol interoperability have limitations, such as adding 
interoperability problems when working in conjunction with 
another middleware. Also, some proxies are used to solve the 
same level of interoperability but have issues like low 
bandwidth, low processing, and high cost of management. On 
the other hand, the current works for solving syntactic 
interoperability problems are very few. The existing solutions 
can convert between encodings with similar syntax only. Also, 
there is no current solution that achieves both application 
protocol and syntactic interoperability together. 

In this study, a software architecture was designed to solve 
the interoperability problems related to both messaging 
protocols and syntactic levels. The main contributions of this 
paper are as follows. 

1) An IoT translator that can achieve communication 

protocol and syntactic interoperability is proposed. Semantic 

interoperability will be addressed in a future paper. 

2) The development of a multi-protocol translator that can 

translate messages among the CoAP, MQTT, and HTTP 

protocols is described. 

3) The use of the semantic sensor network (SSN) ontology 

to allow conversion among XML, JSON, and CSV data 

formats to achieve syntactic interoperability is described. This 

will enable clients to obtain the data they need in any required 

format, even if they are stored in different formats on the 

server. 

4) A translator based on a hub-and-spoke model, which 

supports scalability and modularity, is presented. The 

scalability and modularity will allow the translator to be 

extended to support more protocols easily, in addition to more 

data formats. 

5) An evaluation is presented that shows the effectiveness 

of the proposed translator in comparison with the Arrowhead 

translator. 

The remainder of the paper is organized as follows. In 
Section II, some related studies on solutions for interoperability 
problems in the IoT are reviewed. Sections III and IV discuss 
the software architecture and implementation of the proposed 
solution, respectively. The results and evaluations are 
presented in Section V. Finally, the conclusions and 
suggestions for future work are provided in Section VI. 

II. RELATED WORK 

Different architectures and frameworks are used to solve 
IoT interoperability on the various levels. 

To address syntactic interoperability, Palm et al. [4] 
presented a theoretical method for translating message 
payloads among different endpoints. First, this method 
constructs a syntax tree from the incoming message. Then, it 
converts the syntax tree into an equivalent syntax tree of the 
target encoding. The syntactic translation can convert only 
between an encoding standard and intersecting syntaxes. 

To provide messaging protocol interoperability, Derhamy 
et al. [5] proposed a transparent protocol translator to allow 
interoperability between communication protocols. This 
translator depends on a service-oriented architecture (SOA), 
not on middleware. Thus, it supports low latency and operates 
transparently. It is also secured through the use of Arrowhead 
authorization and authentication [6]. Its architecture consists of 
two spokes and a central hub: the first spoke operates as a 
service provider spoke and the second as a service consumer 
spoke. The translator can support any number of protocols, 
each of which has only two spokes. The authors tested their 
architecture on the CoAP and HTTP protocols and determined 
that it was faster than the Californium proxy [7]. 

Lee et al. [8] proposed an IoT framework based on the 
software-defined network (SDN) that can intercept all packets 
from CoAP to MQTT and vice versa. They defined URL rules 
to specify the resource or the topic and distinguish between 
homogeneous (e.g., from MQTT client to MQTT client) and 
heterogeneous (e.g., from MQTT client to CoAP client) traffic. 
In the homogeneous scenario, the SDN ignores the traffic and 
these packets are operated as in the original scenario. In the 
heterogeneous scenario, the SDN switch delivers the packets to 
the SDN controller and redirects them to the cross proxy for 
translation. The advantage of this framework is that it causes 
no delay in a homogeneous scenario. However, the authors 
provided no evaluation results for their suggested framework. 

Ponte [9] is an Eclipse IoT project that provides open APIs 
to create applications that support the CoAP, HTTP, and 
MQTT communication protocols. Ponte provided a centralized 
solution to enable clients using different communication 
protocols to communicate easily with each other. Data 
collected from the three different protocols are stored in SQL 
or NoSQL databases. Therefore, all the clients can access all 
resources, regardless of the communication protocol they use. 
In the same direction, Khaled and Helal [10] proposed the 
Atlas IoT framework to allow communication between clients 
using MQTT, CoAP, and HTTP. The proposed protocol 
translator can be deployed on either a cloud infrastructure or 
the IoT device itself. This framework depends on the IoT 
device description language [11] and was compared with Ponte 
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[9]. The results show that energy consumption is reduced in 
comparison with that of Ponte [9]. A disadvantage of this 
framework is that not all IoT devices can be part of this 
interoperable ecosystem: the device should have an Internet 
connection (e.g., Ethernet, cellular network, or Wi-Fi) and an 
operating system that supports multithreading to integrate with 
this ecosystem. 

Desai et al. [2] proposed the Semantic Gateway as Service 
architecture to achieve messaging protocol interoperability 
among the CoAP, MQTT and XMPP protocols using a multi-
protocol proxy. Semantic reasoning using the SSN ontology to 
solve interoperability was highlighted, but no description of 
implementation details or evaluation methodology were 
provided. 

To address semantic level interoperability, Gyrard et al. 
[12] proposed the machine-to-machine measurement (M3) 
framework to develop semantic-based cross-domain IoT 
projects and reuse the optimum number of ontologies and 
rules. In their study, they focused on designing the Linked 
Open Vocabularies for the Internet of Things dataset to 
reference and classify semantic-based projects that are relevant 
to the IoT. In addition, they designed a sensor-based linked 
open rules dataset of domain rules to infer high-level 
abstractions from sensor data. David Perez et al. [13] 
developed an ontology for the smart city scenario, specifically 
for the SusCity project [14], to facilitate the management of the 
infrastructure. This ontology consists of several main classes, 
such as IoT infrastructures, devices, communication interfaces 
and links, and performance metrics. Evaluations proved the 
correctness of this ontology. One of its disadvantages is that an 
automatic ontology update mechanism is required. Gyrard and 
Serrano [15] presented a methodology called SEG 3.0, a name 
which comes from segmentation and Web 3.0, which depends 
on semantic Web technologies. They defined the 
characteristics and steps of this methodology and subsequently 
implemented a framework for applying it. The purpose of this 
framework is to achieve semantic interoperability among IoT 
projects. In addition, they investigated various use cases to 
show the correctness of the methodology and that it can be 
applied to other domains, such as smart cities. Kleine et al. [16] 
developed a Semantic Web of Things architecture including 
virtual sensors, smart service proxy, and semantic entities to 
measure the traffic density of a road. This architecture depends 
on smartphones located in vehicles moving in the network and 
represents the sensor data in resource description framework 
(RDF) form. In the future, the authors plan to enable selective 
privacy to identify the exact vehicles traveling on certain road 
sections. Additionally, Kamilaris et al. [17] proposed an eco-
system for urban computing, using the concept of the Web of 
Things together with event processing, mobile computing, 
semantic Web, and big data analysis techniques to record the 
real information of smart cities for their residents. They 
conducted a case study in the city of Aarhus, Denmark. One of 
the disadvantages of the suggested ecosystem is its lack of 
privacy or security aspects. 

Kamilaris et al. [18] proposed a semantic framework called 
Agr-IoT for smart farming applications. This framework uses 
semantic Web techniques to allow reasoning and to facilitate 
increased information collection and more accurate decision 

making. In addition, semantic Web techniques help achieve 
interoperability among different data sources, such as sensors, 
social media, governmental alerts, connected farms, and 
regulations. The ontologies used in the framework are the SSN 
ontology, complex event service ontology, and an agriculture 
ontology, called AgOnt. 

In the healthcare domain, Zgheib et al. [19] presented an 
IoT system to detect the risk of bedsores, using SSN ontology 
to achieve interoperability between system components. This 
system is based on message-oriented middleware to process 
some constraints, such as the security, scalability, and privacy 
of medical information. 

The above review shows that the methods that achieve 
messaging protocol and syntactic interoperability remain few 
in number. Therefore, the proposed architecture is focused on 
these two levels of interoperability. 

III. PROPOSED ARCHITECTURE 

The proposed architecture is based on that presented in [5]. 
As shown in Fig. 1, it consists of three parts: the clients, 
translator, and servers. The clients are service consumers who 
send different requests to different servers. They can also 
receive data in any format they need, even if these data are 
stored in a different format on the server. The proposed 
translator is used to allow a client using a specific protocol to 
communicate with a server using a different protocol. It 
consists of a hub and multiple spokes. As this translator can 
translate among three different protocols, it has six spokes. It 
can support additional protocols by adding only the two spokes 
needed for each of these protocols. At each operation, only two 
spokes are used according to the request. The hub is a 
conceptual representation and is represented using an 
intermediate format and SSN ontology. The intermediate 
format is used to convert one protocol to another. Each 
protocol is represented by two spokes. The first spoke is a 
server spoke, which listens to different requests on a specific 
port, and the second is the client spoke, which creates a new 
request according to the information received from the 
intermediate format in the hub. Inside the hub, the SSN 
ontology is also located, which is used to describe sensors and 
their observations, the features of interest, the observed 
properties, and the actuators [20]. It is used only to achieve 
syntactic interoperability and is converted into different data 
formats. The final part of the architecture is the server, which 
contains the service providers that serve different clients. The 
proposed translator can be used with different clients and with 
servers acquired from different vendors. 

The following scenarios clarify the architecture. 

Finally, complete content and organizational editing before 
formatting. Please take note of the following items when 
proofreading spelling and grammar: 

A. Request from Representational State Transfer (REST) 

Client to REST Server 

In this scenario, the representational state transfer (REST) 
points to the HTTP and CoAP protocols. Therefore, this 
scenario illustrates the events that occur when a CoAP client 
sends a request to an HTTP server or an HTTP client sends a 
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request to a CoAP server. As shown in Fig. 2, the server spoke, 
a CoAP server in this case, listens to the requests from a CoAP 
service consumer. A CoAP request is converted to the 
appropriate HTTP request using the intermediate format. 
Subsequently, the HTTP request is forwarded to the HTTP 
service provider. 

If the syntactic interoperability service is required, the SSN 
ontology is used. In this case, if the request is PUT or POST, 
an INSERT or UPDATE statement modifies the SSN ontology. 
However, if the request is GET, there exist two situations. The 
first is where the service consumer requires the payload of a 
specific resource in the same format as that of the service 
provider. In this case, the service provider replies directly with 
the payload to the HTTP client spoke without needing to use 
the SSN ontology. When the HTTP client spoke receives the 
response, a CoAP response is generated by the CoAP server 
spoke using the intermediate format and is forwarded to the 
CoAP consumer. In the second situation, the service consumer 

requires the payload of a specific resource in a format different 
from that which exists in the service provider. In this case, the 
service provider replies with a ―NOT ACCEPTABLE‖ code to 
the HTTP client spoke. If the CoAP server spoke receives a 
―NOT ACCEPTABLE‖ message, it generates a SELECT 
query to obtain the specified resource data in a standard format, 
converts this format to the required format, and finally 
responds to the CoAP client consumer with these data. The 
same steps are taken when the HTTP client requires a service 
from the CoAP server. The only difference is that the service 
consumer in this case is an HTTP client and the service 
provider is a CoAP server. An additional difference is that, 
inside the translator, the two spokes that should be used in this 
case are the HTTP server and the CoAP client spokes. The 
mapping between the HTTP and CoAP protocols is shown in 
Table I. However, it is important to note that the CoAP 
protocol contains an OBSERVE request that does not exist in 
the HTTP protocol. The CoAP OBSERVE request was used 
only with the MQTT protocol. 

 

Fig. 1. Proposed Architecture. 

 

Fig. 2. Request from Constrained Application Protocol Client to Hypertext Transfer Protocol Server. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 9, 2021 

614 | P a g e  

www.ijacsa.thesai.org 

B. Publishing a Resource in Representational State Transfer 

Server (Constrained Application Protocol or Hypertext 

Transfer Protocol) 

As shown in Fig. 3, in this scenario the service consumer is 
an MQTT client and the service provider is a REST server. 
Thus, the MQTT client must publish a message on any 
resource in the REST server. 

The MQTT broker spoke listens to the PUBLISH messages 
from the MQTT service consumer. The MQTT message is 
converted to the PUT REST request using the intermediate 
format in the hub. Subsequently, the PUT request is forwarded 
to the REST service provider. In addition, the SSN ontology is 
required only if the syntactic interoperability is activated. In 
that case, the MQTT server spoke updates the value of the 
resource in the SSN ontology. Note that UPDATE query exists 
in the SPARQL query language, and therefore, DELETE and 
INSERT queries must be used together to update the data in the 
SSN ontology. As the MQTT protocol does not contain a 
content format field in its header, the content format is checked 
manually. According to the content format, it is possible to 
determine the manner in which the message should be 
processed to extract the resource or topic name with its payload 
and store them in the SSN ontology. The pseudocode for this is 
shown in Algorithm 1. When the REST client spoke receives a 
response, an MQTT message response is generated by the 
MQTT server spoke and forwarded to the MQTT publisher. 
The response of the PUBLISH message can be either a None or 
PUBACK packet or a PUBREC packet according to the quality 
of service (QoS) level [21]. 

C. Subscribing a Resource in Constrained Application 

Protocol Server 

The subscription of a message to the CoAP server differs 
slightly from that to the HTTP server, because the HTTP 
protocol does not have an OBSERVE request as does the 
CoAP server. As shown in Fig. 4, the main steps in this 
scenario are the same as described previously. The difference is 
that the SUBSCRIBE message in the MQTT protocol 
corresponds to the OBSERVE request in the CoAP protocol. 
As the MQTT protocol does not contain the content format 
field in its header, it is not necessary to use the SSN ontology, 
although syntactic interoperability is activated. 

 

Fig. 3. PUBLISH Message from Message Queue Telemetry Transport Client 

to Representational State Transfer Server. 

 

Fig. 4. SUBSCRIBE Message from Message Queue Telemetry Client to 

Constrained Application Protocol Constrained Application Protocol Server. 

D. Subscribing a Resource in the Hypertext Transfer Protocol 

Server 

As mentioned above, the HTTP protocol does not have an 
OBSERVE request. Therefore, the GET request, which is 
implemented periodically, is used. As shown in Fig. 5, when 
the MQTT client subscribes to a specific resource in the HTTP 
server, an HTTP client makes a GET request with a pre-
configured periodic time. If the returned payload is different 
from the last payload, the MQTT broker publishes internally. 

Algorithm 1: Checking the content format for the MQTT protocol 

Input: A string variable message which is MQTT payload 
Output: An integer variable type which is the format of MQTT payload 

initialization; 

if message begins with ―{‖ and ends with ―}‖ then 

 type ←0; // zero means it is JSON format 
end 

else if message begins with ―<‖ and ends with ―>‖ then 

 type ←1; // one means it is XML format 
end 

else if the number of commas is equal in each line then 

 type ←2; // two means it is CSV format 
end 

else 

 type ←3; // three means it is not supported format 
end 

return type 

with the new payload to the MQTT client. The periodic 
GET request would be canceled if the MQTT client 
unsubscribed on this topic. 

 

Fig. 5. SUBSCRIBE Message from Message Queue Telemetry Transport 

Client to Hypertext Transfer Protocol Server. 
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IV. IMPLEMENTATION 

The architecture was implemented using the JAVA 
language, and the spokes were implemented using the Java 
libraries. For example, the CoAP spokes, for both client and 
server, were implemented using the Californium CoAP library 
[7]. The CoAP server spoke contained only the CoAP server 
with RootResource [7]. The CoAP client spoke was used to 
perform the CoAP request and return the response to the 
calling spoke. For the MQTT protocol, the MQTT server spoke 
was implemented using the Mosquitto broker [22], and the 
MQTT client spoke was implemented using the Eclipse. 

Paho client developed by Eclipse Foundation; however, the 
Jersey open-source libraries created by Eclipse Foundation and 
Oracle Corporation for the HTTP protocol were used to 
implement the HTTP server and HTTP client spokes. 

A. Mapping among different Protocols 

The mapping among the three different protocol spokes 
was implemented as shown in Table I. 

B. Intermediate Format 

The intermediate format was used in the hub to enable 
interchanges between the protocol spokes. It holds the basic 
header fields of request and response. The structure of the 
intermediate format is presented in Table II. 

C. Semantic Sensor Network Ontology 

The SSN ontology [20] is an ontology developed by W3C 
to provide standard modeling for sensor devices, actuators, 
sensor platforms, their observations, and so on. It was used in 
the RDF format [23]. The purpose of using the SSN ontology 
is to achieve syntactic and semantic interoperability. Here, the 
syntactic interoperability was achieved to solve the problem of 
encoding and decoding messages between the sender and 
receiver in different formats. By doing so, if, for example, the 
payload is stored in the plaintext format at the REST server, the 
REST client can obtain the payload in different formats, such 
as JSON or XML. This study converted three different formats: 
CSV, JSON, and XML. In Fig. 6, a subset of this ontology is 
shown. It represents the classes and properties that used in the 
proposed architecture. 

 

Fig. 6. Subset of Semantic Sensor Network Ontology. 

TABLE I. MAPPING AMONG THREE PROTOCOLS 

 HTTP CoAP MQTT 

Code Request 

GET request in case of mapping with 

GET request of CoAP and with the 
MQTT SUBSCRIBE. 

GET request in case of mapping with 
GET request of HTTP. 

OBSERVE request in case of 

mapping with MQTT SUBSCRIBE 

SUBSCRIBE  

PUT request PUT request PUBLISH retained message 

POST request POST request PUBLISH retained message 

DELETE request DELETE request PUBLISH retained message with zero-byte payload 

Code Response 

―200‖ OK ―2.00‖ OK 
0x00 - Success - Maximum QoS 0  
0x01 - Success - Maximum QoS 1  

0x02 - Success - Maximum QoS 2  

―404‖ NOT FOUND ―4.04‖ NOT FOUND Not supported 

―406‖ NOT ACCEPTABLE ―4.06‖ NOT ACCEPTABLE Not supported 

―204‖ NO CONTENT ―2.04‖ CHANGED Not supported 

Code Error 

―400‖ BAD REQUEST ―4.00‖ BAD REQUEST 0x02 Connection Refused, identifier rejected 

―401‖ UNAUTHORIZED ―4.01‖ UNAUTHORIZED 0x05 Connection Refused, not authorized 

“500” INTERNAL SERVER ERROR 5.00” INTERNAL SERVER ERROR 0x03 Connection Refused, Server unavailable 

Object Resource name Resource name Topic name 

TABLE II. DEFINITION OF INTERMEDIATE FORMAT 

Variable Name Type Discussion 

uniqueKey int is the message Id 

Code String is the CRUD operation in case of request and response code or error code in case of response 

Object String is the resource or topic to be operated on 

Payload String is the body of the message 

payloadFormat String is the format of the payload 
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V. TESTING AND EVALUATION 

In this simulation, a CoAP server, HTTP server and MQTT 
broker were used in a weather information service transmitting 
information from different geographic locations. This service 
measured the temperature, humidity, pressure, wind direction, 
and wind speed. The HTTP and CoAP protocols could support 
different formats of the payload, such as plaintext, CSV, JSON, 
and XML formats. However, in the MQTT protocol, the 
content format was application-specific, as this protocol does 
not contain the content format or accept fields in its header. If 
the service used one sensor and provided only the value, the 
plaintext format was used; otherwise, any one of the three 
formats was used. The XML, CSV, and JSON payload 
structures are shown in Fig. 7(a), Fig. 7(b), and Fig. 7(c), 
respectively. The approximate lengths of each format are listed 
in Table III. 

For converting the payload from one format to another, the 
intermediary ontology was used, as it represents the data in a 
structured form. 

The delay caused by the translator for protocol translation 
and format conversion was measured and evaluated. All the 
tested scenarios are shown in Fig. 8. In test 8-a), a CoAP 
request was generated from a CoAP client to the translator, 
which then generated the corresponding HTTP request to the 
HTTP server. 

Test 8-b) followed the form of test 8-a), except that the 
translator generated the corresponding MQTT message to the 
MQTT broker. However, test 8-c) involved an HTTP request 
generated from an HTTP client to the translator, which then 
generated the corresponding CoAP request to the CoAP server. 
Test 8-d) was similar to test 8-c), except that the translator 
generated the corresponding MQTT message to the MQTT 
broker. Test 8-e) involved an MQTT message generated from 
an MQTT client to the translator, which then generated the 
corresponding HTTP request to the HTTP server. Finally, test 
8-f) followed the form of test 8-e), except that the translator 
generated the corresponding CoAP request to the CoAP server. 

The translator was run on a laptop with an Intel Core i5-
2520M processor running Windows 8 at 2.50 GHz and 4.00 
GB RAM. The delay introduced by the translator and the delay 
caused by using the SSN ontology were measured. As shown 
in Fig. 9, six Java milliseconds timers (

1t - 
6t ) were used to 

compute these delays. The descriptions of these timers are 
listed in Table IV. 

The following equations were used in the delay 
calculations, where (1) represents the time the packet takes 
within the translator and (2) the time required to perform 
processing on the different formats of data plus the execution 
time of the SPARQL query. 

           (     )  (     )            (1) 

                          (2) 

The tests were performed 1000 times per scenario. The 
average time required for protocol translation is summarized in 
Table V. 

 

Fig. 7. Different Payload Structure Formats. 

TABLE III. LENGTH OF PAYLOADS IN BYTES 

The Payload Structure Length (bytes) 

XML 236 

JSON 246 

CSV 234 

 

Fig. 8. Test Scenarios. 

 

Fig. 9. Time Stamp for Delay Measurements. 

As shown in Table V, the time required to convert the 
protocols is very short. Scenarios (e) and (f) have the minimum 
delay because the server spoke in this case is the MQTT 
broker. The MQTT broker operates as a pipeline and does not 
perform any processing, as do HTTP and CoAP servers. 
Therefore, the MQTT broker is very simple as compared to the 
CoAP and HTTP servers. 
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TABLE IV. TIMING INSTRUMENTATION 

1t  = 
Request arrives at the application server spoke of the 

translator. 

2t  = 
Request leaves the application client spoke of the 

translator. 

3t  = 
Response arrives at the application client spoke of the 

translator. 

4t  = 
Response leaves the application server spoke of the 

translator. 

5t  = 
Query leaves the server to the SSN ontology plus 

preprocessing the data if needed. 

6t  = 
Response from the SSN ontology plus processing the 

data if needed. 

TABLE V. AVERAGE DELAY OF THE PROTOCOL TRANSLATION 

Scenario Client Server Method  Delay (ms) 

a) 
CoAP 

Client 

HTTP 

Server 

GET 3.96 

PUT 4.03 

b) 
CoAP 

Client 

MQTT 

Broker 

GET 3.10 

PUT 3.05 

c) 
HTTP 

Client 

CoAP 

Server 

GET 3.21 

PUT 3.38 

d) 
HTTP 

Client 

MQTT 

Broker 

GET 3.81 

PUT 3.09 

e) 
MQTT 

Client  

HTTP 

Server 

Subscribe 3.10 

Publish 2.64 

f) 
MQTT 

Client 

CoAP 

Server 

Subscribe 2.45 

Publish 2.21 

TABLE VI. AVERAGE PROCESSING TIME 

Scenario From To Delay (ms) 

1) JSON 

SSN 

23.69 

2) XML 23.57 

3) CSV 30.19 

4) 

SSN 

JSON 11.78 

5) XML 11.86 

6) CSV 11.71 

In Table VI, the average computed delay in achieving 
syntactic interoperability is shown. Scenarios 1, 2, and 3 
represent the delay in processing and updating the data in the 
SSN ontology. These three scenarios are used when performing 

a POST, PUT, or PUBLISH request. Scenarios 4, 5, and 6 
represent the average delays caused by selecting the data from 
the SSN ontology and converting it to the required format. 
These scenarios were used when performing GET requests. As 
can be seen in this table, updating the ontology (Scenarios 1–3) 
consumes more time than selecting the data from it (Scenarios 
4–6). However, this delay is acceptable in IoT applications and 
does not affect the performance of the architecture. Using the 
SSN ontology, different clients can receive the payload in any 
format they require, even if this payload exists in the server in 
a different content format. 

VI.  DISCUSSION 

To validate the efficiency of the suggested translator, the 
delay caused by the proposed translator was compared with 
that caused by the Arrowhead translator [5]. The comparison 
was applied only to scenario (c) in Fig. 8, as the authors 
implemented only this scenario. The Arrowhead translator was 
run on hardware that was different from that used here on the 
proposed translator. For this reason, it was unavailable to 
compare the proposed translator with the Arrowhead translator 
directly. In the case of the Arrowhead translator, the authors 
measured and evaluated the delay introduced in comparison 
with the Californium proxy [22]. They ran the Californium 
proxy on the same hardware they used for running their 
proposed translator. The same procedure was followed to 
evaluate the proposed translator in comparison with the 
Arrowhead translator. 

As can be seen in Table VII, the Arrowhead translator’s 
delay is about 43.5\% of that of the Californium proxy when 
implemented on the same platform, whereas the suggested 
translator`s delay is only about 23.6\% of that of the 
Californium proxy on the same platform. In addition, the 
proposed translator can map between different data encoding 
standards, a capability that is not available in the Arrowhead 
translator. In Fig. 10 and 11, the results of 1000 requests for 
each scenario are shown. 

The histogram charts show that there exists some anomaly. 
However, this anomaly is due to the Java libraries that were 
used, and therefore, it was beyond control. 

TABLE VII. COMPARISON OF THE PROPOSED AND THE ARROWHEAD 

TRANSLATOR 

The suggested Translator The Arrowhead Translator 

Delay of it (ms) 
Delay of CP on the same hardware 
(ms) 

Delay of it (ms) 

3.21 13.59 177 77 
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(a) 

 
(b) 

 
(c) 

Fig. 10. Average Translation Time among different Protocols. 
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(a) 

 
(b) 

Fig. 11. Average Delay of Query on Semantic Sensor Network Ontology and Processing Data. 

VII. CONCLUSION 

One of the greatest challenges in the IoT is to achieve 
interoperability. A transparent and reliable architecture based 
on SOAs was suggested in this paper. The goal was to achieve 
protocol and syntactic interoperability using the SSN ontology. 
The proposed architecture can integrate different IoT 
application protocols, such as MQTT, HTTP, and CoAP. In 
addition, it can convert between different payload formats, 
such as JSON, XML, and CSV. 

The evaluations showed that the proposed translator’s 
performance is better than that of the Arrowhead translator and 
introduced a shorter delay. The proposed translator`s delay is 
approximately 19.9\% of that of the Arrowhead translator. This 
difference in delay is due to the simplicity of the 
implementation. In addition, the suggested translator has an 
advantage over the Arrowhead translator in that it can achieve 
syntactic interoperability, unlike the Arrowhead translator 
using SSN ontology. 

Future work will attempt to achieve semantic 
interoperability using the current architecture by reasoning the 
data stored in the SSN ontology. For this reason, it was 

preferred to use semantic Web technology to achieve syntactic 
interoperability rather than any other database. This allowed us 
to achieve two types of interoperability using one technology 
without introducing a long delay. 
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