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Abstract—Recently, spatial data became one of the most
interesting fields related to big data studies, in which the
spatial data have been generated and consumed from different
resources. However, the increasing numbers of location-based
services and applications such as Google Maps, vehicle navigation,
recommendation systems are the main foundation of the idea of
spatial data. On the other hand, several researchers started to
discover and compared spatial frameworks to understand the
requirements for spatial database processing, manipulating, and
analysis systems. Apache Spark, Apache Ignite, and Hadoop are
the most widely known frameworks for large data processing.
However, Apache Spark, Apache Ignite have integrated different
spatial data operations and analysis queries, but each system has
its advantages and disadvantages when dealing with spatial data.
Dealing with a new framework or system that needs to integrate
new functionality sometimes becomes a risky decision if we did
not examine it well The main aim of this research is to conduct
a comprehensive evaluation of big spatial data computing on two
well-known data management systems Apache Ignite and Apache
Spark. The comparative has been done on four different domains,
experimental environment setup, supported features, supported
functions and queries, and performance and execution time. The
results show that GeoSpark has recorded more flexibility to use
than SpatialIgnite. We thoroughly investigated and discovered
that multiple factors affect the performance of both frameworks,
such as CPU, Main memory, data set size the complexity of data
type, and programming environment. spark is more advanced and
equipped with several functionalities that made it well suitable
with spatial data queries and indexing. such as kNN queries; in
which these functionalities are not supported in SpatialIgnite.

Keywords—Big spatial data; GeoSpark; SpatialIgnite; Apache
Ignite; Apache Spark

I. INTRODUCTION

Big data processing has always been a critical research area
in both academia and industry. Several big tech organizations
invested billions of dollars to build Big data Eco-system, For
example, Facebook [1], LinkedIn [2], Microsoft [3], ESRI [4]
to name a few. Meanwhile, several non-tech companies have
integrated one or more available platforms to scale out and
perform their big data analytic tasks. One important domain
of this market is building Eco-systems for spatial data due
to the plethora of applications and services that create them.
For instance, earth observation has continuously provided a
significant volume of geospatial data over the last few years,
resource tracking [5], environmental protection, and disaster
predictions [6]. Thus, big data spatial computing has become
extremely valuable with the widespread use of these services
and applications.

The growth market and data size of location-based services
contributed to the advancement and complexity of computing
spatial data [7]. Several efforts from both industry [8] and
academia [9], [10], [11], [12] introduced a specialized spatial
data processing engine to process this complex data. The
developments of specialized geospatial processing engines are
driven by adopting new technologies for processing big data.
An essential aspect of any spatial system is how the system
deals with the Big V’s such as Volume, Variety, veracity,
and Velocity. For instance, several research studies extended
these frameworks to specific domain applications, such as
Transportation [13], [14], [15], [16]

Although many systems have been established to leverage
the processing of spatial data. Yet, there is no single source of
a comprehensive benchmark that distinguishes between these
systems. The lack of possessing this kind of benchmark is due
to the complexity and efforts associated with building them
up. On the other hand, the variety of spatial data types in
different domains (e.g., location, routing, navigation) makes
it even harder to benchmark. Thus, we extensively spend a
decent effort designing and assisting the performance of well-
known big in-memory spatial platforms built on Apache Spark
and Apache Ignite.

Apache has founded and managed several big data pro-
cessing projects [17], such as Hadoop [18], Spark [19] and
Ignite [20] among others. This paper, investigated Spark and
Ignite which are commonly known as distributed in-memory
big data processing platforms. Researchers investigated these
two platforms in processing big spatial data, by introducing
and building spatial properties, operations, and queries in these
two platforms. For instance, Apache Spark [21] was introduced
as the GeoSpark system, in which users can interacting with
the system by either: Spatial SQL API or a Scala/Java RDD
API. spark provides for the users an operational programming
language for writing a custom spatial analytic application. On
the other hand, Apache Ignite [22] is another open-source
distributed database system that includes an in-memory data
grid (IMDG) that was established to store and compute big
data across a cluster of nodes. However, to integrate the spatial
data processing and quires in Apache Ignite, users must add
the dependency of an ignite-geospatial library that is included
in the JTS Topology Suite.

Dealing with a new framework or system that needs to
integrate new functionality sometimes becomes a risky deci-
sion if we did not examine it, and In the literature up to now,
there are few comparative studies between Apache Spark and
Apache Ignite systems in spatial data management domain.

www.ijacsa.thesai.org 723 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

This paper, motivated by a prior study comprehensively
investigated and evaluated a native version of Apache Hadoop
and Spark, respectively [23]. In this research the study took
the leverage of the advancement of the field of spatial data
computing and comprehensively evaluate and compare two
distributed in-memory computing frameworks and well-known
data management frameworks of Apache Ignite and Apache
Spark. In particular, the study evaluated the spatial extension
of Apache Spark that is well-known as GeoSpark with it’s
competitor SpatialIgnite on Apache ignite.

The rest of this paper has organized as follows. Section
3 research background, which has divided into two subsec-
tions. Section 4 consists of materials and methods, which has
divided into two subsections. Section 5 included the results
and discussion. Concluding remarks are contained in the last
section.

II. RELATED WORK

New research by Cristiana-Stefania Stan [24] has compared
Apache Spark and Apache Ignite from different aspects such
as implementation, features, architecture, and performance
metrics using word count and k-means clustering to specify
the best framework for Big data processing. The experiment
was conducted on two nodes to offer a small cluster, which
made the testing step accurate because it can measure the com-
munication between the nodes. On the other hand, they also
test the computation duration and multiple systems resources
utilization such as CPU, memory, and network, as a result
the author diseased that Apache Spark has addressed a higher
performance in processing Big data than Apache Ignite.

Md Mahbub Alam [12] has studied the performance of Big
spatial data on Apache Spark, Spatial-Ignite benchmark devel-
oped based on Apache Ignite and HADOOP. The author has
realized that not all the systems have supported all Spatial Data
features. The work has inspired form [33], which proposed
the d Jackpine spatial database benchmark to support as many
as possible spatial databases with minimal effort. However,
the experiment in [12] has been conducted using a real-world
spatial dataset from TIGER on a cluster of 8 machines with
the two frameworks (Apache Spark and Hadoop) and the
proposed benchmark (Spatial-Ignite). The result has addressed
three categories of the operations for examination: spatial join,
spatial analysis queries, and range query. At the end of the
experiment, Spatial-Ignite performs better than Apache Spark
and Hadoop on the spatial queries.

Recently, social media platforms provided a huge amount
of spatial and temporal datasets, and several spatial data
processing frameworks were developed to dealing with this
type of massive data. To illustrate this, the study by Zhibo Sun
[25], investigated Apache Spark to perform some geospatial
analyses operations, such as K-Nearest Neighbors (KNN), the
distribution of the median points, and the geographic mean
and median points. The study applied three different sizes of
Twitter data: 180GB, 120GB, and 60GB. Additionally, they
compared the execution results and performance of Apache
Spark with Hadoop, in which Spark addressed a high per-
formance than Hadoop when applied to the Twitter dataset.
Furthermore, the experiment was conducted on the Amazon
EC2 cluster, that consists off 11 m3.xlarge nodes. However,

each instance in the m3.xlarge has ”Intel Xeon E5-2670 v2,
4 vCPU, 15 GB memory, and 100 GB magnetic storage”,
where the study was dependent on Apache Hadoop 2.4, Spark
1.1.1. By comparing Hadoop and Spark in computing the
distribution of the median points, and geographic mean, Spark
addressed better performance than Hadoop, in which writing
and reading data in and out of the disk take more time with
the Hadoop solution. On the other hand, Spark also records a
high performance faster than Hadoop, equals 2.3x, 1.6x, and
1.8x on the three diffident sizes of Twitter datasets. As a result
Spark solution was outperformed the Hadoop solution, but the
author was found some disadvantages and limitations in the
Spark-based solution:

• Spark uses some coarse-grained mode, that enhance
their performance, but on the other hand it wastes lots
of resources, which cause jobs delay.

• Spark uses a lazy operation mechanism, that requires
a run of some actions before debugging.

• Spark can cost on physical nodes, in which it needs
large memory in compared to Hadoop.

Moreover, Randall T. Whitman [26] was studied the spatial
join operations on Apache Spark, and proposed a framework
that uses the spatiotemporal join algorithms using two datasets.
The framework is expected to runs in commercial off-the-shelf
(COTS) applications. The study has employed two approaches
to perform the spatial join operation. The first approach was
the broadcast spatial join, that built to join a big spatial dataset
with another small dataset, where, the second approach was
the Bin spatial join, which is a technique for joining two
large datasets. However, the broadcast join is similar to the
map-side join in MapReduce programming, and it is suitable
when one of two datasets can fit into memory on the Spark
executors, so the study used this join operation to determine
which one of the dataset is smaller and can fit be into the
Spark memory. On the other hand, Bin Join is similar to the
reduce-side join in MapReduce programming, and it is usually
convenient when there is a need for a partitioned approach
because the datasets are too large to fit into memory. The
study was started by defining the size of the two datasets, and
they were distributed into Spark executors, then the datasets
partitions in each executor were joining using the broadcast
join. The next step was using the bin join, and the same
binning operation was applied on the two datasets, to ensure
that the features on each side of the spatial grid are the
same. In the end, the de-duplication step was performed to
remove the duplicate matches when the features become in
multiple bins. However, to estimate the proposed framework
performance the study was conducted on New York City Taxi
and Limousine Commission’s taxi dataset, and they concluded,
that join algorithms depend on the characteristics of the two
datasets. On the other hand, they observed that the broadcast
join is faster when one of the datasets is in a modest size, and
the operation performance decreased when the two datasets are
large. Moreover, the fastest binning technique is the regular
grid mesh.

On the other hand, Jia Yu [27] was presented the GeoSpark
framework, which is an in-memory cluster computing frame-
work for manipulating large spatial data. The proposed frame-
work consists of three main layers: Apache Spark layer,
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TABLE I. LITERATURE REVIEW SUMMARY

Paper Author Year Framework Result

[24] Cristiana-Stefania 2019 Spark and Ignite Spark addressed
higher performance

[12] Md Mahbub 2018 Spark, Spatial-Ignite,
and Hadoop

Spatial-Ignite addressed higher
performance than Spark and Hadoop

[25] Zhibo Sun 2016 Spark and Hadoop Spark outperformed Hadoop

[26] Randall T. Whitman 2017 Spark spacial join algorithms broadcast join address
best performance

[27] Jia Yu 2019 GeoSpark and Hadoop GeoSpark outperform Hadoop

[28] Jayati Gandhi 2020 GeoSpark and Spatial Hadoop GeoSpark more efficient
than Spatial Hadoop

[29] Mingjie Tang 2016 Location-Spark performance addressed good performance
in spatial queries processing

[30] Francisco Garcıa 2017 spatialHadoop
and LocationSpark

LocationSpark outperformed
spatialHadoop

[31] Zhou Huang 2017 GeoSpark SQL, PostGIS,
and Hadoop ESRI

GeoSpark SQL was
more user friendly

[32] Panagiotis Nikitopoulos 2018 DiStRDF under SPARK process RDF spatial temporal
queries in minimum time

[10] Louai Alarabi 2018 ST-Hadoop ST-Hadoop outperformed
Hadoop and SpaitalHadoop

spatial RDD layer, and the spatial query layer, the framework
allows the user to built a spatial index. However, each layer
is responsible for specific functionality in the framework:
the Apache Spark layer responsible for providing the basic
Spark functionality as loading and sorting data in the disk,
where the second layer the spatial RDD layer can support the
geometrical, and spatial objects. On the other hand, the spatial
query layer’s main functionality is to execute the main spatial
query processing algorithms such as KNN, Join, and spatial
range. Moreover, the study was compared the performance of
the proposed framework with Hadoop spatial computation. The
study was conducted on three different datasets from TIGER
files: Zcta510 1.5 GB dataset, Areawater 6.5 GB dataset, and
Edges 62 GB dataset. The experiment was started by con-
figuration setup: one CPU for each worker, two Memory per
worker each one consist of 61 GB, 50 GB registered memory
in Spark and Hadoop and three storage per worker. After that
they studied the time performance of some large spatial data
processing systems: GeoSpark-NoIndex, Quad-Tree, RTree,
GeoSpark without spatial index, and with spatial Quad-Tree or
R-Tree index, then the performance was compared with spatial
Hadoop. The experiment concludes with that GeoSpark record
a better performance than Spatial Hadoop, and as a future work
GeoSpark can be used in multiple fields and different users
such as space scientists, geographers, politicians, commercial
institutions to support the spacial data analyzing process.

On the other hand, a study by Jayati Gandhi [28] was
discussed the importance of geospatial data processing and
analysis, which lead to the discovery of various spatial data
frameworks. The study also presented a comparative study
between GeoSpark and Spatial Hadoop, in which they are
two of the most known open source geospatial big data
analytic frameworks. The study was compared between the
two frameworks according to multiple characteristics such as

the architecture View, spatial data processing approach, and
real-time performance of each framework. As a result, the
author was found, that both frameworks: GeoSpark and Spatial
Hadoop are suitable and flexible to dealing with geospatial
data, but the experiment was recorded, that GeoSpark is more
efficient and fast than Spatial Hadoop. In future work, the
author was mentioned that they tend to use the study result
to enhance the way of disaster management, and geospatial
health infrastructure.

Another study in the research area was presented by
Mingjie Tang [29] discussed the efficiency of MapReduce-
based systems, in which it allows performing spatial queries
using predefined spatial operations without the need to worry
about fault tolerance and computation distribution problems.
However, MapReduce-based systems had addressed some dis-
advantages such as, the lack of leverage distributed memory,
and they do not allow immediate data reuse, in which data
reusing is very common in spatial data preprocessing. Con-
sequently, the study has introduced a solution that can fix
these problems by built a spatial data processing system on
Apache Spark and known as the Location-Spark. The system
consists of 6 different layers: memory management, spatial
index, query executor, query scheduler, spatial operator, and
spatial analysis. Moreover, Location-Spark allows users to use
a set of spatial query operators, such as range search, spatial-
join, KNN, spatial-textual operation, and kNN-join. Moreover,
the proposed system was offered multiple in-memory data
spatial indexes, and guaranteed fixed spatial indexes decreased
the overhead of fault tolerance. As a result, Location-Spark
was outperformed in speed and performance of other spatial
systems.

A study by Francisco Garcıa [30] was compared between
spatialHadoop and LocationSpark by estimating the perfor-
mance of each spatial data system in the way that they
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performed two spatial join queries: K Closest Pair Query
(KCPQ) and the ϵ Distance Join Query. The study was con-
ducted on Linux operating system using three 2d point spatial
datasets from Open-Street-Map data: building dataset includes
115M records, lakes dataset contains 8.4M points, and parks
consist of 10M records. The experiment was implemented
the KCPQ and ϵ Distance, Join Query, on the three datasets
on spatialHadoop and LocationSpark. The study has adopted
the idea of plane sweep techniques. On the other hand, The
performance was evaluated depending on n the total execution
time. As a result, the author found that LocationSpark was
addressed the best performance comparing to spatialHadoop,
according to the in-memory processing and the query plan
scheduler offered by Spark. Additionally, the advantage of
SpatialHadoop appeared in it is had more mature and robust
DSDMS than Spark. However, as a future work, the paper
tended to apply a new study on Spark-based DSDMS, such
as Simba, and apply some spatial partitioning techniques on
LocationSpark.

Moreover, Zhou Huang [31] was discussed the require-
ments of spatial data and spatial data query processing in
the area of big data. Additionally, the study was introduced
the GeoSpark SQL, which is a framework that allows the
operations of spatial data query processing on Apache Spark.
Furthermore, the paper was addressed the main issues related
to introducing spatial big data query processing: storage man-
agement methods, spatial operations implementation approach,
and spatial query optimization approaches. The author was
chosen Apache spark in this study rather than Hadoop, in
which that spark had the ability of efficient memory man-
agement, that enhance the computations of MapReduce. The
experiment was covered multiple spatial queries such as KNN
query, point query, window query, range query, directional
query, topological query, and multi-table spatial join query.
However, for experiment evaluation 10 different test cases were
created, and the average time was taken as a performance
evaluation metric, for comparing the performance of GeoSpark
SQL with PostGIS, and Hadoop ESRI Spatial Framework. As
a result, GeoSpark SQL was user-friendly, and it only need
to add Java dependencies for spatial data query processing
in Spark, and then start spark terminal. As future work, the
author tended to improve the environment of GeoSpark SQL
to integrate complex spatial data indexes.

Moreover, Panagiotis Nikitopoulos in his research[32] pro-
posed the DiStRDF system using the resource description
framework, which is a framework for web data modeling and
interchanging. Additionally, the study has used Spark as the
processing framework. Moreover, the experiment introduced
a challenging solution for interlinking and interchanging the
spatial-temporal data obtained from mobile devices. Moreover,
the proposed system has addressed a good performance in the
process of the resource description framework spatial-temporal
queries with minimum execution time.

On the other hand, Alarabi in his research [10] proposed
an open-source MapReduce framework, which supports the
spatial-temporal data known as ST-Hadoop. However, the
proposed framework contained one primary node, which helps
in breaking map-reduce jobs into multiple tasks. Additionally,
three different users are allowed by the system: casual users,
developers, and administrators. According to the author, the

framework is divided into four layers: language layer, indexing
layer, MapReduce layer, and operations layer. The experiment
was conducted on a dataset with over 1 Billion spatial-temporal
data of size 10 TB. As a result, ST-Hadoop outperformed
Hadoop and SpaitalHadoop in processing spatial-temporal
data. However, Table I shows a summary for this section.

III. MATERIALS AND METHOD

This section introduce the research methodology in more
detail with a clear explanation for the dataset, tools, and
experiment environment that have been used to conduct the
study. However, the experiment was conducted on one machine
a HP Pavilion laptop with 8GB RAM, 1 TB HDD storage with
windows 10 as an operating system. The research methodology
as it shown in Fig. 1 started by defined the comparative
study four main domains, which are experimental environment
setup, supported features, supported functions and queries,
and performance and execution time. Additionally, in the
last step of comparison we have selected multiple datasets
and calculated the execution time. However, this research is
inspired by Md Mahbub Alam [12], in which it was depend on
some assumptions and results obtained by Md Mahbub Alam.

A. Data

In this section we have explained the dataset used for study
the performance and execution time for GeoSpark on Apache
Spark, to understand the assumption that has been proposed
by Md Mahbub Alam [12], in which that GeoSpark recorded
the worst performance and execution time in comparing to
SpatialIgnite and SaptialHadoop. However, we have utilizes
real-world spatial datasets which were obtained from the Spa-
tial Hadoop framework website1. However, the Spatial Hadoop
website provided multiple TIGER 2015 spatial datasets and
Open Street Map datasets. TIGER datasets were extracted from
the US Census Bureau TIGER files. On the other hand, Open
Street Map is a collaborative project to create a free editable
map of the world and offered an API for data extraction.
Two different TIGER datasets were chosen in this research:
AREALM dataset 140MB, and PRIMARY ROADS dataset 52
MB. However, we have used two points CSV datasets 487 KB
and 325 KB, which was been obtained from SpiderWeb2. The
SpiderWeb is a website that generates spatial data, in which
users can easily choose the number of layers, Cardinality,
file extensions, and other proprieties. In the end, we have
applied four different types of datasets on Apache Spark, Table
II shows some information about our experiment datasets.
However, all datasets have one attribute as the coordinate
attribute.

B. The Proposed Study among Apache Spark and Apache
Ignite

The study in this research was divided into four parts as
follows:

1) A comparison among experimental environment
setup: explained the main requirements and steps

1http://spatialhadoop.cs.umn.edu/datasets.html
2https://spider.cs.ucr.edu/
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Fig. 1. The Research Methodology.

TABLE II. DATASETS DESCRIPTION

Dataset Geometry Cardinality Size Extension Description
AREALM Polygon 129K 140MB CSV Area Landmark
PRIMARYROADS Linestrings 12,396 52 MB CSV Primary Roads
data1 points 12,000 487 KB CSV points data from SpiderWeb
data2 points 8000 325 KB CSV points data from SpiderWeb

need it for each framework to activate the big spatial
data computing.

2) A Comparison among main supported features in
each framework: explained the main supported input
format, geometry type, query language, and more.

3) A comparison among the existing supported functions
and queries.

4) Discussing the performance and execution time in
each framework, and we have depended on the as-
sumption proposed by Md Mahbub Alam [12], in
which SpatialIgnite have the best performance, for
that we have focused on calculating the performance
time for Geospark using multiple datasets to under-
stand the performance rate of GeoSpark.

1) Experimental Environment Setup: To activate the spatial
computing option. The experiment was conducted using two
Apache software: Apache Ignite 2.8.03, Apache Spark 3.0.14.
However, Apache NetBeans IDE 11.3 as an IDE environment
was installed for working with Apache Ignite, in which the
only way to support the spatial data operations and quires is
by adding the Spatial Ignite dependencies on Maven in any
Java IDE. Additionally, Spatial Ignite is an API of spatial

3https://ignite.apache.org/
4https://spark.apache.org/

predicates in the JTS Topology Suite5. On the other hand,
Apache Spark was installed to add the GeoSpark dependency
for working with GeoSpark on Apache Spark. Additionally, the
study was conducted on Geospark rather than Spacial Spark
because GeoSpark offered more file extensions and allow
spatial indexing. However, the main programming environment
that was used was Scala on the Spark shell, and the main
experimental environment setup for the framework shows in
Fig. 2.

2) Supported Features: This part presented a compari-
son between GeoSpark and SpatialIgnite among their main
features. According to Table III, GeoSpark and SpatialIgnite
supported the same geometry type: point, line, and polygon.
Additionally, spatial analysis is supported only by SpatialIg-
nite. However, GeoSpark has the advantage of supporting
multiple file formats: CSV, TSV, WKT, and GeoJSON, where
SpatialIgnite only supports WKT file format, which decreases
the flexibility of SpatialIgnite. On the other hand, Table
III, shows that SpatialIgnite supports the distributed SQL
query language, where GeoSpark supports SQL 2017, which
may make GeoSpark easier than SpatialIgnite in the way of
handling SQL queries. Another advantage for GeoSpark is
that it supports two types of indexing, which are the R-tree
and Quadtree, where SpatialIgnite only supports the R-tree

5http://www.tsusiatsoftware.net/jts/main.html
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Fig. 2. The Experimental Environment Setup.

TABLE III. SUMMARY FOR THE SUPPORTED FEATURES IN GEOSPARK
AND SPATIAL IGNITE

Features GeoSpark Spatial Ignite
geometry type point, line, polygon point, line, polygon
input format CSV,TSV,WKT,GeoJSON WKT
query language SQL(2017) Distributed SQL
indexing R-tree, Quad-tree R-tree
spatial analytic No Yes

indexing.

TABLE IV. SUMMARY OF SOME SUPPORTED SPATIAL FUNCTIONS AND
QUERIES IN GEOSPARK AND SPATIAL IGNITE

Predicates GeoSpark Spatial Ignite
Equals Yes Yes
Intersects Yes Yes
Crosses No Yes
Envelope Yes Yes
ConvexHull No Yes
Within No Yes
Touches Yes Yes
KNN-query Yes No

3) Supported Spatial Functions and Queries: Table IV,
shows a summary for some spatial functions and queries
supported by GeoSpark and SpatialIgnite. Table IV confirms
the existence of some similarities between GeoSpark and
SpatialIgnite in the supported spatial predicates, in which

that GeoSpark and SpatialIgnite are supported for the same
predicates, such as Equals, Intersects, Envelope, Touches. On
the other hand, KNN-query is only supported by GeoSpark,
where Range-query and Join-query are supported by the two
frameworks (GeoSpark and SpatialIgnite). However, from Ta-
ble IV we have observed that SpatialIgnite supports more
spatial functionality than GeoSpark, but GeoSpark in Apache
Spark is more suitable with spatial data queries and indexing
because it support complex spatial queries, such as kNN
queries, which is not supported in SpatialIgnite on Apache
ignite. Moreover, GeoSpark is an agile spatial data processing
framework that can meet the changes in the requirements, and
fault tolerance.

4) Performance and Execution Time: According to the
results and assumptions produced by Md Mahbub Alam [12],
which proposed that SpatialIgnite has addressed the best
performance among SaptialHadoop and GeoSpark, and from
this research observation GeoSpark has been widely used
for big spatial data processing, and many spatial frameworks
was been depending on GeoSpark, such as Apache Sedona
which used GeoSpark to activate spatial big data computing.
We have decided to conducted this part of the research on
GeoSpark to understand the performance rate of GeoSpark,
and how much it can be worst according to the assumption
in [12]. To illustrate this, the study was started by installing
Apache Spark and open Spark localhost, then on Spark shell,
Scala programming language was used and the dependency
was added to activated GeoSpark on Apache Spark. However,
the Spark build-in session or Spark SQL context was started,
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Fig. 3. A Compression among the Four Datasets when Read and Show their
Contents on GeoSpark.

which is a class used for initializing the functionality of
Spark SQL, where the Spark context is available as (sc),
and Spark session is available as (spark). The datasets have
been read using (spark.read), and execution time has been
calculated for each dataset in the Apache Spark executor, and
the comparison among the four datasets of the execution time
of reading and show SQL functions in Fig. 3. However, as
shown in Fig. 3 data 2 (8000 points geometry) has taken
the highest reading time equals 3 seconds, where the show
function for the same dataset takes only 0,2 seconds. On the
other hand, the REALM dataset (129K polygon geometry) has
recorded the lowest execution time for reading data on Spark
equals 0.041 seconds. However, the ObjectRDD class was used
for dealing with different spatial datasets geometries, such
as PointRDD (data1 and data2), RectangleRDD (AREAL),
and LineStringRDD (PRIMARYROA). However, two quires
were examined with four operations on Geopark on the three
datasets (data1, data2, AREALM), as shown in Table V.
Additionally, PRIMARYROA datasets were presented multiple
exceptions and errors so they excluded it and only datasets
reading execution time was calculated. The Range query with
tree indexing and without tree indexing has been applied on
three datasets, KNN has applied only on the points datasets
(data1 and data2), where Envelope and Equals have applied
also on three datasets. After that, the execution time in seconds
has estimated for each operation, and Table V shows more
details about this step. Moreover, the obtained results were
visualized in Fig. 4, which represented a comparison among
the execution time required to examine the operations on the
datasets. As a result, GeoSpark performance depends on the
type of dataset geometries, but in general, the execution time
of GeoSpark from our experimental study was acceptable.

IV. RESULTS AND DISCUSSION

This section explained and discussed the main results that
were observed from this research. However, the study was
conducted on four main domains, and in each domain, was
recorded some results, which were collected in this section.
The observation was lead to that GeoSpark in Apache Spark
supports better features than SpatialIgnite in Apache ignite,

Fig. 4. Comparing the Execution Time for Different Functions and Queries
on GeoSpark among the Four Datasets.

in which GeoSpark allow multiple file format, and multiple
indexing, although that GeoSpark does not support spatial
analysis as in SpatialIgnite. Moreover, SpatialIgnite supports
more spatial functionality than GeoSpark, where KNN-query
is only supported by GeoSpark. On the other hand, from
experimental environment setup activation and working with
spatial data computing on Apache Spark was more flexible
than in Apache ignite, in which that preparing Apache Ignite
experimental requirements have taken more time than Apache
Spark, in which that spatial data computing on Apache Ignite
required working on an IDE environment such as Netbeans,
and adding some dependencies in the IDE environment, such
as JTS Topology, was in Apache Spark does not depending on
any IDE environment and the dependencies had been added
on spark-shell in a simple code, and start working with the
shell using Scala programming language. The last stage of the
study built on the results and assumptions were produced by
Md Mahbub Alam [12], which proposed that SpatialIgnite has
addressed the best performance among GeoSpark, but from
our observation, GeoSpark widely used for big spatial data
processing, and many spatial frameworks have been depending
on GeoSpark, such as Apache Sedona which used GeoSpark
to activate spatial big data computing. Consequently, we have
decided to conduct this part of the research on GeoSpark to
understand the performance rate of GeoSpark. The result from
this last step as it shows in Table V is mostly acceptable, but
it depends on the size and the type of the dataset. However,
the assumption by Md Mahbub Alam in his research can not
be generalized on all Geospark and SpatialIgnite researches, in
which multiple factors affected the performance of Geospark
on Apache Spark, such as machine performance (CPU, and
memory), dataset size, and type, programming environment
(such as using spark-shell or IDE software). In the end, we
have concluded that each one of these frameworks has its
advantages over the other one, and each one of them can be
used depending on the research area requirements and status.

V. CONCLUSION

Spatial computing is becoming increasingly relevant with
the widespread use of mobile devices. The rise in scale and
value of location data have led to the creation of a variety of
specialized spatial data processing systems. In this research, we
have conducted a comprehensive evaluation of big spatial data
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TABLE V. COMPARING THE EXECUTION TIME FOR DIFFERENT
FUNCTIONS AND QUERIES ON GEOSPARK AMONG THE FOUR DATASETS

Predicates AREALM PRIMARYROADS data1 data2
Read 0.041 0.022 0.063 3
Show 0.2 0.023 0.035 0.2
Range 1.84 - 1.63 0.86
Range-tree 3.6 - 1.22 0.69
KNN - - 1.65 1.37
Envelope 1 - 0.5 0.5
Equals 0.70 - 1.2 0.46

computing on two data management systems Apache Ignite
and Apache Spark. The comparative has been done on four
different domains, experimental environment setup, supported
features, supported functions and queries, and performance and
execution time. The research concluded that each one of these
frameworks has its advantages over the other one, and each one
of them can be used depending on the research area require-
ments and status. However, the type and size of the dataset can
have a large impact on the execution time. However, multiple
factors affected the performance of Geospark on Apache spark,
such as machine performance (CPU, and memory), dataset size
and type, programming environment (such as using spark-shell
or IDE software). From the observation GeoSpark has recorded
more flexibility than SpatialIgnite on Apache ignite. Moreover,
the spatial analytic features in SpatialIgnite on Apache ignite
make it more suitable with spatial data analytic applications,
such as analyzing spatial data, that extracted from social media.
Additionally, GeoSpark in Apache Spark is more suitable with
spatial data queries and indexing because it supports complex
spatial queries, such as kNN queries, which is not supported in
SpatialIgnite on Apache ignite. Moreover, GeoSpark is an agile
spatial data processing framework that can meet the changes
in the requirements, and fault tolerance.
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