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Abstract—Sharing private data in an unsecured channel is
extremely critical, as unauthorized entities can intercept it and
could break its privacy. The design of a cryptosystem that fulfills
the security requirements in terms of confidentiality, integrity
and authenticity of transmitted data has therefore become an
unavoidable imperative. Indeed, a lot of work has been carried
out in this regard. Although many cryptosystems have been
proposed in the published literature, it has been found that
their robustness and performance vary relatively from one to
another. Adopting this reflection, we address in this paper the
concept of block cipher, which is a major cryptographic solution
to guarantee confidentiality, by involving the properties of graph
theory to represent the plaintext message. Our proposal is in
fact a new symmetric encryption block cipher that proceeds
by representing plaintext messages using disjoint Hamiltonian
circuits and then dealing with them as an adjacency matrix in a
pre-encryption phase. The proposed system relies on a particular
sub-key generator that has been carefully designed to produce
the encryption keys according to the specifications of the system.
The obtained experimental results demonstrate that our proposed
cryptosystem is robust against statistical attacks, particularly
the DIEHARD test, and presents both good confusion and good
diffusion.
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I. INTRODUCTION

Cryptography is a component of cryptology that is based on
a number of methods and principles for converting a readable
message to a totally unreadable one. This field is dealing with
many security problems such as the confidentiality of commu-
nications via non-secure channels, the privacy of individuals,
the data storing on unsecured mediums, and so on. Cryptogra-
phy refers to the study and analysis of data encryption systems
intended to reduce the impact of hackers and to prevent, as
best as possible, any unauthorized attempts to gain access to
these confidential data. The main principles of information
security, notably confidentiality, integrity, authentication, and
non-repudiation [1].

Confidentiality is a crucial part of security. It can be
ensured by an encryption process, whereby the data becomes
non-intelligible to any non-authorized parties trying to gain
access to it. The idea behind of encryption process is to
transform a plaintext into a ciphertext, so only authorized
parties can obtain the message in its original format by revers-
ing the encryption process, known as decryption. Technically,
decryption should be extremely difficult for any unauthorized
and unqualified parties attempting to perform it.

Over the years, cryptography has continued to be improved
and has progressively became an indispensable part for pri-
vate data sharing. All contributions dedicated to this field of
research have aroused great interest. In the literature, cryptog-
raphy can be classified into three categories: Symmetric Key
Cryptography, which is an encryption system where both the
transmitter and the recipient of the message use one common
key such as DES [2], AES [3], or IDEA [4], to encrypt and
decrypt the messages. The second category is Asymmetric
Key Cryptography. In this system, a couple of keys(private
and public keys) are used in order to encrypt and decrypt
the messages such as RSA [5], ElGamal [6], Diffie-Hellman
[7], etc. The last category is Hybrid key Crypthography,
Which consist of using an encryption mode that utilizes both
symmetric and asymmetric public key encryption. This method
benefits from public key cryptography for key sharing and from
the speed of symmetric encryption for message encryption.
Nowadays, cryptology is able to handle a substantial set of
mathematical tools, that allowed for improvements in terms
of efficiency and performance. In particular, graph theory is a
field that is considered very promising in this regard, since it
provides concepts that could be useful in solving problems in
every network related areas.

Graph theory in mathematics refers to the study of graphs,
which are a major object of discrete mathematics. Generally,
a graph is represented as a set of vertices linked by edges.
They are thus mathematical structures used for modelling
pair-wise relationships between objects. It can be found in
road networks, electrical circuits, constellations, etc. Graphs
provide a way of thinking that can be used for modeling a
vast range of problems. They are the foundation of numerous
computer programs that allow communication and advanced
technological processes. The seven bridges of Konigsberg
(1736) [8] is a mathematical problem well known for having
established the foundations of the theory of graphs. Graph
theory is a relatively new concept that has been successfully
incorporated and has enabled the development of stronger
encryption algorithms that have proven to be difficult to break,
even for the latest software solutions. In fact, it consists of
modeling encryption problems by graph representation, so
that they eventually become problems in graph theory where
the solutions are usually well-known. Although solutions to
graph problems can be fairly easy and efficient (with respect
to the time required for computational processing which is
reasonable), they can also be rather difficult (relative to the
processing time increases exponentially). This resulted in the
application of concepts introduced in graph theory to large-
scale cryptography, since many NP-hard problems are derived
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from this theory.

Considering the above mentioned points, the design of
cryptosystems based on the concepts of graph theory is of
utmost importance. In this work, we present a new cryptosys-
tem that takes advantage of the principles of graph theory,
which enable a high degree of security while maintaining the
performance of data processing. The main idea of our approach
is to represent the plaintext with all disjoint Hamiltonian
circuits as a pre-encryption phase, then using our own sub-
keys generator following the cipher block chaining mode of
operation to encrypt the plaintext.

The rest of the paper is structured as follows. Section 2
presents preliminary knowledge. Section 3 presents a literature
review of related work. Section 4 details the proposed scheme.
Security analysis and experimental results are elaborated in
Section 5, and lastly, the conclusion and future works is given
in Section 6.

II. PRELIMINARY KNOWLEDGE

• Graph: A graph G is a set of points called vertices V
and a set of lines called edges E that connect some
vertices together. The graph is defined as a set of
vertices and edges that form a pair G = (V,E).

• Simple graph: A graph in which each pair of vertices
is linked by at the very most one edge and where no
vertex has a loop.

• Undirected Graph: An undirected graph G is a pair
(V,A) where V is a finite set of vertices and A is a
set of unordered pairs of vertices. Also, loops are not
allowed in undirected graphs.

• Cycle: A chain whose start and end nodes are the
same and which does not use the same link more than
once.

• Hamiltonian Path: A path that passes once and only
once through each of the vertices of an undirected
graph.

• Hamiltonian Circuit: simple cycle passing through
all the vertices of a graph one and only once.

• Adjacency Matrix: Let G be an undirected graph with
m vertices from 1 to m. We call the adjacency matrix
of graph the matrix A = (ajk) where ajk is the total
number of edges joining vertex j to vertex k:{

ajk = w if and only if j and k are adjacent.
ajk = 0 if not.

(1)
with w is the weight of the edge (j, k).

• Blum Blum Shub (BBS): is a pseudo-random number
generator first proposed in [9]

xn+1 = x2
n mod M (2)

With M = pq the product of two large primes p and
q.
The complexity of the factorization of M is the
main basis for the security of this generator, which
means that the two primes must be carefully chosen
to guarantee robustness.

III. RELATED WORK

The application of graph theory in cryptography has be-
come more emergent. However various encryption techniques
have been proposed in this context.
A technique has been proposed by Amudha et al [10] that
encodes clear messages through the Euler graph, the key used
to protect the data in this approach is a kind of Hamilton
circle. The authors in [11] sequentially construct three different
graphs on the basis of an unconventional mapping, conjectured
to be a one-way trapdoor function and designed specifically
for graph structures. Some work focuses on the application of
graph theory principles in computer networks and its poten-
tial to tackle the challenges of provisioning in secure cloud
computing environments [12]. Two graph based public key
cryptosystems have been suggested to secure sensitive Data in
the work of Sensarma et al [13], where one is based purely on
the properties of matrices, while the other is based on graph
codes. In the work described in [14], the authors proposed a
hybrid Cipher Block Chaining encryption system for e-mail
protection. The suggestion was predicated on the integration
of encryption technologies. Yousif et al [15], introduced a
process to produce a new key on the basis of chaotic maps
that are utilized to encode images. Within the work in [16], the
emphasis is on the possibility of employing the Euler graph as
a method object used in the remote method invocation (RMI)
technique.

Among the most recent works, we mention the work
presented in [17], where a block cipher system has been
proposed using disjoint Hamiltonian circuits to present the
data as a graph. Also in [18], a double vertex graph has been
suggested to encrypt a word. At first, the given message was
encrypted using the encryption table. The plaintext was then
converted into a path graph. From the latter, a double vertex
graph is constructed. We also mention the work [19], in which
the original message is converted into several graphs. The
ciphertext is obtained from the projection of the adjacency
matrices representing the graphs into the secret key. A number
of other proposals were suggested in the same thematic area
[20], [21].

The originality of our work lies in the fact that our proposed
system was able to blend both the concept of block ciphers,
which is a major category of symmetric cryptography, and
graph theory properties for representing plaintext, in particular
Hamiltonian circuits, unlike the majority of works from the
literature that rely only on graph theory properties to conceive
their encryption systems.

IV. PROPOSED APPROACH

The primary aim that drives the system put forward in
this paper, is to propose a robust variant of the encryption
scheme proposed in [17] while maintaining the performance
levels. The main concept on which our approach is based
is inspired by the divide-and-conquer design method, which
consists in dividing an initial problem into sub-problems
and then addressing every component of the resulting subset
independently. The final solution of the initial problem is then
deduced from the solutions found to the sub-problems.

The system described in this work has been designed
in such a way that it takes into account the complexity of
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the processing that the plaintext messages are subjected to
during their encryption process. Indeed, this is the objective
of the contribution in this paper, which is to improve the
processing of the plaintext by making it more difficult and
more complex than [17], using mainly all the Hamiltonian
circuits that represent the plaintext.

The scheme proposed in [17] used a block of 25-characters
length, which can be represented by 2 disjoint Hamiltonian
circuits in a graph of order 13, given that a graph of order
13 contains 6 disjoint Hamiltonian circuits (Theorem 1). In
contrast to [17], which used only 2 of the 6 circuits, the
concept put forward in this approach makes use of all the
disjoint Hamiltonian circuits of the graph (6 circuits), which
allows the representation of blocks with 78-characters length
in a single graph.

Theorem 1: In a complete graph with n vertices there are
(n − 1)/2 edge-disjoint Hamiltonian circuits, if n is an odd
number strictly greater than 3 [22].

Considering a message which consist of 78 characters,
the formula for splitting into blocks in [17] would be as
follows: 78 = 25 × 3 + 3. This means that four blocks will
be transformed into four adjacency matrices. The formula used
in the proposed algorithm is limited to a single block, which
in turn will be partitioned into six sub-blocks to form a single
graph with six disjoint Hamiltonian circuits, thus forming
a single adjacency matrix (FIG. 1 illustrates the difference
between both systems).

Generally, the pre-encryption process of the plaintext mes-
sage involves several steps: First the plaintext is converted
into ASCII values and then divides into several blocks of size
78 (referring by Blocki). This operation uses the following
formula: n = 78k+r, where n is the size of the plaintext, r ( r
∈ [0,77)] the remainder of the division of n over 78) represents
the remainder of the plaintext after block partitioning, and k
is the number of blocks (refers to the quotient).{

k′ = k If the division is exact.
k′ = k + 1 otherwise.

(3)

Where k′ represents the total number of blocks resulting
from the division. Each Blocki is partitioned into 6 sub-blocks
of size 13(each sub-block is represented by subBlockij),
which are then converted into Hamiltonian circuits where the
weights of the edges of the graph Gi are represented by the
ASCII values of the characters that compose them. Finally, the
resulting graph is converted into an adjacency matrix Mi.

The main process involving in our proposed system are
presented in the following:

A. Key Generation / Re-Generation Algorithms

The generation of the sub-key Ki occurs in four steps. The
first involves the random selection of a character Char from
the Blocki. The second step consists in using the position
corresponding to the ASCII value of Char in two ways, to
construct the vector of positions V P that is necessary for the
decryption, as well as to recover the value N located in the
same position in the master key KEK (of size 256), which
will be used as the seed of the BBS generator. The third step

nPlain text

Block0

Cipher text

n=78

132 (4)

IM =

M0=

C0= M’0K0

M’
0 =

M3=

C3= M’3K3

M’
3=

M1=

C1= M’1K1

M’
1 =

M2=

C2= M’2K2

M’
2=  

Block1 Block2 Block3

G0= G1= G2= G3=

nPlain text

Block0

Cipher text

n=78

132 

MI=

M0=

C0= M’0K0

M’
0 =

G0=

Fig. 1. Comparaison between the Encryption Process in [17] and the
Proposed One.

in the process allows the generation of a vector Si of size
13 from N using BBS generator. The fourth and final step
uses the resulting Si to generate the sub-keys Ki as a square
matrix of order 13. The all sub-keys Ki(i = 0,. . ., k’-1) that are
generated constitute the set SKk′ . This process is illustrated
in FIG. 2.

The regeneration of Ki during the decryption process
begins with the use of V P to recreate a key Key of size
132k′ from KEK. Key is then divided into sub-vectors Si of
size 13 which are subsequently used to generate the sub-keys
Ki as square matrices of order 13. This process is described
in FIG. 3.
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Char

S

Ki  =

Blocki

Si

Pseudo-random generator BBS

KEKKey Encryption Key

N

getNbrFromKEK

Vector of Positions VP
addToVP

Pseudo-random generator BBS

Fig. 2. Sub-keys Generator in Encryption Process.
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Key Encryption Key
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BBS

K1

BBS

K2

BBS

Kk’-3

BBS

Kk’-2

BBS

Kk’-1

VP

generatKey

Fig. 3. Sub-keys Generator in Decryption Process.

B. Encryption Process

The encryption process begins with the pre-encryption step
described above. Cipher block chaining (CBC) is used as mode
of operation in our approach. The chaining uses a feedback
method, in the sense that the result of the encryption of the
previous block Ci−1 is reused for the purpose of encrypting
the current block Mi. More specifically, an exclusive or (XOR)
operation is applied between the current block Mi and the
previous block of ciphertext Ci−1 as shown below:

M ′
i = Ci−1 ⊕Mi (4)

A second XOR operation is then performed between the
result of operation (3) and the sub-key Ki generated by the

Algorithm 1: Sub-keys generator in encryption
process (GenerateSubKeys)

input : Clear message of n characters CMCn ,
master key KEK, k’ number of blocks

output: sub-keys SKk′ , the vector V P

1 begin
/* Converts each character of the message

into its ASCII value. */

2 CMAn ← convertMessage(CMCn, n);
/* Splits the message into k’ Blocki

forming the set BlockSetk′ , where

BlockSetk′ = {Block0,. . .,Blockk′−1}. */

3 BlockSetk′ ← parseMessage(CMAn, k
′);

4 for element Blocki of the set BlockSetk′ do
/* Randomly selects a character Char

from Blocki. */

5 Char ← getCharFromBlock(Blocki);
/* Feeds the vector V P with the ASCII

value of the character Char. */

6 V P ← addToVP(Char);
/* Returns the content in the position

p of the master key KEK, where p

represents the ASCI code of the

character concerned. */

7 N ← getNbrFromKEK(KEK,Char);
/* Generates from the seed N a vector

Si of size 13. */

8 Si ← generateSeed(N,BBS);
/* Takes as input the vector Si and

returns the sub-key Ki as a square

matrix of order 13. */

9 Ki ← generateSubKey(Si, BBS);
/* Feeds the set SKk′ with the

sub-key Ki. */

10 SKi ← putSubKey(Ki);
11 end
12 end

pseudorandom generator to compute the cipher Ci of the
current block:

Ci = M ′
i ⊕Ki (5)

Since the first block does not have an antecedent. We gen-
erate an random matrix referring to IM (initialization matrix)
which allows to perform the XOR operation with M0. Each
encrypted block consequently depends not only on the corre-
sponding plaintext block, but also on all the encrypted blocks
that precede it. The rows of the matrix Ci are concatenated to
form a vector eBlocki of size 132, representing each encrypted
block.

The resulting vectors eBlocki (i = 0,. . ., k’-1) generated
from all blocks are then concatenated to form a single vector
EM of size 132k′. The encryption process, as shown in FIG. 4,
ends with the transmission of the encrypted message EM in
addition to the vector V P that is related to the decryption
process.
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Algorithm 2: Sub-keys generator in decryption
process (GenerateSubKeys)

input : master key KEK, the vector of positions
V P

output: sub-keys SKk′

1 begin
/* Generates a key Key of size 13k’ from

the vector of positions V P and the

master key KEK. */

2 Key ← generateKey(KEK,V P );
/* Divides the key Key into k’ vectors Si

(i = 0,. . ., k’-1). */

3 Sk′ ← parseKey(Key);
4 for element Si of the set Sk′ do

/* Takes as input the vector Si and

returns the sub-key Ki as a square

matrix of order 13. */

5 Ki ← generateSubKey(Si);
/* Feeds the set SKk′ with the

sub-key Ki. */

6 SKi ← putSubKey(Ki);
7 end
8 end

n

…

Plain text

Block0

Cipher text

n

132 (k’) 

IM =

M0=

C0= M’0K0

M’
0 =

Mk’-1=

Ck’-1= M’k’Kk’-1

M’
k’-1=

Ck’-2= M’k’-2Kk’-2

…

…
Gk’-1=

Blockk’-1

Mk’-2=

M’
k’-2=

G0=

Fig. 4. Encryption Scheme.

C. Decryption Process

In general, the process of decryption corresponds to the
process of encryption performed in reverse order (ALGO-
RITHM 4). In the decryption process described in this paper,
the ciphertext EM refers to the input of the algorithm. EM
is decomposed into k′ vectors (eBlocki) and then gathered to
constitute the set eBlockSetk. The eBlocki(i = 0,. . ., k’-1)
are subsequently transformed into a matrix Ci. The number of
blocks k′ is calculated as follows:

k′ = m÷ 132 (6)

Algorithm 3: Encryption Algorithm Using Disjoint
Hamiltonian Circuits

input : Clear message of n characters CMCn,
master key KEK, Initialization Matrix IM
of size 13

output: Encrypted message EM

1 begin
2 SKk′ ← GenerateSubKeys(CMCn,KEK, k′);
3 (IV-A).

/* Converts each character of the message

into its ASCII value. */

4 CMAn ← convertMessage(CMCn);
/* Splits the message into k’ Blocki forming

the set BlockSetk′ , where

BlockSetk′ = {Block0,. . .,Blockk′−1}. */

5 BlockSetk′ ← parseMessage(CMCn);
6 for element Blocki of the set BlockSetk′ do

/* Divides each block Blocki into six

sub-blocks subBlockij (j = 0,. . .,5) of

size 13, all forming the set

subBlockSeti, where

subBlockSeti= {subBlocki0,. . .,subBlocki5}.
*/

7 subBlockSeti ← parseBlock(Blocki);
/* Converts the sub-blocks into disjoint

hamiltonian circuits in a graph G.

*/

8 Gi ← blockToGraph(subBlockSeti, 13);
/* Transforms the graph Gi into an

adjacency matrix Mi of order 13. */

9 Mi ← graphToMatrix(Gi);
10 if i=0 then
11 M ′

0 ← IM ⊕M0;
12 else
13 M ′

i ← Ci−1 ⊕Mi;
14 end
15 Ci ←M ′

i ⊕ SKi;
/* Concatenates the rows of the matrix

Ci to form the vector eBlocki of size

132. */

16 eBlocki ← transformMatixToVector(Ci);
17 end

/* Forms a single vector EM of size 132k′

by concatenating the resulting vectors

eBlocki (i = 0,. . ., k’-1). */

18 EM ← concatenateEncryptionBlock(eBlockk′);
19 end

with m is the size of the ciphertext.

The sub-key generation algorithm presented in ALGO-
RITHM 2 makes use of the provided vector V P to produce
a key of size 132k′ from the master key KEK. Each block
Ci(i = 0,. . ., k’-1) is decrypted using its own sub-key Ki using
the following formula:

Mi = Ci−1 ⊕M ′
i (7)

Where

www.ijacsa.thesai.org 746 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

M ′
i = Ci ⊕Ki (8)

and

M0 = IM ⊕M ′
0 (9)

At this stage, the decrypted blocks Mi are transformed into
a graph Gi and then into Blocki. Finally, the plaintext message
is formed by concatenating the Blocki(i = 0,. . ., k’-1) as shown
in FIG. 5.

Cipher text

C0=

M’
0 = C0K0

Block1

nPlain text

Blockk’-1Blockk’-2Block0
…

IM= C1=

M’
1 = C1K1

M’1 =

M1= M0=

M’0 =

Ck’-2=

M’
k’-2 = Ck’-2Kk’-2

M’k’-2 =

Mk’-2= 

M’
k’-1 = Ck’-1Kk’-1

Mk’-1= 

…

…

…

…

…

M’k’-1 =

Ck’-1=

G0= G1= Gk’-2 = Gk’-1 =

Fig. 5. Decryption Scheme.

V. SECURITY ANALYSIS AND EXPERIMENTAL RESULTS

The evaluation of the encryption system addressed the
reliability of the suggested algorithm. For this purpose, we
study the system reaction in terms of performance and security
according to fundamental criteria. For which we also perform
different statistical tests. This evaluation is described in the
following sections.

A. Confusion and Diffusion Tests

Diffusion and confusion are very important as aspects
of the functioning of a secure encryption which were first
identified in 1949 by Claude Elwood Shannon [23]. In his
original definitions:
Confusion means making the relationship between key and
ciphertext as complicated and as involved as is feasible,
whereas in this case refers to the property that redundancy
in the plaintext’s statistics is “dissipated” in the ciphertext’s
statistics.
Diffusion is related to the reliance of the output bits upon
the input bits. In a cipher with proper diffusion, the changing
of an input bit is expected to change every output bit with a

Algorithm 4: Decryption Algorithm Using Disjoint
Hamiltonian Circuits

input : Encrypted message EM , master key KEK,
the vector of positions V P

output: Clear message of n characters CMCn

1 begin
2 SKk′ ← GenerateSubKeys(KEK,V P );
3 (IV-A).

/* Divides the encrypted message into

k’eBlocki wich are then concatenate to

form a set eBlockSetk′. */

4 eBlockSetk′ ← parseEncryptedMessage(EM);
5 for element eBlocki of the set eBlockSetk′ do

/* Form the matrix Ci of order 13 from

the vector eBlocki. */

6 Ci ← transformVectorToMatrix(eBlocki)
7 M ′

i ← Ci ⊕Ki;
8 if i = 0 then
9 M0 ← IM ⊕M ′

0;
10 else
11 Mi ← Ci−1 ⊕M ′

i ;
12 end

/* Transforms the adjacency matrix Mi

into a graph Gi. */

13 Gi ← matrixToGraph(Mi);
/* Returns the Blocki represented by the

disjoint hamiltonian circuits inside

the graph Gi. */

14 Blocki ← graphToBlock(Gi);
15 end

/* Forms a single block that forms the

plaintext message by concatenating the

resulting blocks Blocki (i = 0,. . ., k’-1).

*/

16 CMCn ← concatenateBlock(Blockk′);
17 end

probability of half (this is referred to as the strict avalanche
criterion). Accordingly, the used equation (10) is:

bitsdiff = (1÷ (132 × 16)× w(C ⊕ C ′) (10)
= (1÷ (2704)× w(C ⊕ C ′) (11)

Where w is the hamming weight, C and C ′ are respectively
the original and modified inputs, and the value 16 refers to the
number of bits representing each element in the cipher.

B. Plaintext Sensitivity Test

The diffusion property is intended to produce an avalanche
effect [24] between the plaintext and the encrypted messages.
The sensitivity test of the bit change in the plaintext is used
to verify the diffusion property of a particular algorithm.
Given pairs of plaintext and secret keys, we generate the
ciphertext corresponding to each pair (plaintext, secret key)
through our cryptosystem, changing one or more bits (Know-
ing that a change at character level implies a change of bit)
in the randomly generated plaintext, and by retaining the key
unchanged.
Subsequently, we calculate the average of the percentage of
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bit difference by the equation (10) as illustrated in the FIG. 6.
Over 50% of the bits in the cipher text are changed. We can
clearly see that the average of the percentages of bit difference
is between 48.16% and 51% for our encryption system and
between 47.1% and 50.80% for AES-128. These percentages
demonstrate that our encryption system offers a good diffusion
compared to AES-128.
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Fig. 6. Number of Modified Bits with respect to the Original Plaintext.

C. Key Sensitivity Test

The confusion property establishes a relation between the
key and the ciphertext. The key sensitivity test ensures this
property. Indeed, we consider a set of pairs of plaintext and
secret keys. Each pair is encrypted by applying the proposed
cryptosystem. Then, we modify one or more bits in the
different randomly generated keys while the clear text still
fixed. Afterward we calculate the average of the percentage of
bit difference by applying the equation (10).

FIG. 7 represents the results obtained by using our encryp-
tion system and our generator to produce the encryption keys.
We can notice that more than 50% of the bits are modified.
Specifically, the average percentage of bit difference is between
49.64% and 50.79% for our encryption system and between
48.25% and 50.73% for AES-128. Thus, according to the
experimental results, it can be said that the key generation
via our algorithm is more robust than AES-128.

D. Statistical Tests

In order to study the quality of the random generation of
the suggested encryption block cipher, we apply the well-
known DIEHARD test [25]. The primary objective of this
test is to demonstrate whether our cryptosystem is able to
withstand statistical attacks. In other terms, the output of a
secure block cipher must be indistinguishable statistically from
a random output using the encryption function. To perform
this test, a randomly generated cipher sequence is initially
binarized to generate a bitstream of over 10 MB. Thereafter,
the bitstream is analyzed statistically by putting it under the
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DIEHARD tests. The DIEHARD tests check the p-value of
the values generated randomly, with the p-value in the range
[0.025, 0.975]. The average values found are summed up in
TABLE I. The results indicate that the bitstream generated
with our encryption system successfully passed all DIEHARD
tests. Moreover, our encryption system shows a satisfactory
and statistically indistinguishable random behavior.

E. Brute Force Attack

Brute force attacks are a mean to get all possible key
arrangements with a fast prediction tool. Assuming that a high-
performance machine that spends 10−10 seconds on testing the
validity of every key is used, and that the numbers entailed in
the master key range from 1 to 1000.
Given that algorithm has 1000256 potential keys. A brute force
attack would require about 10−10 × 1000256 seconds to find
the appropriate key. Therefore, a brute force attack with an
exhaustive search over the key possibility space is not feasible
in a reasonable amount of time.

To find a 78-character message when a single block is
used, it normally takes 1000 possibilities to find one of the
master key numbers, which will represent the seed of the BBS
generator involved in producing the S0 vector. However, the
prime numbers used as the input parameters for the generator
are not easily determined (due to factorization problems). As
a result, it is nearly impossible to figure out the sub-key if the
pq product is large enough.

F. Time Analysis

Table II represents the performance test of our cryptosys-
tem, compared to other known block ciphers such as triple DES
[26] and AES [27] in terms of their CPU time consumption.
The computations are run on a computer with on an Intel
Core i7-6600U processor, 64-bit OS, 2.81 GHz with 20 GB
of RAM. It can be seen from TABLE II that our algorithm
can achieve good results in terms of run time over the other
standard encryption systems.
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TABLE I. DIEHARD TEST

Test Name P-value Interpretation

diehard bitstream 0.59537390
diehard squeeze 0.97442749
diehard sums 0.11133210
diehard count 1s str 0.60934773
diehard count 1s byt 0.78478421
diehard parking lot 0.55915630
diehard birthdays 0.03222200
diehard operm5 0.75636037
diehard oqso 0.33566335
diehard dna 0.45051943
diehard 2dsphere 0.53656799
diehard 3dsphere 0.62980562
diehard rank 32x32 0.40775458
diehard rank 6x8 0.45554634
diehard opso 0.44037399
diehard runs 0.86351847 PASSED
diehard craps 0.15275419
rgb bitdist 0.69014502
rgb minimum distance 0.57113046
rgb permutations 0.60422228
rgb lagged sum 0.60927830
rgb kstest test 0.26054914
dab bytedistrib 0.68169231
dab dct 0.25149694
dab filltree 0.88848873
dab filltree2 0.29185197
dab monobit2 0.74899931
sts monobit 0.68441660
sts runs 0.37246909
sts serial 0.50145101
marsaglia tsang gcd 0.47467308

TABLE II. ENCRYPTION TIME COMPARISON BETWEEN OUR BLOCK
CIPHER AND OTHERS BLOCK CIPHERS USING DIFFERENT MESSAGE SIZE

Message Size (Kilo Byte)
AES
(ms)

3DES
(ms)

Our encryption algorithm

3 248.07 247.47 4.9

10 951.2 614.9 10.4

20 1972 1096 21.2

VI. CONCLUSION AND FUTURE WORK

The work presents a new cryptosystem that takes advantage
of the principles of graph theory, which enable a high degree of
security while maintaining the performance of data processing.
Our proposed encryption block cipher using in particular
the disjoint Hamiltonian circuits that have been adopted to
represent the plaintext in a pre-encryption phase. the process
makes use of a specific sub-key generator that has been set up
to generate the encryption keys according to the requirements
of the proposed system. We have performed different statistical
tests, specifically the DIEHARD, confusion and diffusion tests
to prove the security and performance of our cryptosystem. The
experiments results proved the good behaviour of our proposed
design in terms of robustness and CPU time compared to 3DES
and AES. In a future work, we intend to use another pseudo-
random generator, such as the one proposed in [28] known as
PSOCA, which is mainly based on cellular automata, and we

also investigate other properties of graph theory for a more
discriminating and robust representation of the data.
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