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Abstract—Cloud computing allows a pool of resources, such
as storage, computation power, communication bandwidth, to be
shared and accessed by many users from different locations. High
dependency on sharing resources among different cloud users
allows some attacker to hide and commit crimes using cloud
resources and as a result, cloud computing forensics become
essential. Many solutions and frameworks for cloud computing
forensics have been developed to deal with could based crimes.
However, many problems and issues face the proposed solutions
and frameworks. In this paper, a new framework for cloud
computing forensics is proposed to enhance the investigation
process performance and accuracy by adding a new stage to
conventional stages. This new stage includes the implementation
of a new way for matching based on the LSH algorithm. The
proposed framework evaluation results show an improvement
for matching and accurate cluster retrieval through the collection
process.

Keywords—Cloud computing forensics; genetic clustering al-
gorithms; genetic dynamic clustering; forensics framework; digital
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I. INTRODUCTION

Digital forensics is a science which is defined by many
researchers, see [31][20], as a science of retrieving, examining,
and analysing digital evidences collected from digital devices.
A Digital evidence, according to [20], is defined as the
information and data of investigative value that is stored on,
received, or transmitted by a digital device. The goal of digital
forensics is to detect and extract the evidences, analyze the
collected evidences and preserve related ones in a format that
can be presented in a court [24][18].

Cloud computing is one of the most popular technologies
since different users and companies around the world are
rapidly becoming more dependent on cloud computing. This
means that millions or even billions of files have been uploaded
to cloud computing resources. Security of resources over the
cloud is a challenging issue that has to be addressed [43] [3].
Fog computing is similar to cloud computing but closer to the
user which also has many security concerns [2]

Cloud computing forensics refers to one of the digital
forensics branches This branch has gained popularity from
the importance of today’s cloud computing. Many researchers
describe cloud computing forensics as an application for
digital forensics for cloud computing resources to investigate
the crimes that occurred in cloud computing resources. Text
files and textual information represent a very high percentage
of types of evidence, particularly in cloud computing [20].

Accordingly, and due to the extra high volume of data stored
on the cloud, an enhanced solution is needed to handle textual
evidence by extracting and encouraging the handling of textual
evidence.

In recent years, the number of digital crimes that involve
internet and computer has grown, which has encouraged a lot
of companies to include measures in their products to assist
law enforcement in using digital evidences to determine the
perpetrators, methods used, timing, and victims of computer
crimes. The process of applying digital forensics in the huge
volume of files which stored in cloud computing resources is
very hard. Therefore, the idea of clustering has been applied
to facilitate the investigation process. Clustering is the process
of grouping objects or documents related to each other in the
same group. This is important in the investigation process,
since the investigator needs to search for all documents in the
storage space to define if there are any documents related to
the original file [17] .

This paper presents a new approach to cloud computing
forensics, which solves some of existing problems and chal-
lenges. The proposed solution consists of two main parts. The
contribution of this paper can be summarized in the following
points:

• A pre-investigation stage has been added to the stan-
dard forensics stages as part of the propose Cluster
Based Investigation Framework (CBIF). Through this
stage, a new hierarchical clustering algorithm capable
of handling all types of evidence is added.

• Genetic Based Dynamic Clustering Algorithm (GB-
DCA) has been developed to divide a dataset into
suitable number of clusters in cloud storage.

• A new search and matching technique based on using
a locality-sensitive hashing algorithm has (LSH) to
enhance the accuracy of the matching process.

• Additionally, the proposed idea can match parts of the
files based on the concept of hierarchical matching and
examining process.

This paper is organized as follows. Section 2 brings forth
the related work. Section 3 presents a brief description of
cloud computing and cloud forensics. Section 4 illustrates the
proposed idea and foremost step of the proposed solution.
Section 5 details the experimental implementation and results
from the discussion. We conclude with Section 6.
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II. RELATED WORK

In the field of digital forensics, some frameworks have been
suggested as a general frameworks while others were proposed
for lower levels of digital forensics branches. Example of
frameworks that are suggested as generic framework for digital
forensics is an integrated digital forensics process model [41],
which is a standard framework for digital forensics and can
apply to all branches of digital forensics. This framework
contains all standard stages of digital forensics with some
changes in the level of combining evidence collection and
the preservation stage into a single stage to make sure the
identified evidence does not change through the collection
stage.

Another model proposed as a generic framework is the
integrated framework for digital forensics [48], where the
proposed model is a standard model that helps the investigators
to follow a uniform approach in digital forensics. The model
contains all conventional stages of digital forensics. This
framework is classified as a simple framework based on [31].
And other models that fall under general framework such as
the model suggested through [40], [8], [32], and [7].

On the level of the computer forensics branch, many
frameworks were suggested, such as the computer forensics
investigation approach to evidence in cyber-crime [13], which
aims to define a new approach to solve and enhance the stage
of computer forensics examination. The model meets Italian
legislation and could probably be used in other countries.

Numerous frameworks and solutions have been proposed
in other digital forensics branches [31], [47]. One instance
includes the frameworks and solutions proposed in the IoT
forensics branch, which refer to one of the digital forensics
branches, such as the one in [13]. The idea of the proposed
system relates to using Block-Chain through the investigation
process to improve the collection stage’s security level and
credibility.

The model proposed in [21] refers to a new model for
reviewing and investigating cyber attacks, where digital

other framework was proposed in [37], which refers to a
new framework for mobile forensics, since a lot of crimes was
applied on the resources of mobile devices, specially with rapid
development of wireless network and smart mobile. The idea
that proposed here refers to depends on the clustering process
to facilitate the investigation as all.

The model proposed in [6] refers to the first framework,
which contains various safety principles proposed by the
ISO standard. Another framework for investigating crimes
committed in IoT devices is the IoT forensics framework for
the smart environment [39]. The proposed model was specified
to investigate the crimes committed in a smart environment,
where the proposed model is a lightweight model that is well
equipped to be compatible with IoT resources. Moreover, this
model can classify as a generic model for all IoT crimes with
a high level of privacy based on the principles mentioned for
this point.

Other frameworks and solutions proposed in the other
branches of digital forensics include the framework and solu-
tions proposed to investigate the crimes committed in a cloud

computing environment. One of these frameworks is presented
in [26], where the main contribution for the proposed model
is defining the difference between the evidence collection
stage and the preservation stage, since many frameworks are
merged between the two stages. In [42], a new framework
for cloud computing with a fundamental change in the stages
of conventional frameworks is illustrated. The change affects
the proposed model of the identification and collection stages,
and the rest of the stages did not change. The science of
the proposed framework focuses on the first two stages.
Additionally, an open could forensics model is also an example
of a framework proposed for cloud computing forensics [51].
The framework consists of primary stages of digital forensics
with an update on the levels of preservation and collection.
The model merges between these two stages in a single stage
to make sure that the evidence does not change through the
collection stage, and merges between the analysis stage and
examination stage in a new stage called the organization stage.

One solution proposed for the cloud forensics process is to
secure logging as a service for cloud forensics [50]. The idea
of this solution is to introduce secure logging as a service that
allows the cloud service provider to store virtual machine logs
and to provide access for the investigators while preserving
the privacy for the tenant of the cloud. In [35], the goal of
the proposed model is to provide as much information about
each record, such as when any trigger occurs, as when a new
record is added or deleted.

When the cloud computing environment contains multiple
tenants for its resources, the privacy and security of evidence
are essential. One of the proposed solutions to deal with this
problem is presented in [5], where the idea of the proposed
solution is to use a third party to check and evaluate data
collected by investigators. Another solution to solve the multi-
tenant problem is proposed in [4], where the idea depends on
upholding the confidentiality and integrity for evidence that
used through the investigation process.

Yet an additional issue facing the investigation process in
cloud computing is the data gathering challenge, which faces
the acquisition stage of the investigation process, because the
data is distributed amongst different servers which ultimately
decrease the performance of the investigation process. Specific
frameworks and solutions have been proposed to deal with
this problem, such as the framework proposed by Adams [44],
which suggested a new cloud forensics model which consists
of a planning stage, on-site survey stage, and acquisition stage.
This applies to deal with the process of acquisition without any
further intervention.

Numerous frameworks and approaches have been sug-
gested to investigate crimes committed in computer networks.
Frameworks that scales for a large-scale environment are called
dynamic network forensics and have a specific property for
investigation such as the framework presented in [25], which
investigates the crimes that occur in network infrastructure.
The framework contains the standard stages of any digital
forensic framework with additional stages to enhance the
investigation process, such as the evidence reduction stage,
which can enhance the accuracy of the investigation process.
Graphic network forensics have many frameworks are special-
ized for graphics-based network forensics crimes [49], [28],
[38]. Many approaches and solutions have been proposed to
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investigate soft-computing crimes specific to network analysis
and monitoring. The systems proposed in this field are tailored
to the environment that includes many attacks, because this
type of network forensics can analyze the data collected and
identify relevant attacks [9], [36].

Numerous researchers identified cloud computing forensics
[14], as an application for digital forensics in cloud computing
as a subset of network forensics. NIST framework [29], defines
it as an application of science to the identification, examina-
tion, and analysis of data while preserving the integrity of
data and maintaining the chain of custody for the data through
the investigation process. Any information or data stored or
extracted from digital devices can be evidence or part of the
evidence; these pieces of evidence are analyzed through the
investigation process.

The goal of digital and cloud investigation is to ensure that
the collected evidence is admissible in a court of law and to
maintain that the chain of custody is essential and documented,
and is thus stored throughout the entire investigation process
[16]. The chain of custody is the process of recording and
storing digital evidence as well as managing historical history
to protect the custody chain from any alteration or modification
or damage by any unauthorized user, and so, a high level of
care is required.

The investigation of crimes occurring in the cloud comput-
ing environment is faced with many issues. These issue can
be summarized through the Table I as follow

Based on the issues mentioned above, a solution for cloud
computing forensics is required, as many of the proposed
frameworks do not provide a general solution to the afore-
mentioned problems. The solution suggested in this article
aims to avoid all the above mentioned significant issues. The
proposed solution can be applied in all branches of digital
forensics in addition to cloud computing, such as applying
the proposed solution in computer forensics, cloud forensics,
network forensics, database forensics, and all others.

TABLE I. KEY ISSUE THAT FACES CLOUD COMPUTING FORENSICS
PROCESS.

Key Issue Descrip-
tion

The Reason of Key Issue

Searching for Can-
didate Files

Cloud computing contains a considerable amount of mas-
sively distributed information from different users, which
makes the searching for evidence a laborious process

Privacy of users
documents

Cloud computing contains a considerable amount of mas-
sively distributed information from different users, which
makes the searching for evidence a laborious process.

Time Needs for lo-
cating the target file

Searching for the target file or any of its pieces is time-
consuming, based on the massive amount of files in the data
center. On that basis, a new matching technique is required to
improve the efficiency and accuracy of the matching process
for evidence.

The Integrity of
users data

In conventional ways, the investigator must check all files
to check whether or not they relate to the target file, which
may violate all data in the storage center if the investigator
is a criminal. A technique is required to check only those
files that are related to the target file.

III. PROPOSED IDEA

The idea of the proposed solution focuses on resolving
shortcomings and problems that face previous related solutions
such as these related to the used conventional clustering
algorithm in [17] [33]. The solution which proposed in [17]
depends on using conventional versions of k-means and k-
medoid clustering algorithms during the pre-investigation stage
to enhance the accuracy of investigation process. While in [33]
the approach suggested is based on the usage of the hierar-
chical clustering algorithm in the pre-investigation process to
enhance the investigation’s accuracy and performance.

Another weak-point faces the previous suggested frame-
works is related to the privacy of users’ data through the inves-
tigation process. This is because many of proposed framework
does not proposed any solution for the privacy problem [1]
and [34].

The proposed framework consists of all stages of a con-
ventional framework for digital investigation, with additional
stages to achieve enhancement goals. The pre-investigation
stage is essential and was added in the proposed framework
to enhance the investigation process from in regards with the
performance, accuracy, and security. The proposed solution
consists of a set of stages as follows:

• Pre-investigation stage: this stage reduces the amount
of information submitted to the investigator. The stage
can improve the accuracy and efficiency of the inves-
tigation process.

• Evidence collection stage: in this stage the investigator
is responsible for collecting and transferring to the
investigator side only those clusters identified in the
preceding stage which are related to the target files.

• Matching stage: conventional matching, such as se-
quential and carving based matching, is usually used
in related framework found in the literature [1].
LSH based matching is suggested in the proposed
framework in order to improve the matching process
accuracy and efficiency.

• Analysis and presentation stage: in this stage the
investigator is responsible for the analysis of the
evidence gathered and finalizing the report to be
presented in front of the court. .5

The improvement introduced in CBIF framework relates to
the addition of the pre-investigation stage and to the improve-
ment of the efficiency and accuracy of the investigation process

Fig. 1. Main Stages for the Cluster based Investigation Framework(CBIF).
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by introducing the LSH based matching. Detailed discussion
of each of the CBIF enhanced points will be presented in the
subsections below.

A. Hierarchical Clustering used in the Pre-Investigation Stage

The objective of the hierarchical clustering algorithm used
in the suggested idea is to improve the investigation process by
enhancing the crime-related matching and related data collec-
tion within proper clusters. The idea of hierarchical clustering
algorithm merges between a static clustering algorithm based
on a genetic algorithm [23][27][30], and a dynamic clustering
algorithm using an evolutionary algorithm [44][38].

Fig. 1 illustrates how the proposed hierarchical clustering
algorithm operates. The algorithm starts by applying a genetic-
based static clustering algorithm (GBSCA) to divide the stor-
age center into a set of clusters based on files data-type. The
storage center in Fig. 2 is divided into four main clusters;
one for audio files, one for video files, one for text files and
documents, and one for executable files. Afterward, another
clustering round process is applied to each of the clusters
formed. The second-level clustering algorithm is a genetic-
based dynamic clustering algorithm (GBDCA). The objective
of this second round is to divide each cluster generated into a
suitable number of sub-clusters. The execution of all steps in
Fig. 2 is the responsibility of the cloud service providers.

The evaluation metric which is used in the evaluation
process refers to the Sum Square Error(SSE), whereas the
equation for this evaluation metric is as follows.

SSE =
∑k
=1

∑|cƒ |
=1D(cj − ƒ )

2...(1)

In Equation (1) D refers to the Euclidean distance between
Centroid file Cj and a specific file fi. The value of SSE must
be minimized as much as possible.

B. Genetic based Dynamic Clustering Algorithm (GBDCA)

Dynamic clustering algorithm refers to a clustering strategy
used to divide the storage center into a set of clusters [24],
which is different from the conventional clustering algorithm.
The goal of a dynamic clustering algorithm in CBIF is to
divide the storage center into a proper number of clusters.
Dynamic clustering algorithm consists of a set of iterations; the

Fig. 2. The Main Steps of the Pre-investigation Step of the Proposed Idea to
Divide the Cloud Storage Center into a Suitable Number of Clusters.

maximum number of iterations is defined before the algorithm
is started. The iterations begin with an arbitrarily small number
of clusters; at each iteration the number of clusters increases
by one until the maximum number of iterations is reached.
The number of clusters used is evaluated, based on two fitness
functions, the internal fitness evaluation, and external fitness
evaluation that is measured in each iteration.

The goal of the internal loop is to select the best centroid
file which achieves the highest fitness value based on the SSE
equation. fitness is achieved based on specific centroid files
being compared with the best fitness value.

The results of applying the genetic-based dynamic cluster-
ing, as the second level in the hierarchical clustering algorithm,
is getting the most suitable set of clusters based on the reported
best fitness function of the external loop. The flowchart below
shows the main stages of the GBDC algorithm.

The flowchart in Fig. 3 represents the main stages of
the dynamic clustering algorithm, which can facilitate the
investigation process by dividing the files into a suitable
number of clusters. This means that the cluster which achieves
a high level of similarity to the target file will contain all
the files actually related to the target file indicated by low
intra-distance which means high similarity between files in the
same cluster. The equation for the ratio between inter-distance,
i.e. the differences between files in different clusters, to intra-
distance, which is proposed in [12] is mentioned in equation
(2). This equation represents the external fitness function
proposed in GBDCA, which is responsible for selecting the
optimal number of clusters for the files in the original data
set. The output of the external fitness evaluation helps in
descending on the best number of related clusters:

R =
nterDstnce

K − 1
∗
ntrDstnce

n − K
(1)

...(2)

In equation (2), “R” refers to the ratio between the inter-
distance and intra-distance, “K” refers to the maximum number
of clusters that are allowed in a solution, and “n” refers to the
number of data instances, e.g. number of files. In the Algorithm
1, the similarity between data centers and all files in the cloud

Fig. 3. Main Steps of Genetic-based Dynamic Clustering which used to
Divide the Files in the Storage Center of the Cloud Computing.
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Algorithm 1: Pseudo-code for dynamic clustering
algorithm

Initialize Define G;
Define N;
Define LP;
Define T;
Define T1;
Define P[size];
Fill T with zeros;
Fill T1 with zeros;
Define I;
Generate permutation lists randomly;
for P = 0; P < L(P); P + + do

check the values below for  = 0;
 < sze;
 + + do

Find the row which contains number i in
permutation list;

Let R in M(s) =  value;
for C = ;
C < FeCont;
C++ do

if R[c] = 1 then
T[p][c] = ;

if rowT[p][]contains-no-zeros then
Break;

for  = 1;
 <= No.Permtton − Lsts;
 + + do

Find the row which contains number I in
permutation list;

if row T1[p][] contains no zeros then
setT1[p][1] = 

if row T1[p][] contains no zeros then
Break;

Return T;
Return T1;

storage center is determined using Euclidean distance, see [19],
based on the following equation.

D =
Æ
∑

(Cjr, ƒ r)2...(3)

Where D refers to the distance or the similarity between
files. Two fitness functions are used through clustering based
on genetic, internal fitness, and external fitness. The internal
fitness function allows for the selection best centroid data item
based on equation (1). The external fitness function has to do
with the decision on the proper number of clusters based on
the out come of equation (2).

As a summary of the actions and steps of the pre-
investigation stage, it starts by dividing the storage center
into a set of clusters based on the data types of the files.
Afterward, another level of clustering round using genetic-
based dynamic clustering, divides the generated clusters from
static clustering step into a set of sub-clusters, which produces
a set of small clusters for each of the first round’s clusters.

The next step in the proposed idea is to start the investigation
process by retrieving the cluster that is highly similar to the
tampered file based on ranking the clusters according to the
similarity achieved through the internal loop of the genetic-
based dynamic clustering using equations (1) and (3). Then
comes the step of matching and finding the file or files related
to the target file. The outcome of the pre-investigation step is
to define the clusters that are very similar to the target file.
The pre-investigation step can improve the performance and
accuracy of the investigation process.

C. The LSH Algorithm Applied for the Matching and Exami-
nation Stage

Another step in the process of improving the matching and
searching for evidence in cloud computing forensics depends
on using the Locality Sensitive Hashing (LSH) algorithm.
The LSH algorithm consists of three steps. The first step
is the shingling step, which is responsible for building the
shingle matrix of two dimensions. The second step is the
implementation of the Min-hashing algorithm; this step is
responsible for the compression of the shingle matrix. The
last step is the implementation of the LSH algorithm [24],
which is an enhanced matching algorithm that is implemented
on the signature matrices generated to identify similar files in
the previous step. LSH algorithm can improve the accuracy
and efficiency of the investigation process based on reducing
the size of the shingle matrix extracted from the original data.
Fig. 4 shows the main stages of the LSH algorithm, where the
steps begin after retrieving the clusters linked to the tampered
file.

The following steps present detailed information on the
improved examination and matching steps based on the LSH
algorithm.

1) Shingling Step: The initial step of the LSH algorithm
implementation is the extraction of shingles for each file of
the retrieved cluster data, and developing a two-dimensional
shingle matrix for all extracted files’ shingles. The shingle
matrix shown in Table II represents an example of a shingle
matrix extracted from the files of the cluster. In the Table, a
Shingle matrix ID in a row exists in documents, specified in
column, where the flag bit is set.

Table II displays the shingle matrix structure. The shingle
matrix building step is the initial step in the LSH algorithm
procedure. All documents contents must be transformed into

Fig. 4. Main Steps of Applying the LSH Algorithm to Enhance the
Investigation Process in Cloud Computing
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TABLE II. AN EXAMPLE OF A SHINGLE MATRIX EXTRACTED FOR A SET
OF TEXT FILES

Shingle ID First
Document

Second Docu-
ment

Third Docu-
ment

Shingle 1 1 0 0
Shingle 2 0 1 0
shingle 3 0 0 1
shingle 4 1 0 0
Shingle 5 0 1 0
Shingle 6 0 0 1
Shingle 7 1 1 0
Shingle 8 0 0 1
Shingle 9 1 1 0
Shingle 10 0 0 1
Shingle 11 1 1 0
Shingle 12 0 0 1
Shingle 13 1 1 1
Shingle 14 1 1 0
Shingle 15 0 0 1

shingles that are added into a shingle matrix which represents
the files in the cloud storage center.

The process of extracting shingles from documents is
called the shingling extraction step where each document is
represented by a string of characters. Shingles extraction is the
process of creating a set of k-shingles for a document to be
any sub string of length k found. As an example of the shingle
extraction step, assuming the original document containing a,
b, c, d, e, f, g, h, and k is 3 then some possible shingles
are a, b, c, b, c, d, c, d, e, d, e, f, e, f, g, and f, g, h. The
similarity of documents is measured based on the degree of
overlapping between these shingles. Increasing the number of
shingles overlapped between two files means that the two files
are more similar to each other [11].

The similarity between documents is measured using Jac-
card similarity metric [45], which depends on the degree of
overlapping between shingles. matrix. The equation used to
calculate Jaccard similarity is as follows

Sm(Fe1, Fe2) =
|Fe1 ∩ Fe2|

|Fe1 ∪ Fe2|
... (4) By increasing the intersection ratio between the two
files, the degree of similarity would increase. Based on this,
the degree of similarity between the two files will increase
when the amount of intersected characters or features between
the two files is increased.

2) The Step of Compression using Min-hashing Algorithm
: The signature matrix which is built through the first step of
the pre-investigation stage will be usually very large due to
the huge volume of files stored in cloud computing storage
space. Accordingly, it is very complicated to handle the
shingle matrix for the recovered clusters. Therefore, further
processing is needed, which could be very time consuming to
use the conventional method for performing the searching and
matching steps.

It is necessary to compress the shingle matrix in a specific
way while keeping the distance between the files in the original
matrix. One of the best solutions is the Min-hashing algorithm,
which can compress the shingle matrix into a small matrix
called signature matrix ”M”. The most important feature of
this algorithm is that it keeps the similarity of the underlying
sets of shingles in the compressed version.

Min-hashing algorithm allows for the generating of a
permutation list, which contains random numbers in the range
from 1 to the number of shingles. The result of the Min-
hashing process is stored in a signature matrix, where its rows
are the Min-hashing value, and the column of the signature
matrix is the file name. The number of permutation lists deter-
mines the accuracy of the signature matrix. Each permutation
list produces a row in the signature matrix. Fig. 5 shows an
example of the main step of converting the shingle matrix
for a set of files into a signature matrix using 4 Min-hashing
functions (4 permutation lists). The similarity between doc1
and doc3 in the shingle matrix is very close to the similarity
between h(doc1) and h(doc2) in a signature matrix.
The pseudo code shown in Algorithm 1 contains the steps of
min-hashing starting from the step of generation of a permu-
tation list and all steps of compression for the shingle matrix
until the production of the signature matrix and signature list.
For more details on how to calculate the signature matrix out
of the permutation lists please refer to [15].

3) Locality Sensitive Hashing (LSH): The last step after
creating the signature matrix from the shingle matrix is apply-
ing locality-sensitive hashing to the produced signature matrix.
LSH step is very helpful in dealing with parts of a file in order
to discover criminal acts rather than dealing with he whole file
imposed by other techniques. In the matching and examination
forensic stage, we suggest to use LSH algorithm to enhance
the investigation process based on the following factors:

1) The conventional way of matching byte-to-byte takes
significantly long time carry out especially on the
cloud.

2) High degree of accuracy in the matching process can
be obtained. This aspect is essential and useful in a
cloud computing environment since it contains a huge
volume of files.

3) The LSH algorithm can handle all cases of the
matching process, such as if the file was removed,
partially modified, or fully updated.

Locality-sensitive hashing mainly depends on the division
of the signature matrix from the shingle matrix into several
bands. Specific hash function F(x) is used for each band of
a signature matrix. The result of the hashing step maps to a
specific bucket in a bucket list. Each column in the signature
matrix is hashed multiple times based on splitting the column
into band sets, and each band is hashed using a specific,
preferably different, hashing function.

The Signature list will also be hashed multiple times based
on splitting it into bands and hashing each band using a same
has function that has been used for that band over the signature
matrix. The bands with the same data will be hashed and
mapped to the same bucket [22]. This means that the files
which are shared in the bucket are exactly identical.

The flowchart in Fig. 6 shows the key steps of the LSH
algorithm which are used in CBIF as the step of matching
began by dividing the signature matrix into a specific number
of bands. In order to determine that a set of files match,
specific threshold has to be defined to determine which of the
candidate set of files have contributed in creating the targeted
document. The threshold in CBIF will be changed based on
the corresponding results as shown in the flowchart in Fig. 6.
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Fig. 5. Main Steps of Building a Signature Matrix from the Shingle Matrix.

Fig. 6. Main Steps of Locality Sensitive Hashing Algorithm for Matching.

If there are no two files shared in a number of buckets based
on the given threshold, the threshold’s value will be reduced
until it reaches zero. Therefore, it can be concluded that no
file matches fully or partially the targeted file. Fig. 7 shows
an example of how to apply LSH algorithm in the matching
system to identify the set of matching documents.

IV. EXPERIMENTS IMPLEMENTATION AND RESULTS
DISCUSSION

Two main experiments have been implemented throughout
this research paper. The first one has to do with the imple-
mentation and evaluation of the clustering algorithm which
makes use of CBIF. The second experiment has to do with
the implementation and evaluation of LSH algorithm. All
the experiments were implemented with Java Programming
language using Net-Beans 8.1 on a PC with 64-bit Windows
10 operating system, and an Intel core i7-6500u CPU with
32GB of RAM.

A. Testing and Evaluation of Clustering Algorithm

To define the performance of the genetic-based dynamic
clustering algorithm used through the second level of cluster-
ing, an implementation of the algorithm over ten, real and
artificial data-sets obtained from UCI [10] was performed.
The data-sets used in this experiment have various numbers
of features ranging between ‘3’ to ‘13’ features. It contains
various numbers of clusters ranging from ‘2’ to ‘6’ clusters. A
set of experiments have been designed to measure the accuracy
and performance of GBDCA before being used in CBIF. Each
experiment has been applied over the data-sets mentioned in
Table III. GBDCA has been compared with K-means clustering
algorithm which we have been also implemented to measure
its accuracy and performance.
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Fig. 7. A Locality-sensitive Hashing Algorithm (LSH) and How the
Matching Process is Done based on the Map for One Band.

TABLE III. EVALUATION RESULTS OF THE PROPOSED DYNAMIC
CLUSTERING ALGORITHM (GBDCA).

Dataset
Name

Original
No of
Clusters

Avg.
No of
clusters
GBDC

Avg.
No of
clusters
CRO

Avg
No.clusters
Kmeans

E.coli DS 5 4.9 5.1 4.7
IRIS DS 3 3.43 3.63 4.23
Seed DS 3 3.367 3.53 4.134
Balance DS 3 3.23 3.36 4.1
Blood DS 2 2.5 2.6 2.934
Wine DS 3 2.8 2.53 3.567
Hepatitis DS 2 2.76 2.83 3.067
Vertebral DS 2 2.73 2.93 3.43
BC DS 2 2.36 2.57 3.034
Glass DS 6 5.033 5.63 4.863

Table III represents the number of clusters resulted from
running each of the two clustering algorithms. The number of
clusters achieved by each algorithm is compared with the origi-
nal number of clusters for each data-set, and represented as the
Error Rate. The results shown in Table III is the average value
of ten experiment runs applied for each data-set. The main
objective of these experiments and the comparison between
GBDCA ad K-means algorithms were to prove that GBDCA
is the better than K-means and can be used in the investigation
process to enhance the forensics process of digital devices. The
genetic based dynamic clustering algorithm depends on using
the Inter/Intra ratio, as an external fitness function.

POE =
ABS(OrgnNo − AcheedNo)

Orgnnmber
∗ 100

... (5) In the equation above, the POE refers to the percentage
of error, ABS refers to the absolute value, which is calculated
for the difference between the original number (OriginalNo.)
of clusters for each algorithm and the average number of
clusters achieved by the experiments applied on a specific
data-set (AchievedNo.). Table IV shows the error rate for each
competitive algorithm for the different data-set.

TABLE IV. ERRORS PERCENTAGE FOR EACH COMPETITIVE CLUSTERING
ALGORITHM BASED ON THE RESULTS ILLUSTRATED IN TABLE 2

Dataset De-
scription

Genetic
Error
Rate

CRO Er-
ror Rate

Kmeand
Error
Rate

Min Error
Rate

E. coli DS 10% 14.67% 44.67% 10%-GA
IRIS DS 14.44% 21.11% 41.1% 14.44%-

GA
Seed DS 12.22% 18% 37.78% 12.22%-

GA
Balance DS 7.78% 12% 36.6% 7.78%-

GA
Blood DS 25% 30% 46.67% 25%-GA
Wine DS 6.67% 16% 18.89% 6.67%-

GA
Hepatitis DS 38.33% 42% 53.33% 38.33%-

GA
Vertebral DS 36.67 47 53.33% 36.67%-

GA
Breast Can-
cer

18.33% 28% 51.7% 18.33%-
GA

Glass DS 16.11%t 6% 18.9% 6%-CRO
Average Re-
sults

19% 23% 40% 19%-GA

Table IV allows us to determine which is the best algo-
rithm to be used through the step of dynamic clustering in
the proposed hierarchical clustering algorithm. The average
percentage of error rate achieved by the dynamic clustering-
based genetic algorithm is 19%, and the percentage of error
achieved by the dynamic conventional k-means algorithm is
40%. The results shown in Table 3 can be interpreted as a
recommendation to use a genetic-based dynamic clustering
algorithm in our solution, given the low percentage rate in
comparison with the K-means algorithm.

B. Experimental Implementation for the LSH Algorithm

Several tests have been performed to determine the accu-
racy and reliability of CBIF and different data set sizes have
been used. Furthermore, various structures for the tampered file
were designed and used to test the proposed solution through a
set of experiments. The data set used in our experiments is the
Reuters data set consisting of 21000 files [46]. The experiments
are divided into four main categories based on the structure of
the tampered file used. Each category of experiments consists
of 10 runs and the average value was calculated. In each run,
the variables that controls the structure of tampered file were
different. The details about the structures of tampered file
will be shown in detail just before discussing the results of
that experiment. The Reuters files were divided into sets and
the series of experiments were applied to each of these sets;
the size of these sets will be addressed below. The matching
accuracy based on equation (5) has also been calculated.

The data set used in these experiments is divided into
clusters based on the dynamic clustering algorithm decision
proposed in the hierarchical clustering step. In most cases, the
number of clusters achieved was 6 clusters. The files were
distributed over the clusters based on the level of similarity
between cluster centroid files and all other files.

1) Tampered File Description: The tampered file used in
the experiments to evaluate the accuracy and efficacy of the
CBIF has many structures, as follows.

• Structure-One: The first structure for the tampered file
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consists of three random files from three random clus-
ters. File “A”, from a random cluster “A”, is involved
with 10% of the tampered file content. Random file
“B”, from another random cluster “B”, is involved
with 20% of the tampered file content. Finally, 70%
of the tampered file creation process is from random
file “C”, which belongs to yet another cluster “C”.
The files and clusters “A”, “B”, and “C” are random
in that they may vary from experiment to experiment.
This also applies for the next structures. see Fig. 8A.

• Structure-Two: The second structure for the tampered
file consists of three random files from three random
clusters with different participation rates with 20%,
30%, and 50% for random files A, B, and C from
random clusters A, B,and c respectively. Fig. 8B
shows the percentage of participation for each file in
the tampered file content data

• Structure-Three: Another structure for the tampered
file was used that consists of two random files from
two random clusters. Random file “A”, from random
cluster “A”, is involved with 40% of the tampered
file content, while random file “B”, from random
cluster “B”, is involved with 60% of the tampered file
content. Third part of Fig. 8C shows the percentage of
participation for each file in the tampered file content.

• Structure-Four: The last structure of the tampered file
used consists of two random files ”A” and ”B” from
two random clusters ”A” and ”B” where each file is
involved with 50% of the tampered file as shown in
Fig. 8D.

2) Experimental Implementation for LSH Based Frame-
work Using Different Tampered File’s Structures : Multiple
experiments were conducted based on the above mentioned
tampered file structures. Each experiment was replicated sixty
times with random file selected randomly from a different
cluster each time.The AMA is the average results for ‘60’
of the repeated experiments. Each experiment has different
variable values for the structure of the tampered file. The
purpose of repeating the experiments ‘60’ times is to test
CBIF’s performance and reliability in order to deal with all
cases of file creation being tampered with. The purpose of
repeating the experiments is to test the CBIF’s ability to
recognize the original files in all cases of manipulated files.

For example, in the experiment defined for Structure-One
of the tampered file structure, Cluster A can be randomly
selected as Cluster ‘2’, and File X can be randomly selected
to be File ‘5’, meaning that the tampered file has 10% of its
content taken randomly from File number ‘5’ in Cluster ‘2’.
Cluster B can be cluster ‘4’ and File Y can be File ‘1’, this
means that the randomly selected File ‘1’ in Cluster ‘4’ has
participated with 20% of that tampered file content. Finally,
Cluster C can be cluster ‘5’ and File Z can be File ‘2’, meaning
that from Cluster ‘5’ we have randomly selected File ‘2’, which
contributes to 70% of that same tampered file’s content. Fig.9
consists of 4 main sub-figures A,B,C, and D, whereas each
sub-figure of Fig. 9 is specified for an experiment based on a
specific tampered file structure.

The Average Matching Accuracy (AMA) is a metric that
we have used to measure the accuracy of the matching process

and is calculated based on the percentage of matching between
the tampered file and the original files which participated in
the tampered file content. The equation which was used to
calculate AMA between the tampered files and original files
is equation (6). In this equation the Avg-Matching(Bx, . . . , By)
refers to the average results of matching between the tampered
file and all clusters participating with a certain percentage of
the tampered file’s construction. As an example, if equation
(6) was used to calculate the average accuracy for a cluster
involved with 50% of the tampered file content, then in this
case, the AvgMatching(F.1, F.2, ..., F.n) is the average result of
matching between the tampered file and the ”n” files F.1, ..., F.n
that are involved with 50% of the tampered file content. Here
”n” is the number of runs the experiment has been repeated
which is in our case equals 60.

AMA = 100 −
ABS(AgMtchng(B, .., By)∗ 100 − Actmtchngpercentge)

ActmtchngPercentge
∗ 100...(6)

The results in Fig. 9 show how accurate CBIF is for the
matching process, and presents how the AMA for the results
of matching is close to the actual ratio of participation in all
matching results.

Details of each result shown in Fig. 9 will be thoroughly
explored next before comparing CBIF with other rival algo-
rithms. The purpose of this is to reduce the complexity of
discussing this comparison into two simpler phase. In the first
phase we discuss the results obtained for CBIF and in the
second phase we compare these results with results obtained
for other protocols.

• First Experiment
The tampered file used through the first experiment
was built according to Structure-One of the tampered
file structures shown in Fig. 9A, which consists of
three files.
Fig. 9-A consists of three columns where each col-
umn shows the average matching ratio between the
tampered file and the original files in a specific cluster
based on the percentage of participation in the tam-
pered file content. The figure show the participation
results of three clusters, thus we have three columns,
since the participation ratios of other clusters were
negligible and thus are not shown in the figure.
The average accuracy of matching between the tam-
pered files and original files which were involved in
10% of tampered file contents is 76.78%, the average
accuracy of matching with the files involved in 20%
of tampered file contents is 94.44%, and the average
result of matching with the files participating in 70%
of the content is 87.71%.
The conclusion that can be drawn from Fig. 9A is
that CBIF’s has the ability to deal with the case
when the target file in the investigation process was
mixed with other files. This indicates that the file that
the investigator was searching for and modified at a
certain rate was found at a high accuracy rate.

• Second Experiment
Another experiment was conducted based on the
second structure of the tampered file that was referred
to in Fig. 9B. This figure consists of three columns,
each column is specified for the AMA between
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Fig. 8. Key Structures of Tampered File Content which were used by Experimental Implementation.

Fig. 9. Results for Set of Experiments based on Different Structures for
Tampered Files.

tampered file and each of the original files which
were involved in the creation process of the tampered
file.

The files that participated in the tampered file’s con-
tent creation achieves a high level of similarity if
compared with other files, such that the accuracy
of matching that was shown in Fig.9B depends on

the values of actual matching results. The conclusion
that can be drawn on the basis of the results shown
in Fig.9B is that the proposed CBIF succeeds in
retrieving the right files with a higher matching level
than the other files in the storage space.

• Third Experiment The third experiments was applied
based on the third structure of the tampered file
mentioned earlier in Fig. 9C. This figure consists
of two columns, each column represents the average
accuracy of matching between the tampered files and
original files which were involved in the construction
process of the tampered file.
The results shown in Fig. 9C represents the extent
of accuracy and reliability of CBIF to deal with the
third case of tampered file content mentioned earlier.
This gives a strong argument for the benefits and
importance of using the proposed CBIF.

• Fourth Experiment. The last experiment was applied
based on the structure of the tampered file mentioned
in Fig. 9D. The results shown in Fig. 9D illustrate the
AMA for this experiment which consists of two bars,
each bar shows the average accuracy of matching with
each original file involved in creating the tampered
file.
The results shown in Fig. 9D show the accuracy of
CBIF in retrieving the correct files which actually
participated in the contents of the manipulated file.

3) Comparisons between the Proposed Solution and Re-
lated Cluster-based Solutions: Two of the related solutions
have been implemented and compared with the proposed CBIF.
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The purpose of this comparison is to demonstrate matching
accuracy level of CBIF relative other similar techniques. The
first competitive solution relies on using the traditional k-
means clustering algorithm [10]. The idea of the solution
revolves around applying the k-means clustering algorithm
in the investigation process to divide the documents in the
storage center into groups and to focus on the group which is
most similar to the target file. The second competitive solution
is to use a k-medoid clustering algorithm to enhance the
investigation process with respect to accuracy and performance
[17]. Both solutions have been implemented and used with
the data-set which was used to test CBIF. The structure of
the tampered file which was used through the experiments of
testing the competitive solutions is the same as the structure
which mentioned earlier to test the proposed CBIF. All of
experiments have been run 60 times. The average accuracy of
matching for all experiments have been applied using equation
6 . The results for the experiments are as follows:

• Comparison between CBIF, a K-means based
solution, and a k-medoid based solution using the
first structure of the tampered file

Fig. 10A shows the AMA for the three solutions
based on structure-One of the tampered file. The figure
consists of three groups of bars, each group contains
three bars. Each bar refers to the average accuracy of
matching between the tampered file and other files,
exist in a specific cluster, using one of the three
compared solutions. The first group which represents
the AMA between the tampered file and a clustered
file which participated in 10% of the tampered file
content. CBIF has achieved higher AMA than the
results obtained by the other solutions for the first
tampered file structure.
The AMA of the file which participated with 70%
of tampered file content is greater in CBIF, close to
88%, compared to the other solutions, almost 75%
and 65% for k-means and k-medoid, respectively.
This demonstrates the ability of CBIF in improving
the matching accuracy which is better than similar
solutions. This helps in finding the correct file that
actually participated in the contents of the tampered
file.
Another important enhancement of CBIF is related to
the rank of the original files which participated in the
tampered file’s content. The files that were already
involved in creating the file that was tampered with,
in most experiments, have the highest degree of
similarity with the tampered file. On the other hand,
only in 72% of the total experiments did the original
files that participated in the composition of the
manipulated file obtain the highest similarity with the
tampered file, which means that the original files did
not get the highest similarity in a 28% of experiments.

• Comparison based on the second structure of the
tampered file
Other experiments have been designed and imple-
mented for the related solutions to show how CBIF
solution performs. AMA has been calculated for the
60 runs of experiment for each solution. The summary

of these experiments can be shown in Fig. 10B.
Results shown in Fig. 10B represent the AMA of
the competitive solutions to retrieve the original par-
ticipated files. CBIF achieved an accuracy level that
is, also in this experiment, higher than other two
competitive solutions for all participated files, as can
be seen in the results shown in group three of Fig.
10B.
The AMA achieved by CBIF is 91.15%, whereas
the average accuracy achieved by the k-means based
solution is close to 75%, and the average accuracy of
matching achieved by the k-medoid based solution is
close to 67%. This indicates the gap in the perfor-
mance between CBIF solution and the other related
solutions. This point is important to encourage the
prefer the usage of the CBIF in investigation process
over the other rival solutions.
Another significant improvement accomplished by
CBIF is the ranking of files based on the degree of
similarity with the tampered file. File ranking here
indicate the ability of the solution to rank the actual
original files that have participated in the tampered file
as the top ones. For example assume that file A and B
have participated in creating a tampered file T with a
certain percentage from each one. A solution that gives
the highest percentages to files A and B, regardless of
the accuracy results for each one, is assumed to reach
100% ranking accuracy. While a solution that gives a
percentage for another file, e.g. file C, that is higher
than A or B gets a lower ranking accuracy.
In the experiments that are based on the Structure-One
of the tampered file, using a solution based on k-means
and a solution based on k-medoid, the files involved
with the tampered file content do not reach the highest
degree of similarity with the tampered file in some of
the experiments. In the solution that depends on the k-
medoid clustering algorithm, the ranking accuracy was
close to 77% while in the solution that depends on the
conventional k-means clustering algorithm, 80% was
the ranking accuracy. CBIF has achieved 95% to 100%
ranking accuracy in all of the experiments and for all
tampered file structures.

• Comparison based on Structure-Three of the tampered
file.
Third part of Fig. 10C shows the results for the experi-
mental implementation of competitive solutions based
on Structure-Three of the tampered file mentioned
earlier. For the 60 experimental runs, the average accu-
racy was calculated. The average level of accuracy ob-
tained by CBIF was higher than the average accuracy
achieved by the competitive solutions in the matching
process with the files that participated in 40% of the
tampered file contents. Although the difference is less
than the case with 40% participation, CBIF achieved
higher accuracy also for the 60% participation results.
Additionally, for the ranking accuracy, in the k-means
based solution 86% of all experiments. In the k-
medoid based solution is 84% of all experiments.

• Comparison between the CBIF and other competitive
solutions based on the Structure-Four of the tampered
file
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The results shown in last part of Fig. 10D represent
the average accuracy of matching for the three com-
petitive solutions to enhance the investigation process.
CBIF achieves higher AMA in both clusters, which
has participated with 50% of the tampered file, than
the other compared solutions. Moreover, k-medoid
based solution, shows ranking accuracy as 86% while
solutions based on k-means results in 90% ranking
accuracy which is much less than what CBIF has
achieved.

To conclude, from the section of comparisons between the
proposed CBIF and other rival solutions, it can be inferred
that the proposed solution improves the average matching
accuracy for the investigation process in all cases and for all
of the files structures involved. This point is important in the
forensics process, as many of the crimes are hidden based
on mixing the original file with other files. Moreover, the
point of enhancement in the accuracy of matching is what all
frameworks and solutions are looking for to achieve; the results
shown in the above figure indicate a noticeable improvement
on average matching accuracy in most cases. This is supported
by the results of ranking accuracy which prove that CBIF
outperforms K-means and K-mediod algorithms in all the
conducted experiments.

4) Comparison between CBIF and Related Solution on the
Basis of Execution Time: Another comparison is between the
competitive solutions based on the execution time for each
algorithm. The comparison is based on the size of the data-set
used. The execution time was measured for applying the three
solutions for the 2000 file, 4000 file, 8000 file, 16000 file,
and 21000 file data-sets. The results for the execution time
are shown in Table V. The results in Table V refers to the
time needed for the investigation to find a file similar to the
target file. k-medoid clustering algorithm needs less time than
k-means based investigation process which in turn takes less
that proposed CBIF. This slight extra is justified by the higher
average matching accuracy achieved by CBIF.

Fig. 10. Results for All Competitive Algorithms based on Different
Structures for Tampered File Content.

TABLE V. RESULTS FOR THE EVALUATION PROCESS OF THE PROPOSED
DYNAMIC CLUSTERING ALGORITHM

No.Files in a
data-set

Execution time
for CBIF in
seconds

Execution
time For k-
means based
investigation in
seconds

Execution time
for k-medoid in
seconds

1000 189.2 150.388 135.9
2000 238.7 215.9 182.6
4000 1972.15 1213 600.356
8000 4370.16 4222.11 3446.462
16000 12325.2 11863.5 10695
21000 18735.5 17962 16818.5

V. CONCLUSION

Many frameworks and solutions have been proposed in the
field of cloud computing forensics. Each of these frameworks
have specific drawbacks and weak points in certain stages
of the investigation process. In the paper, CBIF is proposed
to focused on a specific issue of cloud computing forensics;
namely, the performance and accuracy of the investigation
process. CBIF adds a new stage called the pre-investigation
stage, which is responsible for filtering and grouping the
evidence and files in the cloud storage center into a set of
groups based on using a hierarchical clustering approach. This
stage enhances the average accuracy of the matching process
by dividing the storage center into sets of groups.

The results achieved from the experimental implementation
shows how the proposed CBIF enhances the average accuracy
when compared with the related solutions, the k-means based
solution and the k-medoid based solution. CBIF achieved
higher accuracy matching levels and ranking accuracy than
the competing solutions in most of the experiments.

The proposed CBIF solution can be enhanced in the future
by enhancing the LSH step of current solution by changing
the technique of selecting band size.
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