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Abstract—There are many different programming languages
and each programming language has its own structure or way
of writing the code, it becomes difficult to learn and frequently
switch between different programming languages. Due to this
reason, a person working with multiple programming languages
needs to look at documentations frequently which costs time
and effort. In the past few years, there have been significant
increase in the amount of papers published on this topic, each
providing a unique solution to this problem. Many of these papers
are based on applying NLP concepts in unique configuration to
get the desired results. Some have used AI along with NLP to
train the system to generate source-code in specific language,
and some have trained the AI directly without pre-processing
the dataset with NLP. All of these papers face two problems:
a lack of proper dataset for this particular application and
each paper can convent natural language into only one specified
programming language source-code. This proposed system shows
that a language independent solution is a feasible alternate
for writing source-code without having full knowledge about a
programming language. The proposed system uses Natural Lan-
guage Processing to convert Natural Language into programming
language-independent pseudo code using custom Named Entity
Recognition and save it in XML (eXtensible Markup Language)
format which is an intermediate step. Then, using traditional
programming, this system converts the generated pseudo code
into programming language-dependent source-code. In this paper,
another novel method has been proposed to create dataset from
scratch using predefined structure that is filled with predefined
keywords creating unique combination of training dataset.

Keywords—Natural Language Processing (NLP); Natural Lan-
guage Interface (NLI); Entity Recognition (ER); Artificial Intelli-
gence (AI); source code generation; pseudocode generation

I. INTRODUCTION

Source-code is a list of human-readable instructions written
in particular programming language. The aim of source-code
is to check for precise specification, format and rules so that
it can be interpreted into machine language [1]. Therefore,
source-codes are the fundamentals of a computer program. It
is usually written by a programmer or developer that has some
training and knowledge of the programming language. The are
many independent languages and each has its own distinctive
way to writing instructions.

Natural Language Interface (NLI) provides a different input
method in which users can interact with computer using spoken
human language, like English instead of using a graphical user
interface (GUI), command line interface (CLI) or computer
languages like C and Python [2]. NLI enables the computer

to recognize and understand the flow of human language by
providing an abstract layer that connects computers to users
[3]. It enables users to enter their search queries in natural
language which can be in either spoken audio or written text.
The goal for most natural language systems is to make the
system easier to use and to provide an interface that decrease
the training time required for users.

The proposed system aims to generate source code of
various programming languages like python and C using
natural language as input. Making use of NLI to generate
source-code can help beginners understand the language well.
It can also help professionals to increase their working speed
as uncommon and easy problems can be solved without going
through documentation of that programming language.

As writing source-code is becoming more widespread and
complicated, it is becoming an essential to automate writing
simpler source-code by AIs to save time in writing, learning
and understanding source-code. With Natural Language Pro-
cessing (NLP) getting better and simple with each year and the
demand for writing new and complex source code is increasing
every year, it was inevitable for these two fields to join.
There are many natural language interfaces that connect NLP
with databases but not many programs that connect NLP with
computer languages. Creating an Natural Language Interface
that helps programmers to create source code will reduce the
time it takes for them to write source code as they will refer
to complex documentation less frequently and will reduce the
bar to enter the world of programming language.

II. LITERARY STUDY

A. Different Natural Language Interface Approaches

Review of different approaches in natural language inter-
faces to databases [4] published by Reshma E. U. and Remya
P. C. explores some Natural Language Interfaces to Databases
(NLIDB) trends in 2017. They found that current NLIDB sys-
tem consists of following types: ’Pattern matching’ (i.e. Using
manually defined rules), ’Syntax based system’ (i.e. Creating
parse tree and mapping it to database), ’Semantic grammar
system’ (i.e. Passing user input with hard wired semantic
grammar and then creating parse tree which will be mapped to
database) or ’Intermediate representation system’ (i.e. it first
translates the natural language input into intermediate logical
query and then, it translates intermediate logical query into
database query language.
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There are many such systems that follow the same tech-
niques and patterns with minor changes, namely, ”IQS - Intelli-
gent Querying System using Natural Language Processing” [5]
and ”MyNLIDB: A Natural Language Interface to Database”
[6].

The advantages of these NLIDBs are that the users does
not need to learn any artificial language, no need for spending
time on training, simple and easy to use, are better for some
questions and have high fault tolerance.

The disadvantages of these systems are that they deal with
small amount of natural language i.e. can recognize limited
set of words, errors and failures are not properly handled,
ambiguity i.e. one word having many unrelated meaning can
cause the query to change its meaning and finally users may not
construct the query using recommended or pre-programmed
words.

B. Natural Language Query to SQL

In the paper ”Formation of SQL from Natural Language
Query using NLP” M. Uma et. al. [7] used the following
techniques to extract information from natural language.

First, they extracted ’attribute’ using Parts Of Speech
(POS) tags. They used tokens next to a proper noun (i.e.
NNP tag in NLTK Library). To search for ’date’ they used
regular expression (RegEx) to extract it using common writing
formats. To extract ’fares’ the used lemmatized word ’fare’ and
finally they used RegEx again for extracting train names.

This system is very rigid and can only perform SQL tasks
on predefined database. But, we can use these methods to tag
our own data to give to an AI model

C. Conversion of Natural Language Query to SQL Query

In the paper titled ”Conversion of Natural Language Query
to SQL Query” by Abhilasha Kate et. al. [8] they first per-
formed ”Tokenization” on their input sentence and remove the
stop words, then those tokens would be passed onto ”Lexical
analysis” which will replace all the words with their dictionary
counterpart. This is the step where the natural language starts
to look like a SQL sentence. Lastly, ”Semantic Analysis” is
performed which will replace natural sentence (e.g. less than
or equal to) to their symbol counterparts (i.e. <=).

The given system has a shortcoming in lexical analysis
phase as all the keywords needs to be known beforehand to
be able to match those keywords with dictionary.

D. Language to Code

The paper titled ”Language to Code with Open Source
Software” [9] published by Lei Tang, Xiaoguang Mao and
Zhuo Zhang uses an encoder-decoder technique to automati-
cally train NLP to generate source-code. They first converted
the natural language descriptions into word-embeddings and
fed it into the encoder to generate coding vector. Then the
decoder maps this vector back into the desired code. They used
LSTM neural network to train their model. Due to the labor-
intensive nature of generating dataset they used a previously
proposed method by Gu Xiaodong et.al in the paper ”Deep
code search” [10]. In this paper they proposed a unique method

to create training dataset i.e. they used comments from a Java
program and its attached code snippet from open source Java
projects as the dataset.

Even though this technique covers many complicated code
scenarios, this technique is limited by the programming lan-
guage it generates (here they can only generate Java source-
code). To generate source-code in other programming lan-
guages, we need to create another database from scratch which
is a lengthy and tedious task. From this system we can adopt
the training methods they used with the databases tagging
techniques they used.

E. Natural Language Database Query Interface

”A Simple Guide to Implement Data Retrieval through
Natural Language Database Query Interface (NLDQ)” [11]
published by Tameem Ahmad and Nesar Ahmad uses a straight
forward approach to convert a natural language statement to
database query. They first used ”Tokenizer” to divide the input
into individual tokens or words. They then used ”Parsing” to
create a parse tree with its related POS (parts-Of-Speech) tags.
After this they used ”Syntactic Comparison” to check if any
keywords that appeared in the input is already available in the
database as either a direct match or a alias of it. Lastly, in
”SQL Generator” they used static templates that can be used
as fill-in-the-blanks to choose the correct template and fill all
the related fields labeled in previous steps.

The main advantage of this type of system is that it is easy
to make any new changes that the client requests. But the
downsides are that this is a very rigid system that is tied to
a particular database. Although, we won’t tie our system with
templates, but each programming language uses a predefined
format (i.e. main function, indentation, parentheses ”}”, etc.)
which we can add to our system.

F. Modified Co-occurrence Matrix Technique

Anuradha Mohite and Varunakshi Bhojane [12] proposed
a updated way to find co-occurrence matrix formulation in the
paper titled ”Natural Language Interface to Database Using
Modified Co-occurrence Matrix Technique”. They first parsed
the input to create POS (i.e. Parts Of Speech) tags and
parse tree. They then used modified Hyperspace Analogue
to Language (HAL) matrix to find tokens related to nouns.
Using cosine-similarity they get a table with nouns associated
with different POS and using this technique they identified the
WHERE clause in SQL (Structured Query Language).

With the hardest part of the query now identified they used
stemming technique to convert all words into their common
roots and then used semantic mapping to find words such
as min, max, avg, >=, etc. Once these word are identified
they used bi-gram algorithm to find correct attribute and table
name from the database and create the final query to be
displayed to user along with its output. ”Natural Language to
Structured Query Language using Elasticsearch for descriptive
columns” [13] uses similar approach with changes made in
word embeddings.

Their clever use of POS tag pair such as ”numeric value-
noun pair” or ”proper noun-noun pair” to find where clause
in SQL can help us to identify inconsistent attributes such as
names of variables and functions in our system.
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G. Pseudocode to Source-code

Teduh Dirgahayu et.al. [14] proposed a method to automat-
ically convert pseudocode to Source-code. In this method, the
pseudocode is first translated to an intermediate model then
to source-code. The intermediate model consists of a parse
tree that is created with the help of a tool called ANTLR.
This represents pseudocode in a more structured and language
independent way. Then language dependent tool for generating
source-code is created.

The main shortcoming of this method is that the pseu-
docode which is in the form of XML needs to be created
manually. This manual pseudocode and source-code must
comply to their respective grammars (i.e. metamodels). The
XML intermediate model must comply to a XML schema.

H. An XML-based Pseudo-code Online Editing and Conver-
sion System

Liu Haowen et.al in their paper ”An XML-based Pseudo-
code Online Editing and Conversion System” [15] introduced a
innovative way to convert pseudo code into source-code. They
first convert the input pseudo code into an XML (eXtensive
Markup Language) format using DOM4J package available
in Java programming language. From there, using the same
DOM4J package, they converted the pseudo code in XML
format into Java source-code. In doing so, they also created
XML tags for pseudo code which we can use in our system
as a reference.

The reason to choose XML is that it is a cross-platform
language i.e. they can be used in any software and in any
operating system making this system independent of any
programming language.

I. Pseudocode to Source-code using NLP

Ayad Tareq Imam et.al [16] proposed a unique way to con-
vert pseudocode to source-code i.e. using NLP. The problem
with this method is that it presents a complex solution to a
simple problem. As seen in previous 2 papers [14] & [15], the
same output can be achieved with simple one-to-one mapping.

J. Generating Source-code without NLP

Till here we have studied ways to generate structured code
like SQL queries (due to lack of source-code generation) using
NLP techniques. There are other papers that can generate
proper source-code but they bypass the NLP requirements
and directly train their models to generate source-code from
training data.

Some such papers are ”DeepCoder” [17], ”Text2App”
[18], ”Generating Pseudo-Code from Source Code Using Deep
Learning” [19], ”Incorporating External Knowledge through
Pre-training for Natural Language to Code Generation” [20],
”In-IDE Code Generation from Natural Language” [21] and
”Programming with a Differentiable Forth Interpreter” [22].

All these papers faces a problem of lack of source-code
datasets. Some uses premade dataset, many generate their own.
Another problem they face is all these papers generate source-
code in one specific programming language
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Fig. 1. History of NLP Concepts.

K. History of Various Concepts of NLP

Fig. 1 lists the papers where important concepts have been
introduced in history of NLP with the importance of the paper.
These concepts have been used in our system. The Long Short-
Term Memory (LSTM) neural network [23] has not been
mentioned explicitly in our system but we used this neural
network to train our various NLP models.

Some may argue that the NLP as a field began when
Warren Weaver mentioned using of modern computing devices
to translate from one language to another in his memorandum
[24] in 1949 and the rest is history.

1) Parts of Speech: Noam Chomsky in 1956 [25] intro-
duced the concept that grammar of a language can be viewed
as a theory of the structure of this language and is based on
certain finite set of observations. It introduced the finite-state
language for NLP that we called today as Parts Of Speech
(POS).
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2) Stemming Algorithm: The stemming algorithm which
converts all the redundant words to its common ”stem” was
published in 1968 by Julie Beth Lovins [26]. Surprisingly its
main purpose was not for NLP purposes but for retrieving huge
amount of data from databases (back then data transfers were
a lot slower).

3) Porter-Stemming Algorithm: The famous porter-
stemming algorithm was easy to find as it is in public
repository online. This was develop to further improve the
efficiency of the information retrieval systems of the various
stemming algorithms available at that time [27].

4) The Viterbi Algorithm: Although, Viterbi algorithm was
originally proposed to calculate the error bounds in convolu-
tional codes [28] as just a proof of concept, David Forney Jr.
[29] in his paper ”The Viterbi Algorithm” modified this algo-
rithm for NLP purposes. Till this date we use this algorithm
alongside with Hidden Markov Model to predict the POS tag
of a word with probability even though an AI solution exists.

5) Named Entity Recognition (NER): ”Nymble: a High-
Performance Learning Name-finder” published by Daniel
Bikei et.al. [30] was the first to introduce a Named-Entity
Recognition system using slightly modified Hidden Markov
Model. It performs at or above the 90% accuracy level, often
considered ”near-human performance”.

Observing all those systems, we came to conclusion that
there is a lack of NLP system where a natural language is con-
verted into a source-code (all those systems converted natural
language into database queries). Also, those systems that do
convert to natural language does not allow customizations (i.e.
adding custom keywords to recognize) as a feature.

Our project intends to introduce a novel method that helps
the programmers in developing source-code and increasing
their speed and efficiency.

III. PROBLEM STATEMENT

The project intends to introduce a novel method that helps
the programmers in developing source-code increasing their
speed and efficiency.

• An interface to take natural language as input.

• An option to select programming language on the
interface (initially python).

• Convert natural language into pseudo code using NLP
(using intent recognition and entity recognition).

• Convert pseudo code into source-code (using tradi-
tional programming).

• Output the source-code onto the interface.

IV. PROBLEM DEFINITION

For a programmer, the ability to learn a programming
language’s commands and functions on the fly is crucial to
the time they spend on creating a source-code. No matter the
skill of the programmer, there are always are cases where they
have to tackle uncommon features present in a programming
language which they have not seen before. To solve those
uncommon and unseen features they refer documentation of

that programming language and then learn from it which
requires time.

The programmers can define the problem in natural lan-
guages easily, the problem lies in remembering the exact
keywords and parameters. By providing a Natural Language
Interface we can shorten the time the programmer takes to
search through documentations. It can also help to reduce the
skill and experience required to write complicated source-code
which heavily depends on using functions.

V. PROPOSED WORK

1) A python based interface to input English natural
language and an option to chose target programming
language.

2) Gather training data from the internet. The data will
be simple beginner’s problem statements from various
sites for variety.

3) Provide ”Parts Of Speech” (POS) tags to each word.
4) Train ”Intent Classification” to recognize different

operations such as ”addition”, ”multiplication”, ”vari-
able declaration”, ”print statement”, etc.

5) Train ”Entity Recognition” to recognize various data
types of variables.

6) Identify variable names through POS if they are
present in the input.

7) Write a function for each ”intent” and extract infor-
mation like number of variables, their type and name
if it is present and other information if required.

8) Convert the extracted information into a pseudo code
in a XML format.

9) Read that XML file and convert it into source-code
through python.

10) Save the source-code into a file.
11) Display the file into the interface.

VI. LIBRARIES REQUIRED

A. TKinter

Tkinter is the standard GUI library for Python. Tkinter
provides a fast and easy way to create GUI applications [31].
Tkinter provides various controls, such as buttons, labels and
text boxes used in a GUI application. These controls are
commonly called widgets.

B. NLTK vs SpaCy

NLTK (Natural Language ToolKit) [32], spaCy [33] and
Stanford’s CoreNLP [34] are all similar libraries that provide
off-the-shelf functions for NLP. As we are using ”python”
programming language for creating a demo, we need to list all
pros and cons on NLTK and spaCy libraries as those support
the python language, coreNLP does not (it only supports Java).
Table I lists the differences between NLTK and spaCy libraries.

The paper titled ”Using Natural Language Processing to
Detect Privacy Violations in Online Contracts” by P. Silva
et.al. [35] and another paper titled ”Extractive Automatic Text
Summarization using SpaCy in Python & NLP” [36] made
comparison between spaCy, coreNLP and NLTK and came to
conclusion that coreNLP has the best performance in terms of
precision, recall and F1 score followed by spaCy and lastly
NLTK.
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TABLE I. NLTK LIBRARY VS SPACY LIBRARY

NLTK SpaCy
NLTK (Natural Language TookKit) li-
brary was released in 2001.

SpaCy library was released in February
2015.

NLTK library is only supported in
”python” programming language.

SpaCy is supported in number of pro-
gramming languages like ”R”, ”ruby”,
”cpp”, ”java script”, ”.net”, ”python”,
etc.

NLTK has a lot of algorithms as com-
pared to spaCy which is helpful in learn-
ing and research applications.

SpaCy has a small group of algorithms
that they regularly update, which is crit-
ical in industry usage.

As it is not updated regularly, the algo-
rithms provided by NLTK are compara-
tively slower than spaCy.

With their regular update to latest tech-
niques spaCy is significantly faster than
NLTK.

NLTK incorporates several languages. SpaCy have statistical models for seven
languages including English, German,
Spanish, French, Portuguese, Italian,
and Dutch, It also braces “named en-
tities” for multi-language.

NLTK is string processing library. It
takes input as strings and provides out-
put as string or lists of strings.

SpaCy uses object-oriented approach. It
takes input in string but return the output
in objects.

NLTK does not support word vectors. SpaCy has support for word vectors.
NLTK tries to break the text into sen-
tences. It just returns the words itself,
no extra information is given with it.

SpaCy builds a semantic tree for indi-
vidual sentence as higher a potent ap-
proach, returns more information.

NLTK has inferior precision, recall and
F1 score than spaCy.

SpaCy has better precision, recall and
F1 score than NLTK.

C. Regex

Although spaCy provides ”Pattern Matcher” functionality
to its toolbox which is similar to regex, a regular expression
or regex can be used in some limitations of spaCy’s pattern
matcher.

A regex defines a set of strings that lets you check if
a particular string is present in a large text [37]. The most
common usage of regex is to alert system administrators if
an error appeared in log files. Another example would be to
extract phone numbers, email addresses from a large database.
It is commonly used where fixed pattern appears.

To find a email address that has the format
”someone@somedomain.sometopleveldomain” (eg.
john@gmail.com) we use the regex ”[a − zA − Z0 −
9. +−] + @[a− zA− Z0− 9−] + .[a− zA− Z0− 9− .]+”
to find emails in plethora of texts.

VII. WORKING MODEL

The main goal of our system is to convert ”Natural Lan-
guage” statements into source-code. It is able to handle one
line statements as input and can generate 3-5 lines source-code
depending on the input given.

Fig. 2 shows the working of our system when the system
has been deployed at the client side. It is a step-wise working
model which defines the processes from user input to showing
output to the user and all the other steps in-between. In this
figure, the light-blue nodes denotes the generation of files. For
example, the node ”Pseudo code statement/command” denotes
saving the .xml file in log folder. The white nodes denotes
processing.

A. NLP Translator

The first step in this process is to get the user input. The
input has to be in English natural language and has to describe

the programming problem. Once the input is received the
”NLP Translator” uses a trained NLP model to break down
the input and extract important information from it. In this
process, the first thing applied is ”Tokenizer” to split the input
into individual tokens or words, then entity extractor identifies
important keywords like equals sign, condition statements, etc.
Next, the ”Intent Identifier” identifies what kind of operation
does the user wants to perform like ”addition”, branching, etc.
Lastly, POS is used to identify the variable name, its value (if
present) and function/program name.

B. Post Processor

Once all the input has been identified, it’s time to convert
the extracted information into a pseudo code, this is done is
”Post Processing” step. It first arranges the input in specific
order that resembles a pseudo code, adds extra information if
missing and the using XML parsers converts the pseudo code
into XML. After this we are left with pseudo code file that
is easier to read by both humans and computers thanks to the
XML format.

C. Rule Based Translator and Its Post Processor

Rule Based Translator is an easier step that reads the
pseudo code line by line and converts the keywords from
universally understood to language specific format. The post
processor adds extra features to the syntactical code like
parenthesis ”{}”, indentation, semi-comma ”;”, etc. The output
is then saved on disk and displayed to the user on the interface.

VIII. ALGORITHM

Algorithm given in Fig. 3 is a coarse-grain view of the
proposed system that gives the basic steps needed to implement
this system.

We first start by creating an interface that can get input and
provide output. Second step is to search for a dataset. Since,
we did not find any we created the dataset from scratch. The
method of which is defined further ahead.

Next is to create a Named Entity Recognition or NER
model. To create a NER model we first need to provide Parts
Of Speech or POS tags which then be used by NER model to
identify various entities.

Once the system is trained we then start extracting informa-
tion from it. The first information we extract is variables, their
name, datatype, scope and value. After which ”operations” are
identified and all the variables associated with it are processed
i.e. each individual part of the operation is identified (for
example, in the statement ”add var1 and var2”, add is the type
of operation, var1 and var2 are the two variables associated
with it).

The extracted information is then parsed into XML format
and a pseudocode file is generated. Then this XML pseudocode
file is read again by the system and is converted into source-
code. This source-code is saved on the user’s system and
displayed on the interface.

IX. SYSTEM DESIGN

Fig. 4 is a detailed view of the proposed system that
explains the steps needed to create this system.

www.ijacsa.thesai.org 846 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Natural English 
Statement/ 
Command

Pseudo Code 
Statement / 
Command

NLP 
Translator

Post 
Processor

Rule Based 
Translator1

Syntactical 
Code 

(python)

Post 
Processor

Post 
Processor

Rule Based 
Translator2

Syntactical 
Code 

(workflow)
Formatting
Pseudocode 
Generation

Tokenizer
Entity 
Extraction
Intent Identifier

Fig. 2. NLI-GSC Working Model.
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Fig. 3. Algorithm of NLI-GSC System.

A. Data Generation

There are not many NLP datasets, if any, that address
the programming aspects that we can use. Generating data
manually for an AI system is very tedious and time-consuming
process as it requires a minimum of hundreds of data to provide
any acceptable results. Hence, due to these reasons we have
developed an automated system that can create its own dataset.

As seen in Fig. 4 & 5, we first define ”nutrients” tokens
i.e. variations of similar word. For example, ”DATATYPE”
is a nutrient containing integer, int, float, str, string, etc. We
then define ”seed” sentences. Seed sentences are made up
of combinations of ”nutrients”. An example of seed sentence
is ”COMMAND DATATYPE VARIABLE” which when ex-
panded will result in sentences like ”create integer var1”,
”define float area” and ”initialize string text 1”.

Pseudocode to Language Specific Source Code

Automatic Pseudocode Generation (XML)

Training AI Model

Data Generation
Create 

“Nutrients” 
tokens

Create 
“Seed” 

sentences

Expand “Seed” 
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for Pattern 
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values etc

Identify function/program 
name if not given generate 

one

Identify operation 
(i.e. +,-,/ etc)

Arrange various 
components with 

their proper format

Save the 
pseudocode 
as XML file

Read 
Pseudocode 

XML file

Define the start of 
function / program Declare variables

Define 
operations

Define the end of 
function / program

Get Natural Language 
Input from User

Provide language specific 
Source code to User

Pseudocode file in XML 
format

Fig. 4. NLI-GSC System Design.

The next step is to expand the seeds using individual
nutrient tokens. This will result in generating all the possible
combination of statements for the given format. In our pro-
gram, we were able to generate 1,565,668 statements from 23
seed statements (each seed’s length ranging from 3-6 nutrient
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tokens) and 19 individual nutrient tokens. Since, 1.5 mil is
too much of a dataset, we have reduced it with the ratio 1:20
resulting in getting a final dataset of 78,284 statements.

Seed

Sentence 1 Sentence 2 Sentence 3

Nutrient Nutrient NutrientGeneric Word
CMD_DECL a DTYPE VARI

Create a variable j Declare a integer 
int1

Define a string str_2

Seed Expander

Fig. 5. Data Generation Process.

B. Training AI Model

For training of the AI model, we used ”spaCy” library [33].
Unlike its NLTK counterpart which focuses on academics and
learning, spaCy is built for industrial uses and production.

We used Named Entity Recognition (NER) as our model to
tag words that may belong to certain instruction. For example,
the word ”int” will tell NER model that it belongs to ”datatype”
while words like ”addition”, ”sub”, ”*” will be recognized as
”operations”.

In training in the AI model, we first need to create a dataset
from data which we have achieved using spaCy’s ”Pattern
Matcher”. Since, we can control which words appear in the
data in Data Generation phase, we can easily use pattern
matcher to find a word or sequence of words to tag it. Once all
the relevant words are tagged and a training dataset is created
we can proceed to train it. Again, we used spaCy standard
libraries to train. We used 3 epochs with batch size = 100 and
got the final training loss of 1.95.

C. Automatic Pseudocode Generation

When the user inputs their natural language query, our
system automatically converts it to pseudocode and saves it
in XML format. The process is as follows.

After the user has given their input, the system uses
NER model trained in previous step to identify various tags
examples can be seen in Fig. 6 and 7. Once the tokens have
been recognized, we lemmatize them for easy recognition.
We lemmatize all the types of tokens inside the tags except
variables tag, since they are user given names. We process
them based on the tags it has been assigned.

The variables are assigned names (if none is given it will
automatically generate based on datatype), datatypes (If none
is given, it will first try to get it from another variable in
the input if not it will be assigned as string.), scope (local or
global) and values (if they are given). If the program recognizes
that it does not require any variables it will skip this step.

The input is recognized as either a function or a program
and then the name of the function/program is recognized if the
user has mentioned it in the query. A name is automatically
generated based on available tags if the user has not mentioned
the name explicitly. Once an operation tag is detected it will
take all the variables associated and arrange them in specific
pattern (i.e. ans = var1 + var2;).

Finally, all the components will be arranged by the order of
appearance. First, the program/function will be declared with
a proper indentation, then variables will be declared and then
operations will be written and lastly if the language demands,
the program/function will end (For example, some program
requires ”}” to end them ). All this will then be parsed to
XML file and saved on the desired location.

D. Pseudocode to Language Specific Source-code

Once the pseudocode file is ready, the only thing left to do
is to convert it into a programming language. Using techniques
that convert XML to program [14] [15], we can easily convert
pseudocode to source-code. An automatic pseudocode genera-
tion is independent in creating a language specific source-code.
Hence, we can- create the output of any programming language
by creating a new file.

It’s a simple process that reads the XML from top to bottom
and depending on the tag encountered it will use a specific
format to fill in the blanks.

X. RESULTS

Our system produces multiple outputs before reaching the
final source-code output. Below are the outputs according to
the order they are generated.

A. Generating Data for Training

As explained in Section IX-A, seed statements are used to
generate input data that is later used to train the NLP model.
Table II lists all the seed statements used in the system along
with some sample output it generates. This output is unlabelled
text data that acts as raw dataset.

TABLE II: Seed Statements along with Example Uutput

1 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE

Write a function to
creates global integer

2 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE NUM equal to
RAND NUM

Create a program to
define global integer
equal to 20

Seed
No.

Seed Statement Example Output

Continued on next page
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TABLE II: Seed Statements along with Example Uutput (Con-
tinued)

3 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE NUM
VARI=RAND NUM

Write a program for
create number k=18

4 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE VARI

Create a function to
declares integer int0

5 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE NUM to
RAND NUM

Create program for
create local nums to 59

6 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE equal VARI to
RAND NUM

set local variable equal j
to 77

7 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE CHAR = ’hi’

Write function to set
characters = ’hi’

8 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE CHAR to ’hi’

set characters to ’hi’

9 FUNC PROG START
CMD DECL
SCOPE OFVAR VARI
= ’hi’

Write a function to
creates global lists1 =
’hi’

10 FUNC PROG START
CMD DECL
SCOPE OFVAR VARI
to ’hi’

Write a function for
create global txt 1 to
’hi’

11 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE CHAR VARI =
’please enter value’

Write a program for set
local char char 0 =
’please enter value’

12 FUNC PROG START
CMD DECL
SCOPE OFVAR
DTYPE CHAR VARI
to ’please enter value’

create character j to
’please enter value’

13 FUNC PROG START
CMD PRNT VARI

Write function to show
strs0

14 FUNC PROG START
CMD PRNT ’please
select value’

show ’please select
value’

Seed
No.

Seed Statement Example Output

Continued on next page

TABLE II: Seed Statements along with Example Uutput (Con-
tinued)

15 FUNC PROG START
CMD PRNT ’please
select value’ + VARI

write ’please select
value’ + str1

16 FUNC PROG START
CMD PRNT VARI + i

display c + i

17 FUNC PROG START
CMD PRNT ’please
select value’ + i

Create a program to
shows ’please select
value’ + i

18 FUNC PROG START
CMD INPUT VARI

Create function for input
string 1

19 FUNC PROG START
CMD INPUT ’please
enter name’

Create function for
insert ’please enter
name’

20 FUNC PROG START
add VARI + VARI

Create a function to add
strings0 + strings 0

21 SPL FUNC VARI to
SPL CLASS

print strs 2 to screen

22 Write a FUNC PROG
FUNC NAME to
perform OPER with
VARI, DTYPE NUM
VARI = RAND NUM

Write a program
prog div to perform add
with i, floats j = 47

23 FUNC PROG START
OPER SCOPE OFVAR
DTYPE NUM VARI
and VARI

Create a function for
mod local number c and
address

Seed
No.

Seed Statement Example Output

Table III depicts time taken for each seed statement to gen-
erate their respective statements, their individual time and the
amount of raw statements it generates. The full seed statements
can be seen in Table II. It can observe that statements that
have large number of nutrients takes more time to execute and
generate more statements compared to ones that have small
number of nutrients.

B. Varying NLP Hyper-parameters

While training this NLP models, there were various hyper-
parameters like learning rate, batch size, dropout rate, total
epochs, etc. Changing those hyper-parameters resulted in dif-
ferent loss and execution time. In Table IV, shows various
effects of changing those hyper-parameters.

The first column is kept as the base for benchmark as this
is giving the best possible loss value along with relatively fast
training time. The other columns shows gradual changes in
various parameters, the changed parameters are shown as bold
while the unchanged parameters (compared to first column) are
normal.
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TABLE III. TIME TAKEN TO GENERATE INPUT DATA STATEMENTS FROM
SEED STATEMENT ALONG WITH THE AMOUNT EACH STATEMENT

GENERATES

Seed
No.

Individual
Time

Cumulative
Time

No. of State-
ments Gen-
erated

1 0.049s 0.049s 15288
2 0.022s 0.073s 7176
3 0.438s 0.512s 174096
4 0.383s 0.900s 271440
5 0.031s 0.931s 7176
6 0.721s 1.653s 271440
7 0.014s 1.668s 4056
8 0.015s 1.684s 4056
9 0.077s 1.762s 91728
10 0.078s 1.840s 91728
11 0.150s 2.006s 136656
12 0.172s 2.179s 136656
13 0.015s 2.195s 30576
14 0.014s 2.210s 104
15 0.031s 2.241s 30576
16 0.027s 2.269s 30576
17 0.000s 2.270s 104
18 0.009s 2.279s 19110
19 0.000s 2.279s 65
20 0.000s 2.279s 3822
21 0.000s 2.279s 1470
22 18.621s 20.901s 8195904
23 0.552s 21.700s 369954

TABLE IV. VARIOUS HYPER-PARAMETERS CONFIGURATION AND THEIR
EFFECTS BASED ON EPOCHS

Learn
Rate:
0.001
Batch
Size:
1000
Dropout
Rate:
0.0

Learn
Rate:
0.001
Batch
Size:
1000
Dropout
Rate:
0.1

Learn
Rate:
0.001
Batch
Size:
5000
Dropout
Rate:
0.0

Learn
Rate:
0.005
Batch
Size:
1000
Dropout
Rate:
0.0

Learn
Rate:
0.005
Batch
Size:
5000
Dropout
Rate:
0.1

Learn
Rate:
0.001
Batch
Size:
5000
Dropout
Rate:
0.1

Epoch
1/5

Losses:
143006.98
Time:
90.46s

Losses:
173171.71
Time:
102.71s

Losses:
576695.25
Time:
85.97s

Losses:
52150.45
Time:
91.47s

Losses:
278816.12
Time:
101.01s

Losses:
611403.16
Time:
99.14s

Epoch
2/5

Losses:
14.13
Time:
178.95s

Losses:
14.34
Time:
206.14s

Losses:
89620.88
Time:
172.35s

Losses:
95.10
Time:
188.07s

Losses:
435.87
Time:
201.79s

Losses:
200406.14
Time:
199.16s

Epoch
3/5

Losses:
7.49
Time:
269.70s

Losses:
0.94
Time:
313.47s

Losses:
1655.89
Time:
259.04s

Losses:
219.68
Time:
298.05s

Losses:
81.57
Time:
306.28s

Losses:
9531.23
Time:
300.40s

Epoch
4/5

Losses:
0.00014
Time:
363.22s

Losses:
2.53
Time:
422.21s

Losses:
11.83
Time:
348.93s

Losses:
54.44
Time:
424.99s

Losses:
87.22
Time:
414.40s

Losses:
481.82
Time:
405.47s

Epoch
5/5

Losses:
1.6228e-
06 Time:
457.60s

Losses:
0.0014
Time:
531.43s

Losses:
1.77
Time:
440.41s

Losses:
2.00
Time:
563.29s

Losses:
26.73
Time:
524.79s

Losses:
7.43
Time:
511.42s

C. Input Statement

We used the below 2 statements to demonstrate the output
of our system during various stages of the system. These
are the example of inputs that the user might use during its
production phase.

Statement 1:

define variable text1 = ’please enter value’

Statement 2:

create a function to add a and local number num 1 = 15

and b

D. NER System Output

Fig. 6 and 7 are the outputs given by the NER model.
Each word (token) is bundled with original word given by the
user and tag assigned by the NER model. In the left is the
word/token and in the right is tag assigned.

Fig. 6. NER Model Output of Statement 1.

Fig. 7. NER Model Output of Statement 2.

E. Pseudocode Output

Pseudocode file generated by our system is shown below
in listings 1 and 2.

1 <?xml version="1.0" ?>
2 <root>
3 <statement value="define variable text1 = ’please

enter value’"/>
4 <program type="program" name="define_variable">
5 <variables>
6 <variable name="text1" datatype="variable"

value="’please enter value’"/>
7 </variables>
8 </program>
9 </root>

Listing 1: Pseudocode output of statement 1

1 <?xml version="1.0" ?>
2 <root>
3 <statement value="create a function to add a and

local number
4 num_1 = 15 and b"/>
5 <program type="function" name="create_function">
6 <variables>
7 <variable name="a" datatype="number"/>
8 <variable name="num_1" scope="local"

datatype="number" value="15"/>
9 <variable name="b" datatype="number"/>

10 </variables>
11 <add variable1="a" variable2="num_1" variable3

="b"/>
12 </program>
13 </root>

Listing 2: Pseudocode output of statement 2

F. Final Source-code

The source-code is the final output generated. This is the
only output visible to the user. Listings 3 and 4 shows the
output code.
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1 def main():
2 variable text1 = ’please enter value’
3

4 if __name__ == "__main__":
5 main()

Listing 3: Source-code output of statement 1

1 def create_function():
2 number a
3 number num_1 = 15
4 number b
5

6 answer = a + num_1 + b
7

8 create_function()

Listing 4: Source-code output of statement 2

The final results as obtained in our program that is made
using python can be seen in Fig. 8, 9, 10 and 11.

XI. FUTURE WORK

One of the ways we can further improve on this project is to
create support for more programming languages. Currently we
have only implemented support for python and C. We can also
add support for new common functions like date, time, string
operations, etc. Loops like ”for”, ”while” and ”do while” are
also left out due to its complexity and time constraints which
can be expanded later.

Our approach serves as the basic idea that allows the
development of systems that are more complex in terms
of keyword detection and contains more functionalities like
loops and branching by adding additional NLP elements like
dependency parsing and Semantic parsing.

XII. CONCLUSION

This proposal shows that a language-independent solution
is a feasible alternate for writing source-code without having
full knowledge about a programming language.

Using XML based pseudo code as an intermediate step
makes this method as programming language-independent
which solves the major drawbacks in existing research that
comes with a rigid commitment to only one programming
language. The next step, which is converting XML based
pseudo code into language-dependent source-code is depen-
dent on premade language format which is modifiable by
anyone, making this approach module based approach. If
a person wishes to convert the natural language into some
other programming language, they simply need to duplicate
the premade language format and fill it with their desired
programming language keywords.

Another challenge faced in this area which is program
based NLP is that, there is not many datasets available in
this particular sub-field which severely limits the research
capabilities and keeps this sub-field from growing forward.
Although not ideal, our dataset generation system provides an
automated approach to create thousands of data that can be
used in an AI system as a training dataset.

One way this system can be used is with ticket based
programming, where the programmers get their tasks in the

form of tickets in their mail. The system can be used as a
suggestion system where the mail is analyzed and a suggested
solution is provided to the programmer. Another use is to pair
this system with voice recognition and let the programmer
write simple source-code only through speech making their
hands free for writing other more complex code.
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