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Abstract—The Raspberry Pi has evolved in recent years into
a popular, low-cost, tiny computer for a wide range of IoT ap-
plications. Raspberry Pi is not only successful for data collection
but also for data processing, including data storage and analysis.
Thus, this study investigates the capability of Raspberry Pi as an
edge processing device for capturing lightning strike signals in
predicting flash flood locations. An electric and magnetic sensor
(EMS) is connected to a Raspberry Pi in the experiment setup.
The Raspberry Pi is then used to process digitised lightning
signals. From the experiment, Raspberry Pi’s performance is
measured using the performance metrics: central processing unit
(CPU) usage and temperature. The results revealed that the
Raspberry Pi could handle the real-time collection and processing
of lightning signals from the EMSs without affecting the hardware
capability.
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I. INTRODUCTION

The Internet of Things (IoT) is changing how we live,
work, travel and do business. It is also the cornerstone of a
modern industrial revolution known as Industry 4.0 and the key
to the digital transformation of businesses, communities, and
society. An IoT ecosystem comprises web-enabled intelligent
devices that use embedded systems, such as processors, sen-
sors, and communication hardware. These intelligent devices
collect, transmit and act on data they acquire from their
environments. The devices then share the sensor data they
acquire by connecting to an IoT gateway or other edge device,
where the data is either transferred to the cloud for analysis or
locally analysed. According to Priceconomics.com, the number
of connected devices is projected to rise from 8.7 billion in
2012 to 50 billion in 2020 [1]. Huawei predicts that 100 billion
connected devices will be used in every business and living
area by 2025 [2]. Consequently, the data generated by the
IoT is projected to reach 4.4 zettabytes by 2020 from just
0.1 zettabytes in 2013 [1].

The value of IoT goes further than data collection and real-
time monitoring. Companies can gradually see the need to
upload vast amounts of data to the cloud and support flexible
resource management and visualised operations. They will also

strive to process their data using machine learning and predic-
tive analytics in order to introduce better technologies that will
bring them success. Previously, placing all computational tasks
on the cloud has proved to be an efficient way to process data
since the power of cloud computing outperforms the capacity
of the IoT. However, over the past few years, the significant
increase of data generated by smart devices has put a strain
on bandwidth utilisation [3].

Furthermore, digital traffic jams are almost anticipated,
with the world estimated to generate up to 4.4 zettabytes of
data by 2020. There is also the ”last mile” bottleneck problem.
Essentially, the last mile defines the final networking segment,
which connects an organisation’s local network to the Internet.
Since all network traffic destined for a particular organisation
is channelled through that connection, it can be a bottleneck
in networking throughput [4].

Due to the miniaturisation of processing and storage tech-
nology, current IoT devices have become more potent in col-
lecting, storing, and processing data. This scenario has opened
opportunities for organisations to optimise their networks and
relocate more processing functions closer to where data is
collected at the edge of the network. Gartner defines edge
computing as a “part of a distributed computing topology
where information processing is located close to the edge,
where things and people produce or consume that information”
[5]. In essence, edge computing brings computation and data
storage closer to the smart devices rather than depending on
a central location that might be thousands of kilometres away.
Edge computing allows the data from the IoT devices to
be analysed before being sent to the data centre. The main
objective of edge computing is to prevent data, especially real-
time data, from suffering latency issues that can affect the
performance of an application [6].

Recent years have seen the development of Raspberry Pi as
a popular, low-cost, tiny computer for several IoT applications.
Raspberry Pi, referred to as a Single Board Computer (SBC),
can run a complete operating system and has sufficient periph-
erals like memory, central processing unit (CPU), and power to
initiate execution without additional hardware. In the present
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TABLE I. TABLE OF ABBREVIATIONS

Abbreviation Meaning
CAPPI Constant Altitude Plan Position Indicator
CG Cloud-to-Ground
CPU Central Processing Unit
EMS Electric and Magnetic Sensor
GPS Global Positioning System
IoT Internet of Things
LF Low Frequency
LPDDR Low-Power Double Data Rate
NBE Narrow Bipolar Event
PaaS Platform as a Service
RAM Random Access Memory
RPi Raspberry Pi
SDRAM Synchronous Dynamic Random-Access Memory
SBC Single Board Computer
VLF Very Low Frequency

society, Raspberry Pi is not only an essential data-gathering
device, but it can also analyse and store data in a server-like
fashion.

In this study, Raspberry Pi devices are used as one of
the components in the proposed architecture to illustrate its
viability as an edge computing device and to evaluate its
performance in terms of CPU system-wide utilisation and
temperature. In this study, we believe Raspberry Pi devices
may function as data processing edge devices, given their
current CPU, memory, and storage capacity. If Raspberry Pi
devices merely function as data collectors without additional
processing and transfer all data to the cloud, then a significant
amount of computer power is squandered. Consequently, in
this study, our aim is not only to cut data transfer time
by using Raspberry Pi’s local processing capacity but also
efficiently uses the otherwise underused distributed computing
power. This study’s contribution is to reveal the viability and
potential of edge computing by doing hands-on experiments
and analysing the performance in terms of CPU usage and
temperature.

The rest of the paper is organised as follows. An overview
of the Raspberry Pi as an edge device and similar studies on
Raspberry Pi’s performance as an edge device is discussed
in Section II. Section III presents this study’s background
works. The experiment setup for the performance evaluation
is presented in Section IV. Section V reports and discusses the
results of the experimental evaluation. We conclude the paper
in Section VI.

II. RELATED WORKS

On March 14, 2018, the Raspberry Pi Foundation intro-
duced the Raspberry Pi 3 Model B+ as an upgrade to its
predecessor [7]. It is also known as a Single Board Computer
(SBC) with a Linux-based operating system, and a micro SD
card is often required for boot file system storage. General
Purpose Input-Output (GPIO) connectors are meant to control
a vast array of electrical components in addition to being a
small, low-cost computer programmatically[7]. In addition to
its usage in education, it has become a popular edge processing
device for other IoT applications.

The research articles in [8], [9], [10], [11] are exam-
ples of the existing literature on edge computing research
utilising Raspberry Pi. The authors of [8] have created a
lightweight edge computing-based distributed system that uses

Raspberry Pi to directly handle the raw picture data from each
camera. Consequently, the identified emotions may be easily
communicated to the end user. In this study, the optimised
and bespoke algorithms in the edge devices increase data
processing speed, reduce network bandwidth requirements, and
enhance application performance. The authors of [9] propose
an automated service and resource discovery technique to
effectively deploy nano services on local IoT nodes. Using a
scenario involving remote healthcare monitoring, the authors
offer a Raspberry Pi platform prototype implementation of the
suggested method.

Several works in [12], [13], [14], [15], [16], [17] are
related to performance evaluation on Raspberry Pi as edge
devices. A study in [12] comparing data processing in various
network setups and data stream speeds has been done in
semantic data enrichment. It implemented a tiered IoT-Edge-
Cloud system employing automotive sensor data at the IoT
layer, Raspberry Pi at the edge layer, and Node-Red server at
the cloud level in real architecture. The outcome demonstrates
that data processing at the edge layer has enhanced efficiency,
memory utilisation, and round-trip time.

Deep learning-based voice recognition applications have
been studied in [13] to compare the performance and efficiency
of Raspberry Pi with Nvidia Jetson Nano edge devices. Even if
the Nvidia Jetson Nano is superior to Raspberry Pi, the word
error rate for real-time inference on the Raspberry Pi CPU
slightly degrades. The word error rate on the edge layer is
generally more significant than the server inference, although
it is not too far behind.

The objective of [14] is to conduct a comparative and
experimental investigation of the performance of five distinct
Raspberry Pi models (RPi Zero W, RPi Zero 2 W, RPi 3B,
RPi 3B+, and RPi 4B) under a variety of situations and
configurations. In conclusion, RPi 4B is significantly surpassed
by competitors. In the meanwhile, the performance of the RPi
Zero 2 W, RPi 3B, and RPi 3B+ is comparable, and the RPi
Zero W is suggested for applications with minimal CPU and
RAM capacity.

In [16], the authors demonstrate how to implement a cloud
Platform as a Service (PaaS) architecture on a Raspberry Pi
cluster. The main goal of the implementation is to make the
cluster a suitable platform for more complex data gathering
and analysis applications placed at the edge of a cloud. The
findings show that while this is technically feasible, there are
still some performance issues due to a relatively weak CPU, a
limited network bandwidth, and problems with the file system.

Unlike the previous studies, this study aims to present
the robustness and feasibility of Raspberry Pi as an edge-
processing device for real-time data.

III. BACKGROUND

A. Proposed Architecture

In this paper, we are motivated to develop a real-time
flash flood forecasting system utilising Raspberry Pi as an
IoT edge processing device. The proposed system uses a new
technique to forecast the flash flood-affected locations using
the following parameters:
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Fig. 1. The Proposed System Architecture.

1) Negative narrow bipolar event (–NBE) electric and
magnetic fields signal.

2) Positive cloud-to-ground flash (+CG) electric and
magnetic fields signal.

3) Cloud top height data [18]
4) Constant Altitude Plan Position Indicator (CAPPI)

data [18]
5) Wind speed
6) Wind direction

Briefly, the –NBE and +CG lightning signals are collected
and located by several lightning sensors in real-time [19].
Our research group at Universiti Teknikal Malaysia Melaka
(UTeM) built these homemade sensors from scratch. These
sensors have been working since 2015, tested, and calibrated
[20][21]. The signal coverage for a single sensor is within
a 300 km radius. Together with the rest of the parameters,
real-time tracking can be done for any storms in Malaysia
that can lead to flash floods. Specifically, cloud top height
and CAPPI data are used to monitor rainfall and lightning
flash rate intensity. The wind speed and direction are used to
predict where a particular storm is heading and at what rate.
By monitoring the occurrences of +CG and –NBEs produced
by a storm in real-time, together with cloud top height and
CAPPI rainfall rate, the proposed system will be able to
forecast the rainfall intensity and rate for the next 1-3 hours
period. Facilitated by wind speed and direction, the system can
forecast the location where the downpour would impact most
significant. Additional details for real-time forecasting of flash
floods using the above technique are given in [19], [20], [21].

Fig. 1 illustrates the architecture of the proposed Flash
Flood Early Warning System. Fig. 1 provides a general view
of the proposed system that includes the three components.
The three components are detection, forecast architecture and
dissemination. The first component falls under the detection
category, which contains the lightning sensors. The lightning
sensor is called Electric and Magnetic Field Sensor (EMS).
The main purpose of this sensor is to detect and locate
lightning signals, particularly +CG and –NBE, within a 300
km radius. The signal is a combination waveform of electric
and magnetic fields that are used to identify different types of
lightning signals [19][21]. As shown in Fig. 2, there are five
major components (or subsystems) in EMS system:

Fig. 2. Five Major Components or Subsystems of Electric and Magnetic
Fields Sensor (EMS).

1) Antenna part with capacitive antenna to detect Elec-
tric field and two loop antennas to detect orthogonal
components of magnetic field [20].

2) Filter circuits designed for detection of electric and
magnetic fields at low frequency/very low frequency
(LF/VLF) bands (or below than 1 MHz) [20].

3) Digitizer to digitize the captured analog lightning
signals. Currently we are using the PicoScope and
it is reliable.

4) A single board computer is used convert the digitize
lightning signals to the coordinates of the lighting
strikes and stream the EMS data in real time back
to Forecasting Infrastructure via 4G network (or any
available network infrastructure). Currently, the con-
version and real time data streaming are implemented
using Raspberry Pi platform.

5) Power supply from solar power, batteries, and power
bank.

The focus of this paper is to evaluate the performance of the
detection component, specifically the single board computer,
in analysing and converting the digitised lighting signals to
coordinates of the lightning strikes.

IV. EXPERIMENT ENVIRONMENT

As previously mentioned, this study aimed to evaluate
the performance of the single board computer in the EMS
system of the detection component (refer to Fig. 2). Fig.
3 presents the flowchart for the EMS system processes. As
shown in Fig. 3, the antennas in the EMS will capture the
lightning signals whenever the lightning event occurs [20][21].
The analogue signals are then digitised using the PicoScope.
Next, the digitised lightning signals using a custom-written
Python program that synchronises the signals with the Global
Positioning System (GPS) clock and produces the coordinates
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Fig. 3. The Flowchart for the EMS System.

of the lightning strikes [20][21]. Subsequently, the resulting
coordinates are sent to the cloud database via IoT Gateway
using any available wireless transmission (refer to Fig. 1).

A. Experiment Setup

In our experiment, as shown in Fig. 4, the components
were integrated around the Raspberry Pi 3 as the main com-
puter. The integration is done by connecting the EMS to the
Raspberry Pi with the specification listed below in Table II.
Fig. 3 shows that the digitised lightning signal is being fed into
the Raspberry Pi to be processed by the custom-written Python
program (refer to Algorithm 1) and produce the lightning strike
locations. The resulting lightning strike locations are sent to
the cloud database via an IoT gateway.

In the experiment, the process of converting the lightning
signals into the lightning strike locations is repeated for 50
iterations in one cycle. The cycle is then repeated five times
for statistical validity. However, in the actual scenario, the

Algorithm 1 Signal Processing Program for the Digitised
Lightning Signals

for each sequence until 100 do
SET current time
print sequence attempt
INIT empty arrays: az, az2, d, ftype, pola, timeLDloc, ranges,
typeflash, polar
result← CPUTemperature
if ranges array is empty then

print NO FLASHES WITHIN SELECTED RANGE
else

INIT empty arrays: flash, flashS
for each element of typeflash array do

if element of typeflash array is empty then
if element of polar array is empty then

flash array← 1
flashS array←′ CG+′

else
flash array← 2
flashS array←′ CG−′

end if
else

if element of polar array is empty then
flash array← 3
flashS array←′ IC+′

else
flash array← 4
flashS array←′ IC−′

end if
end if

end for
CALL math.radians(2.3139) RETURNING latitude radians
INTO lat1
CALL math.radians(102.3185) RETURNING longitude radi-
ans INTO lon1
INIT empty arrays: lat2, lon2, rangedeg
for each element of ranges array do

CALL math.radians(¡element of rangedeg
array¿/40075.01*360)
return value radians INTO rangedeg array

end for
for each element of ranges array do

dlon2 ← math.asin(math.sin(lat1) ×
math.cos(

element of rangedeg array
6378.1

) +

math.cos(lat1)×math.sin(element of rangedeg array)×
math.cos(element of az2 array))
a ← math.sin(element of az2 array) ×
math.sin(

element of rangedeg array
6378.1

)×math.cos(lat1)

b ← math.cos(
element of rangedeg array

6378.1
) −

math.sin(lat1)×math.sin(dlon2)
dlat2← lon1 +math.atan2(a, b)
CALL math.degrees(dlat2) RETURNING value degrees
INTO lat2 array
CALL math.degrees(dlon2) RETURNING value degrees
INTO lon2 array

end for
end if

end for

process in Fig. 3 only happens during a lightning storm. The
main goal of this experiment is to observe the Raspberry Pi’s
performance if the lightning signal processing in Fig. 3 is
executed repeatedly by measuring the Raspberry Pi’s CPU
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Fig. 4. The Experiment Setup.

TABLE II. HARDWARE SPECIFICATION FOR RASPBERRY PI

Hardware Specification Raspberry Pi 3B+
CPU ARMv8 Cortex-A5, 1.4GHz
CPU Cores 4
Memory 1GB LPDDR2 SDRAM
Integrated Wi-Fi 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless

LAN

usage and temperature.

In each iteration, the CPU usage and the Raspberry Pi’s
temperature are measured using Python cross-platform library
for retrieving information on running processes and system
utilisation called psutil[22] library. In the experiment, the
”cpu percent()” function from the psutil library is used to
measure the Raspberry Pi’s system-wide CPU utilisation [22].
Another function called ”CPUTemperature()” is used to mon-
itor the Raspberry Pi’s current temperature. This function is
called from an application programming interface library for
Raspberry Pi devices’ general-purpose input/output (GPIO)
devices [23]. In essence, the CPUTemperature function returns
the Raspberry Pi’s current temperature in degrees Celcius.

V. RESULTS AND DISCUSSION

This section presents the performance evaluation results on
the Raspberry Pi for digitised lightning signal processing. As
mentioned in the previous section, the processing is repeated in
50 iterations in each cycle. Box plots in Fig. 5 show the statistic
of the CPU usage and temperature measured in the experiment.
For each data set, the first and third quartiles are represented by
a box, with the median indicated in the box’s centre. Whiskers,
the lines extending from the box’s edges, display the minimum
and highest CPU utilisation and temperature.

Figs. 5a and 5b show the boxplots for the Raspberry Pi’s
system-wide CPU utilisation percentage and the Celcius’s CPU
temperature, respectively. In Fig. 5a, the interquartile range for
Raspberry Pi’s CPU usage is consistently between 23% and
25%, with a median of approximately 24.6% for each cycle.
Each of the box plots for the CPU usage in Fig. 5a skews
toward the value of 25%, which indicates that the processing
of the lightning signals uses only 25% of the Raspberry Pi’s
CPU.

Fig. 5b shows the Raspberry Pi’s CPU temperature distri-
bution. The box plots in Fig. 5b demonstrate an increase in

(a) CPU Usage

(b) Temperature

Fig. 5. The Raspberry Pi CPU Usage and Temperature Distributions.

the CPU temperature from 47 degrees Celcius to a maximum
of 51 degrees Celcius. The median for cycles 1 and 2 is
approximately 48 degrees Celcius with an increment to 50
degrees Celcius for cycles 3, 4 and 5. According to the
Raspberry Pi official documentation [24], the Raspberry Pi is
constructed with commercial-grade chips that are qualified for
varied temperature ranges to keep prices down; the manufac-
turers indicate the USB and Ethernet controller of the Pi 3+
(Microchip LAN7515) as being qualified from 0°C to 70°C.
The operating temperature range for the SoC (System on Chip
- the integrated circuit that performs the Pi’s processing, a
Broadcom BCM2837B0) is -40 to 85 degrees Celsius [24],
[25], [26]. Based on the official specification [24], the current
workload in the experiment that is subjected to the Raspberry
Pi is not enough to spike the temperature to a level that can
damage the hardware.

Figs. 6 and 7 shows the distribution for system-wide CPU
utilisation and temperature for each cycle in the experiment.
Figs. 6 show that the system-wide CPU utilisation is consis-
tently at a maximum of 25% in each cycle, whereas Figs. 7
show an increment in the CPU temperature from Cycle 1 until
Cycle 5. The distributions of CPU utilisation and temperature
for 50 iterations in each cycle shown in Figs. 6 and 7 are
consistent with the boxplot statistical distribution shown in
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(a) First Cycle (b) Second Cycle

(c) Third Cycle (d) Fourth Cycle

(e) Fifth Cycle

Fig. 6. The Raspberry Pi System-Wide CPU Utilisation for Five Cycles.

Figs. 5.

As mentioned in the previous section, the experiment
conducted in this study involved the processing of converting
lightning signals to lightning strike locations are run for fifty
iterations throughout a single cycle where the cycle is repeated
five times. Based on the workload introduced to Raspberry Pi
in this experiment and the results obtained (Refer to Figs. 5

- 7), it can be ascertained that the Raspberry Pi can function
as an IoT edge processing device. Figs. 5 - 6 demonstrate that
Raspberry Pi maintains only 25% system-wide CPU utilisation
with a maximum temperature of 51 degrees Celcius. As stated
in the preceding section, the Raspberry Pi will not be subjected
to a persistent heavy workload in a practical scenario since
the collection and conversion processes are done during a
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(a) First Cycle (b) Second Cycle

(c) Third Cycle (d) Fourth Cycle

(e) Fifth Cycle

Fig. 7. The Raspberry Pi CPU Temperature for Five Cycles.

thunderstorm only.

VI. CONCLUSION

This research analysed the CPU utilisation and temperature
of Raspberry Pi as an edge device that processes lightning
strike signals to anticipate the location of flash floods. The
experiment aimed to transmit continuous digital signals for

processing to Raspberry Pi. The data indicate that the CPU
is only utilised to a maximum of 25%, with a maximum
temperature of 51 degrees Celsius. In a real-world scenario,
data collection and processing are only performed during a
thunderstorm. Therefore, these findings demonstrate Raspberry
Pi’s capability to handle a persistently substantial workload.
As less processing is needed in a real scenario because the
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processing occurs only when a thunderstorm strikes, the results
prove the Raspberry Pi’s capability to process real-time signals.

Currently, this study only focuses on the performance
evaluation of Raspberry Pi as an edge processing device in
the proposed architecture. The proposed architecture will be
implemented and evaluated in a real scenario for future work.
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