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Abstract—Generating university course timetables is a com-
plex problem, especially in large environments such as institu-
tions. Currently, some universities in Saudi Arabia manually
generate timetables for classes because they use Vendor Manage-
ment Systems (VMS) for registration and management. Manually
generating course timetables is time-consuming and laborious for
the academic staff. Although various methods have been proposed
to generate timetables, they address specific environments or
systems that can be extended to or work as separate components
of the university management system. In this paper, we propose
a service-based system with a decentralized architecture that can
fully automate the process of course timetable generation and can
be easily integrated into VMS. The proposed service-based system
employs a genetic algorithm to optimize the process of scheduling
courses and generating timetables. The system was implemented
using JAVA RESTful web services, and the algorithm was tested
by generating various course timetables with various constraints.
The results showed that the proposed decentralized architecture
is applicable to and can be fully integrated with any VMS. Fur-
thermore, the use of genetic algorithm set up to 200 generations
and iterate 1000 times produces acceptable timetables without
violating any of the defined constraints.

Keywords—Courses timetable generation; genetic algorithm;
course scheduling; service-based system; service-oriented architec-
ture; optimization; web services

I. INTRODUCTION

Some universities in Saudi Arabia use vendor management
systems (VMS) such as Banner [1] to enroll and manage
students. The main architecture of a VMS constitutes a data-
based management system deployed on the server side and a
web portal for accessing the system from the client side. How-
ever, a VMS implements only common generic requirements
related to registration and management processes. Therefore,
such systems can only function for general use cases, such
as publishing, presenting, and manipulating student timeta-
bles. Currently, university vendor management software can-
not consider specific requirements related to course manage-
ment at universities. Examples of these requirements include
the registration and timetable generation processes, which
typically comprise many essential periodic tasks that have
been performed manually thus far. Although extensive studies
by artificial intelligence (AI) communities and operational
research have focused on performing timetable generation
through various algorithms [2] [3], VMS developers have not
considered applying automatic algorithms to their systems for
handling specific tasks. Extending and implementing specific

tasks lengthens the development process and makes it costlier.
Although such systems are being continuously developed, it
is still costly to implement the specific cases and scenarios
required by universities to automatically generate complete
course timetables. Therefore, most universities prefer using
VMS to perform general tasks and manually perform specific
tasks.

Universities are encouraged to apply digital transformation
and use Al solutions to reduce repetitive processes and move
toward their complete automation. We discovered that gen-
erating course timetables is one of the repetitive, costly, and
time-consuming tasks. Generally, generating university course
timetables is considered complex and categorized as an NP-
hard problem. This means that they entail exponential growth
in search time and effort, wherein the problem factors such
as the number of courses or students increases in size [4].
Therefore, we must pursue heuristic approaches that can handle
different numbers of constraints, both hard and soft, that can
vary from one institution to another. Thus, the objective of
this study was to fully automate the process of preparing and
allowing students to register on a timetable. This process is
performed by generating the term timetable using heuristic
approaches, which are elucidated in this study.

We encountered another characteristic of the generic archi-
tecture of VMS: they have a centralized architecture that pri-
marily depends on a centralized database management system.
By contrast, universities comprise several colleges, each of
which comprises several departments. Therefore, a centralized
architecture can result in various performance and availability
problems, and the staff is unable to automate or enhance
the registration process effectively. This research motivation
is to improve and fully automate the registration process by
overcoming the following two essential challenges:

1)  Creating a service-based system that can be deployed
in the form of decentralized architecture.

2)  Designing and implementing an algorithm to generate
course timetables effectively.

The structure of the paper is as follows. Section II includes
a brief background of service-oriented architecture (SOA) and
genetic algorithms (GAs). Section III covers related research
on auto-generating university timetables. Section IV presents
description of the problem. Section V contains an explanation
of the proposed solution and introduces the design of the
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proposed service-based automatic timetable generation archi-
tecture. Section VI presents the proposed GA design. Section
VII describes the implementation of the architecture and the
proposed GA. Section VIII discusses the results, figures, and
findings, and Section IX presents our suggestions for future
research directions and conclusions.

II. BACKGROUND

SOA is a design paradigm employed to support distributed
business applications, whereas a GA is an evolutionary algo-
rithm that can be applied to solve optimization problems. In
this section, we present a brief background of both SOA and
GAs and the methods applied in our research.

A. Service-based System

The concept of SOA is applied to engineering business
processes within large distributed systems. It ensures that a
system has various characteristics, such as being interoperable,
service-based, loosely coupled, usable, and fault-tolerant [5].
In an SOA, services are considered self-contained logical
functionalities and designed through web services [6]. Fur-
thermore, the backgrounds of the services can be encapsu-
lated in different programming languages, wherein the service
client only uses the description for the service without any
knowledge of its implementation. There are two types of
web service implementations: simple object access protocol
(SOAP) and representational state transfer (REST). Another
feature of the SOA is that it can provide an enterprise ser-
vice bus (ESB), which is an infrastructure that enables high
interoperability between deployed distributed services. ESBs
are managed through business processes. The final feature of
SOAs addressed in this section is loose coupling. SOAs enable
delivering a service-based system with a reduced number of
dependencies [5] [6]. It is important to remember that a single
service can offer various capabilities grouped together if they
relate to a functional context established by the service [6].

In an SOA, a distributed system is designed and built
based on a basic software engineering concept: the theory of
concerns. The strategic goals associated with service-oriented
computing services indicate their purpose and capabilities
through a service contract [6] that emphasizes the positioning
of services as enterprise resources within agnostic functional
contexts. Numerous design considerations have been proposed
to ensure that individual service capabilities are appropriately
defined based on an agnostic service context utilities are
appropriately defined in relation to an agnostic service context

[5].

The two common implementations of services are REST
and SOAP. The REST service is required to identify resources
that include one or more representations, either expected or
provided, an address to uniquely locate the resource, a set
of HTTP methods exposed at the interface-level metadata
included in headers for requirements such as security tokens
or caching information, and a REST-based service interaction.
Standard HTTP methods are used in conjunction with HTTP
response codes to establish a communication framework based
on a uniform contract that can invoke service capabilities and
communicate success, failure, and error conditions [6]. Re-
sources that represent a resource in JavaScript object notation
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Fig. 1. General Steps of a Genetic Algorithm [7].

(JSON) an be considered as an alternative. In JSON, data are
described in the name-value format [6].

The specific method of encoding data “on the wire” and
passing them among services is captured in SOAP services.
In a SOAP service, both service requests and responses are
encoded into XML documents [6]. SOAP-based web services
rely heavily on the web services description language, which
provides a method of expressing the service contract as a
collection of operations with corresponding request/response
messages [6].

B. Genetic Algorithm

GAs are evolutionary algorithms proposed by Holland in
1975 and recommended for solving optimization problems
by Goldberg in 1975, who later suggested in 1989 that they
can be used for solving optimization problems [7]. GAs
are based on the Darwinian principle of the survival of the
fittest among animals exposed to predators and environmental
threats. The fittest entities are those that can adapt to evolving
conditions, and their offspring inherit their characteristics
and learn their skills, resulting in the creation of the best
possible future generations. Furthermore, genetic mutations
occur randomly among members of the same species, and
some of these alterations may enhance the long-term stability
of the superior individuals and their evolutionary offspring [8].
of the parent population that comprises surviving individuals
(chromosomes) from previous generations and their offspring.
The offspring, which represent new solutions, are generated
through genetic operators such as crossover and mutation.
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Parents that are selected to produce a new generation are those
whose probability of selection is proportional to their fitness
values. The higher the fitness value, the better the chance
of surviving and reproducing [7] [8]. The algorithm begins
with randomly generated initial population solutions, and the
generated population gradually improves over time. It uses
special criteria to select optimal individuals, who are then used
to produce offspring. Offspring are generated using crossover
and mutation operators [7] [8]. Fig. 1 shows the steps of a GA.

III. RELATED WORK

The generation of university timetables is a well-studied
problem in literature. It is considered a complex NP-hard
problem owing to the complexity of the university environ-
ment. In this section, we describe some algorithms proposed in
various studies to address the problem of generating university
timetables.

A new version of the simulated annealing algorithm to
address the problem of examination timetabling was proposed
in [9]. The algorithm employs an acceptance criterion to move
a selected exam and assess the moves by evaluating their ac-
ceptance through a temperature bin. The algorithm comprises
10 temperature bins to evaluate the number of evaluations
uniformly. It uses the crystalized concept, which is assigned to
the selected exam, and does not record any future acceptance
moves in the temperature bins. It employs saturation degree-
based heuristics combined with conflict-based statistics to
eliminate the looping effect during initialization [9].

The authors of [10] proposed using particle swarm opti-
mization (PSO) for generating university timetables. Unlike
GAs, PSO simulates social behaviors to evaluate solutions.
The evaluation is performed by determining the positioning
and velocity of each particle by using the fitness value of
the selected particle. The algorithm uses an initial step to
assign time slots to the exam, whereas the remaining steps are
used to assign rooms to time slots and solve exam timetabling
problems at universities.

A modified event-grouping algorithm for finding the best
solution by ordering events into groups was developed in [11],
wherein events and conflicts are presented on an undirected
graph. It should be noted that the execution time of the
event-grouping algorithm increases when the number of groups
increases [11].

The author in [12] proposed using an Al expert system
to automatically generate a scheduling system for the course
timetable problem. The auto-generated scheduling system was
developed such that no conflict could occur among all the input
facts, and features were provided to customize the timetable
as required. The rule is executed based on the priority and
ranking of the constraints. No specific information regarding
the designed rule used in the expert system or definitions of
hard and soft constraints were provided.

The author in [13], proposed reformulating an existing
integer programming model. It employed the XML for high
school timetabling (XHSTT) format to formulate a mathemat-
ical model of the problem. The authors developed a model for
the problem and a set of models to formulate the constraints
and operative functions to avoid clashes. The computational
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experiments also showed that the integer programming models
resulting from the proposed formulation solved most of the
instances in the XHSTT model more effectively. However,
this algorithm cannot be generalized to other university models
[13].

In [14], there is a suggestion to a hybrid method based
on the improved parallel genetic algorithm and local search
(IPGALS) to solve the course timetabling problem. The local
search (LS) approach proposed in this work supports GA. The
distance to feasibility (DF) criterion is applied to measure the
hard constraints and ensure that they are never violated. The
results showed that using DF improved performance for finding
a feasible solution. A parallel approach is used to handle a
higher number of constraints. The LS and elitism operators
were implemented after applying the crossover and mutation
operators. Therefore, the major limitation of [IPGALS is that it
cannot ensure the generation of a feasible timetable for large
groups [14].

The author in [15] proposed applying two methods to solve
the room-optimization problem in timetable generation [15].
The first method involves two-stage integer linear program-
ming (ILP), which applies lexicographic optimization. The
objective is to maximize the number of students seated and
then apply it to optimize room allocation. The ILP is suitable
for smaller domains; however, the computation time increases
for larger domains. domains. A greedy algorithm was proposed
to enhance the first approach. The lecturer is assigned to a
room based on the computation of the cost function. The
objective is to maximize the number of allocated students. Cost
function identification enhances the performance of the greedy
algorithm [15].

Guo et al. proposed a new algorithm based on the greedy
method combined with a GA to solve the course timetabling
problem, wherein the greedy algorithm is applied to generate
the initial population [16].

In [4], a design and implementation of timetable generation
based on GA were proposed using different combinations
of selection algorithms and mutation types. The system uses
tournament and roulette wheel selections to evaluate two cases
and determine the selection technique that provides a better
solution. Furthermore, the study also applied a mutation error
to determine if it can retrieve a better solution faster. A similar
approach was proposed in [17], wherein a GA model was
applied to automatically arrange a university timetable and
further study the effect of changing the crossover and mutation
rates. Their simulation results showed a crossover rate of 0.70,
and no hard constraints appeared in the timetable, but the
authors did not mention the effect of changing the mutation
rate [17].

In [18], a hybrid genetic hill-climbing algorithm with an
embedded elitist mechanism was used to solve the lecturer
course timetable problem. Hill-climbing optimization was im-
plemented in the mutation phase to enable an LS. Hill-climbing
optimization offers fast convergence and the capability to avoid
local optima. The algorithm requires a longer time because
hill-climbing optimization is frequently used. However, it
does not achieve a fitness value of one, which indicates no
conflict. It reaches when the population size reaches 80, but
the execution time increases significantly [18].
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A pragmatic algorithm implementation is presented in [19]
to solve the university course timetabling problem. The algo-
rithm was implemented as a web application deployed on the
Azure cloud. The system was based on the manual assignment
of courses to time slots and rooms. The objective was to
engineer a timetable system programmatically as a web-based
system [19]. A man-machine interaction system based on
modeling the problem. The proposed algorithm uses column-
generation heuristics to collect generated timetable columns by
employing the relaxed integer programming method. The mod-
eling timetable works for a reasonable number of instances;
however, it may face computational complexity at a larger scale
[20].

The authors in [21] presented a greedy algorithm combined
with a genetic fusion algorithm to efficiently solve the course
timetabling problem. It can obtain the local optimal solution
using the greedy algorithm, which is efficient for generating the
initial population used in GAs. A greedy algorithm includes an
adaptive heuristic search combined with an evolutionary search
algorithm. The approach was implemented on simulated data
with a small population of approximately 20. Therefore, its
effectiveness on a larger population must be evaluated and the
fitness values must be compared [21].

Automatic timetable generation using GA with dynamic
chromosomes was implemented in [22]. The algorithm sug-
gests using a nonfixed chromosome size, which is adjusted
according to the number of courses in the department. The
algorithm implements the roulette wheel algorithm to select
chromosomes. It uses harder and softer constraints to solve the
room-allocated-to-time-slot problem. The performance results
and implementation process of the algorithm showed that it
was ineffective [22].

A hybrid genetic-based discrete PSO algorithm with two
LS algorithms, LS and tabu search, was used in [23]. The
objective was to enhance the performance for search solutions.
The concept of PSO is based on a swarm of birds (particles)
that search for food in an open space. Without any prior
knowledge of the space, the birds spread and begin their search
in a random space, and the position of all particles corre-
sponds to the candidate solution for an optimization problem.
Therefore, all particles are assigned a fitness function, which
is determined according to the corresponding problem. Even
if each particle moves to a new location in the search space,
it maintains the optimal local information. Furthermore, each
particle maintains its own information, shares information with
the other particles, and maintains the best global information.
Subsequently, each particle updates its velocity and position to
correspond to the optimal local and global information, moves
forward to the optimal value, and seeks the optimal solution.
Tabu search is used to improve the solution quality after the LS
operation is completed. the GA operation is applied (crossover
and mutation) to enhance the global search. However, the
execution time of the algorithm increases when a complex
timetable model is introduced. This algorithm can be used for
the room allocation problem [23].

IV. THE DESCRIPTION OF THE PROBLEM

The process of generating course timetables is classified
as repetitive or periodic. However, we discovered that the
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Fig. 2. The Business Process for Generating Course Timetables.

academic departments in some universities in our region still
manually generate course timetables. The entire procedure
depends on humans playing the primary role in creating and
maintaining such timetables.

Fig. 2 shows the framework of business process modeling
used to capture the common activities for producing course
timetables. The process starts when the staff in a department
prepare a list of courses to be taught in the next term. This is
followed by collecting course preferences from teaching staff
and estimating the number of students who will register for
a course. Professors must also be assigned to their selected
courses. After the preparation process, timetables are manually
generated using spreadsheet software. This process is time-
consuming because it requires several review cycles to ensure
that timetables do not include any conflicts among groups
of students, as shown in Fig. 2. Following the timetable
generation step, the faculty administration approves the created
course timetables and publishes them on a university course
management system with a centralized software architecture.

The student course registration procedures also employ
manual processes. It is the students’ responsibility to create
their entire timetable using the university registration system.
At the beginning of each term, students should follow the
curriculum plan published by the department after the selected
courses are approved by their academic advisers. The student
searches for targeted courses and selects a suitable teaching
group based on their preferred time slots. If any conflict
occurs in time slots, the student keeps changing the teaching
groups until a conflict-free timetable is created. We noticed
that manually creating and maintaining course timetables re-
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sults in serious issues. One such issue is the occurrence of
time-slot conflicts among courses, which affects the student
registration process. Another problem is the increased number
of groups in courses that contain a small number of students,
because students have complete freedom to select their desired
group at a suitable time slot. Hence, we have observed a
misdistribution of student problems, which appears after the
registration process is completed. This leads to insufficient
resource allocation. After examining these common issues
over several years, we conclude that manually generating
timetables is time-consuming, laborious, and complex. The
process creates stress among staff and students and thus needs
to be addressed. Universities use VMS, wherein it is difficult
and expensive to include automatic features. Thus, a system
that includes optimization methods for timetable generation is
required, which can be easily integrated with the registration
management system.

V. PROPOSED SOLUTION

This study aimed to solve the problems mentioned in the
previous section by developing a service-based system com-
prising components responsible for publishing and generating
timetables. The service-based approach is characterized by a
decentralized architecture that is scalable and sufficient for
the architecture used by universities. The system interacts
with a university management system only to request data
and publish the student and staff timetables it generates.
The interaction is achieved through messages/requests and re-
sponses using RESTful web services. The data are transmitted
in the JSON format. Therefore, the proposed service-based
system works as a standalone feature that can be used by
university departments. Each department has its own deployed
service-based component to generate a timetable. In the next
section, we explain service-based architecture in more detail.
Furthermore, the proposed solution includes the design of a
suitable algorithm for automatically generating timetables. Our
objective was to eliminate the number of manual activities
performed by the staff. Therefore, we designed a heuristic GA
to create a departmental timetable that considers a set of hard
and soft constraints. A detailed explanation of the proposed
GA is presented in Section VI.

A. The Architecture of the System

Fig. 3 shows the main components of the automatic
service-based system used to generate timetables. The system
comprises five main components: a data notification center,
notification service, data communication center, data commu-
nication service, and faculty autogen timetable service.

1) Data Notification Center: This component is re-
sponsible for broadcasting a scheduled and timed
notification to all active notification services. It also
receives replies and notification messages from noti-
fication services when the timetable generation pro-
cesses are completed.

2) Data Communication Center: This is the commu-
nication channel between the university management
system and the communication service. The commu-
nication center is responsible for filtering the requests
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for data from the communication services and trans-
forming them into query passed as a message to the
university management system.

3) Notification Service: This is an active component
deployed in each university academic department. It
is responsible for sending and receiving notification
messages from the data notification center.

4) Data Communication Service: This component fil-
ters student and academic staff data and generates a
timetable data format to send and receive data from
the data communication center.

5) Faculty Autogen Timetable Service: This is the pri-
mary component responsible for automatically gen-
erating course timetables based on a set of require-
ments. It includes a GA to create an optimized
timetable. The following Section provides a detailed
explanation of this component.

B. The Architecture of the Faculty Autogen Timetable Service

The component responsible for automatically generating
an optimized course timetable comprises various elements, as
shown in Fig. 3. The service consists of two components:
a data filtering service and timetable generator. The data
filtering service handles received and sent data and is com-
posed of three separate entities: course description filtering,
department student filtering, and assigning student and faculty
timetables.

1)  Course Description Filtering: This entity is used to
store the program course plan. The department can
add courses, course details, and any updates regarding
the program plan. The courses and plans are stored
as JSON files.

2)  Department Students Filtering: All the student data
required to generate a timetable is received from
the university management system database through
the data communication service and filtered in this
component. Filtering is required to determine the
courses that students are expected to register for in
the next term. Additionally, the component generates
groups of students expected to opt for a course in the
next term.

3)  Assigning Students and Faculty Timetable: This com-
ponent is responsible for assigning each student and
academic staff member a timetable after the general
timetable generated by the timetable generator com-
ponent is approved.

The second component of the faculty autogen timetable
service is a timetable generator. This is an essential service
that creates an optimized course timetable. As shown in Fig.
4, this service comprises the following five entities:

1)  Department Criteria and Hard and Soft Constraints
Configuration: This entity configures the algorithm
parameters, as well as the hard and soft constraints
used in the customized scheduling algorithm.

2)  Customized Scheduling Algorithm: This entity is the
core of the timetable generator. It includes the imple-
mentation of the GA used to generate the expected
timetable for the specific teaching plan of a depart-
ment. Section VI describes the design of the GA in
detail.
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3)  Conflict Resolver: This component runs if the
timetable generator is suitable for the department but
contains several soft constraints that are violated. It
allows for manual resolution of timetable conflicts.

4)  Timetable Approval: This component obtains ap-
provals of the generated timetables and divides them
into sub-timetables based on the level to which they
can be suitably applied.

VI. GENETIC ALGORITHM DESIGN

This section explains the design and implementation of the
GA in detail. Before presenting the designed algorithm, it is

necessary to mathematically model the operating environment.
Furthermore, we are required to extract the possible hard and
soft constraints required for optimization.

A. The Courses Timetable Mathematical Model

We mathematically modeled the courses timetable problem
based on the common requirements and environments of our
universities as follows :

A teaching program of a department was divided into
levels. These levels comprised a set of courses. During the
autumn term, all odd levels are taught, whereas during the
spring term, even levels are taught. For simplicity, the summer
term or special cases were not included. These levels are
denoted as L = {ly,1a,l3,....,In }.

Any level [; includes several courses C =
{c1,¢c2,¢3,...,¢m} . and  student groups G =
{91, 92, g3, ---, gi } - Additionally, there should be no more than
three groups per level. Any course c; has one or more and
no more than three sessions per week. Therefore, the sessions
are denoted as S = {57,953, ..,.5;}. Moreover, two types of
sessions were defined, theoretical and practical, based on
course type and number of teaching hours. Any course ¢; is
associated with teaching professor tp;. The teaching professor
tp; who was selected from TP = {tp1,tpa, ..., tpk }.

The environment model can be summarized as follows:

1)  Any teaching program comprises a set of levels as
follows:

L=Al,ls,l3,.....0,} 1)

2)  Any level /; has several courses and groups of stu-
dents and is associated with a teaching professor as
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follows:

C - {61762763) "'7C’m}
G = {g17g27g37"'7gk} (2)
TP = {tpl7tp27“'7tpr}

3)  Any course ¢; has one or more sessions as follows

S: {51752,..751}2 lg 3

s; = Theorical or s; = Practical

3)

We want to emphasize that the algorithm proposed in this
study does not consider the allocation of lecture rooms. This
will constitute a further step in the system in the future, or will
be handled as a separate problem. The existing timetable algo-
rithms discussed in Section III consider room allocation to be
an essential part of the course timetable allocation algorithm.
However, in our case, room allocation always occurs after a
suitable timetable is generated. Furthermore, our algorithm
contains some factors related to building management, for
which course timetables with courses and time slots assigned
must be generated first.

B. The Hard Constraints

To create a suitable timetable, we defined a set of hard
constraints that must be satisfied and a set of soft constraints
that should not be violated. We denoted the set of hard con-
straints as H. The teaching professors and groups of students
are defined as follows:

1) A teaching professor, tp; must not teach two different
courses in the same time slot on the same day.

2) A group of students g; must not be assigned two
different courses at the same time slot on the same
day.

3) A group of students must not have two sessions of
the same course on the same day. This condition has
also been applied to the teaching professors assigned
to the course.

4)  Teaching professor tp; who is an assistant professors
or above, should have at least one day off.

5)  Group of students g; must not have more than six
hours of theoretical lectures per day.

C. The Soft Constraints

A finite set of soft constraints .S, which incur a small
weighted plenty value when violated, is defined.

1)  Teaching Professor tp; might prefer to start the day
in the morning or afternoon, according to their con-
ditions.

2)  Any practical session s; € P for a course ¢; can be
started in the late morning time slot.

3) A group of students g; should not have a gap longer
than two hours between lectures.

D. Objective Function

The optimization problem is to maximize the assignment of
all available classes to the sets of defined time events, sections,
and teaching professors to assign the maximum number of
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courses possible from the preferred list. It can be expressed
as:

f(x) = Maximize Z Classes; 4)

=1

The following are the defined decision variables:

1) v, = event day
2)  wg = event time slot

E. The Algorithm Design

A GA must contain chromosomes. To encode chromo-
somes with a course timetable, a set of classes must be
generated. Using the mathematical model, specific courses and
sessions at each level are defined as described in Section VI-A,
and a set of targeted classes is formulated and denoted as
Classes as follows:

Classes = {classi, classy, classs, ..., class, 5)

Fig. 5 shows the class representation and its formulation.
As shown in the figure, any class; is assigned a teaching
professor T'P;, a group of students g;, a type that can be
theoretical or practical, and a duration d;. Additionally, class;
such as course name and number. The class type, duration, and
other details are combined into class information Cinfo; as
shown in Fig. 5. Moreover, these classes must be allocated to
a particular time event. A time event includes assigning one
of the five working days and a time slot, ts = {tstart, tend}-

The algorithm starts with an initialization stage, where in
objective is to determine the number of student groups and
generate the classes possible, including sessions. Furthermore,
the initialization step entails assigning teaching staff to the
classes. The selection of teaching staff is based on the ranking
obtained from the preference table. Based on this knowledge,
a vector class that comprises all classes that can be taught for
all programs at all levels is generated, as shown in Fig. 5 .

The GA must allocate the day and time slots for each class
in the vector class without violating the hard constraints and no
or minimum violation of the soft constraints. After formulating
the real class timetable model, the chromosome and genes
used in the algorithm must be formulated, as explained in the
following section.
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F. The Chromosome Representation

As shown in Fig. 6, a timetable comprises a set of
classes and a chromosome. The chromosome contains a vector
consisting of genes. There are two types of genes. The first,
denoted as A;, contains a numerical integer that represents the
day of a week. The second, denoted as B;, is a collection of
two numerical values representing the time slot. The time slot
represents the start and finish times of a class. Chromosome
length is twice the class vector length, which is calculated as
follows:

chromosomejength = Z Class; * 2 (6)
i=0

G. The Fitness Function

It is important to include a fitness function in the GA
because it is used to measure the accuracy of a specific
solution. In our case, a good solution should have a fitness
value of one, which indicates that the generated timetable does
not violate either the hard or soft constraints. Thus, the fitness
value is computed as follows:

1
(Xt wiVhard + 22501 0 Vsogt) + 1
J

(M

fitness =

Both Vj,qrq and Vi, s, represent the violations of hard and
soft constraints, respectively, occurring in the solution. w and
o denote the penalty weights associated with the hard and soft
constraint violations, respectively. Any violation of the hard
constraints is assigned a larger weight, whereas that of the
soft constraints is assigned a lower weight.

H. Parent Selection and Genetic Operations

Crossover and mutation are the two basic operators of GAs.
We used a uniform crossover and uniform mutation, as shown
in Fig. 7 and 8, respectively. The crossover operation continues
throughout the population and employs the parent selection
process, which is based on the tournament selection technique
[7] [24]. After parents with effective fitness values are selected,
crossover is performed on them. Half of the genes from each
parent are randomly selected to generate new offspring. Fig.
7 shows an example of a crossover operation, wherein genes
are randomly selected from chromosome parents 1 and 2. In
this example, the first gene, which represents the day for class
1, is obtained from parent 2, whereas the time slot is obtained
from the time-slot gene of parent 1. We want to emphasize
that the class ordering is similar for both parents. Thus, we
ensured that no conflicts occurred If the chromosome does not
go through crossover, it will be inserted directly into the new
population.
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The elitism method was applied to ensure that the best
solution from the old population was not lost and the GA
was optimized between class duration when the time slots are
changed. If the chromosome does not undergo crossover, it is
inserted directly into the new population. This method allows
individual chromosomes with the best fitness values to be kept
unaltered and moved to the next generation. However, we
retained only a small number of elite chromosomes compared
with the population size and controlled the value using the
elite window size.

For the mutation operation, we used the value of mutation
rate. When satisfied, a chromosome that allocates the days and
effective time slots for the intended classes. The gene values
of the chromosome selected for alteration were then replaced
with the values generated by the random chromosome. Fig. 8
an example of replacing the gene values of the chromosome
selected for mutation with those of a randomly generated
chromosome.

VII. IMPLEMNATION AND EXPRIMENTS

The designed GA was implemented as an application
programming interface (API) written in JAVA programming
language. The API can be integrated into services that can
be easily integrated into any university management system.
The course, staff, and student data were included in a JSON
file, which enables easy transmission to and from the uni-
versity management system. All system components were
implemented as RESTful web services when deployed on a
docker container. They include the faculty autogen timetable
service, data communication service, notification service, data
notification center, and data communication center. However,
a more challenging problem is the implementation of a cus-
tomized scheduling algorithm, which depends on the GA
implementation, as explained in Section VI. Therefore, this
component was constructed as a standalone JAVA program
for testing and experimentation, as explained in the following
section. After the experiments, the program was transferred
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TABLE 1. THE EXPERIMENTS’ CONFIGURATION

Timetable Parameters Algorithm Parameters
" o N ] Population Crossover | Mutation | Elite | Elite Tests
Tests Courses # | Level # staff # Groups Size Rate Rate # Size #
Experiment 1 21 4 19 one group at each level 100,150,300,500 0.7 0.01 2 10 19
Experiment 2 21 4 19 varied groups (2,2,2,1) 100,150,300,500 0.7 0.01 2 10 19
Experiment 3 21 4 19 one group at each level 100,150,300,500 0.5 0.1 2 10 18
Experiment 4 21 4 19 varied groups (2,2,2,1) 100,150,300,500 0.5 0.1 2 10 18
Constraints
Tests Hard | Soft Run

All Experiments 5

[ 320 | 15

Algorithm 1 Random Course Section Generation

Require: CoursesInfoList, ExpectedStudentList, LevelsList
Ensure: Courselnfo with Generated Sections
for level in Level List do
Extract all expected students in the level associated with
their expected courses to take
for course in CourseLevelList do
Count Number of Students
if TotalStudent < MaxCapacity then
Generate only one section
else if TotalStudent > MaxCapacity then
Sections = Total Students/SectionCapacity
for section in Sections do
Pick Random Students from Expected Course
List
Add Picked Student Random in Section List
Update Students Info with course and section
end for
end if
end for
end for

Algorithm 2 Assign Teaching Professors

Require: Teaching Prof. List, TP Preference List , Cours-
esInfo List
Ensure: Courselnfo Assigned TP
Sort TP list based on Rank and Experience
Order Preference Ranked List
for TPF; in TP List do
Courses < FindChoicesinCourselnfolList
for choice; in TP Preference List do
if Check Courses with choice; is not assigned then
Assign TP to Course with its sections
Update teaching hours
end if
end for
if TP remaining teaching hours # O then
randomly picked unassigned course with sections
and assigned it T'F;
end if
end for

Algorithm 3 Timetable Generation using GA

Require: ClassesList
Ensure: Timetable

Initiate Population by:
Generate Classes
Initialize Chromosome for each Individual
for Individual in Individuals do

for Class; in Class List do

Generate Random Time Slot and Day
Assign Generated Chromosome to Individual

end for
end for
Evaluate Randomly generated population
while Termination Condition in not met do

Call Crossover Population > See Fig. 7 explaining used
crossover operation

Call Mutation Population > See Fig. 8 explaining used
mutation operation

Call Evaluate Population > by calculating fitness values
using Equation 7
end while

into a module included in timetable generator APIs. The
following subsection explains the experimental environment
and configuration.

A. The Experiment Environment

A MacBook Pro laptop with a 2.8 GHz Quad- core Intel
Core 17 processor and 16 GB RAM was used. During the
testing process, all ineffective processes were terminated. A
tool was integrated within the API to measure the execution
time of the algorithm and record the time required to obtain a
solution. Furthermore, the algorithm was configured to enforce
termination if it reached 1,000 generations without finding a
solution.

B. The Configuration for Experiments

The objective of the experiment was to determine the
ideal settings for the algorithm parameters (population size,
crossover rate, and mutation rate) that are suitable for creating
a course timetable without violating either hard or soft con-
straints. Furthermore, we wanted to assess the impact on the
algorithm performance when the number of student groups
increased. Therefore, we focus on the following two special
impacts:
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1)  Factors that might affect the algorithm if the number
of soft and hard constraints increases.

2)  The extent to which an increased number of student
groups might affect the execution time of the algo-
rithm.

The experiment was divided into four sub-experiments:
Experiments 1, 2, 3, and 4, each of which comprised 12 tests.
Each test assumed a population configuration and tested few
constraints. For example, in Test 1, Experiment 1 assumed a
population size of 100 and tested eight constraints (five hard
and three soft), whereas in Test 2, Experiment 1 assumed a
population size of 100 and tested six constraints (five hard and
two soft). The same process was followed for all the tests in
each experiment. Each test was performed 15 times to ensure
the accuracy. Experiment 1 assessed the execution time and
average of conflicts when the mutation and crossover rates
were fixed at 0.01 and 0.7, respectively, with respect to the
changes in population size and the numbers of soft and hard
constraints. We selected population sizes of 100, 150, 300, and
500; 3, 2, and O soft constraints; and five hard constraints. The
experimental configurations are listed in Table I.

Experiments 1 and 2 aimed to measure the execution
times and average conflicts when the mutation and crossover
rates were set at 0.01 and 0.7, respectively. Both experiments
included four tests, each of which was used to examine the
effects of different population sizes and configurations of the
number of soft constraints. Each test was performed 10 times.
The difference between Experiments 1 and 2 was the number
of students groups: Experiment 1 was performed with each
level containing only one student group, whereas Experiment 2
was performed using various numbers of student groups, where
the three levels contained two student groups. Experiments 3
and 4 followed a similar strategy as the first two experiments,
but the mutation and crossover parameters were changed to 0.1
and 0.5, respectively. The objective was to determine the effect
on the execution time and average conflicts when this conflict
rate was used and the population size was changed. In the final
two experiments, we focused on the effect on execution time
and conflict rate if the number of courses was increased from
21 to 30 (a major effect on the increasing number of courses).
Both experiments were performed using two population sizes,
100 and 200, and changing the number of soft constraints.

VIII. RESULTS AND DISCUSSION

After conducting the experiments described in Section VII,
we measured the average execution time and the average
number of conflicts with either hard or soft constraints. The
results of all four experiments are shown in Fig. 9 and Fig. 10.
Fig. 9 contains four subfigures that show the average execution
times in milliseconds for all experiments, whereas Fig. 10
contains four subfigures that show the average numbers of
constraint conflicts that occurred in the experiments.

Fig. 9a and Fig. 9b show the average execution times of
Experiments 1 and 2, respectively, indicating that the average
overall execution time of Experiment 1 was lower than that
of Experiment 2. Both experiments were performed using
crossover and the mutation rates of 0.7 and 0.01, respectively.
The main difference in Experiments 1 and 2 was the number of
student groups. In Experiment 1, each level contained only one

Vol. 13, No. 10, 2022

student group for each teaching course, whereas in Experiment
2, the number of student groups in each course varied. Hence,
the algorithm required a longer execution time to obtain a
solution. Additionally, an increase in the number of hard and
soft constraints affected the execution time.

Fig. 9a shows the effect of increasing the population size
and number of tested hard and soft constraints on the execution
time. In Case A, the execution time resulted from testing five
hard and three soft constraints; in Case B, it resulted from
testing five hard and two soft constraints; and in Case C, it
resulted from testing only five hard constraints.

For sub-figures Fig. 9b - 9d, we observed that the execution
time for the path in Case C1 was lower than those for both
Cases Al and B1. The execution time for Case Al path was
the longest, whereas that for Case B1 was between those of
the others. Looking deeply in Fig. 9b, the execution times
were longer in the paths shown in these figures because
the number of student groups and crossover and mutation
rates were changed. Currently, we have determined that the
algorithm execution time is affected by an increase in the
number of tested constraints. However, if five hard constraints
are considered to not have been violated, the average algorithm
execution time can be maintained below 30 ms in all sub-
figures. In Fig. 9c and Fig. 9d, execution time for the Case
C paths was less than 100 ms, owing to the alterations in the
algorithm parameters.

We observed that the execution time was affected when
the population and the number of tested constraints were
increased. Regarding the execution paths of Cases Al-A4
shown in Fig. 9a - 9d the execution time increases dramatically
when the population exceeded 300. Thus, we conclude that if
the population is set at 500, the algorithm would not obtain
effective results in terms of time execution. In fact, it will
take approximately 1,000 ms, as shown in Fig. 9a and close
to 4,500 ms if the number of student groups is increased, as
shown in Fig. 9b. These results would not be affected if the
crossover and mutation rates were changed; the execution time
for a population of 500 could be above 3,000 ms for a single
student group in each course, as shown in Fig. 9c, and can
reach over 12,000 ms for various numbers of student groups,
as shown in Fig. 9d.

Therefore, it can be determined that the algorithm can
generate the best results if the population size is set between
100 and 150 with single or varied number of student groups.
This result can be maintained even if both the crossover and
mutation rates are changed. Furthermore, the algorithm can
produce effective results if a lower number of constraints is
maintained, close to five. Furthermore, we assume that the
algorithm can generate a reasonable solution if the number of
constraints is set to six. However, if the number of constraints
is set to eight or more, the algorithm can execute within a
reasonable time if the population rate is maintained between
100 and 150, which will reduce the search time.

The conflict rates shown in Fig. 10 for each course are
lower than those for the various numbers of student groups
assigned to each course. The average number of conflicts
shown in Fig. 10a is lower than those in the other figures.
We observed that, if the population size was set to 100, the
algorithm generated a solution without violating any of the
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eight tested constraints. Furthermore, relatively lower number
of conflicts can occur if the number of violations is between
zero and two. This could have occurred if the population size
was 150

and there were six to d eight tested constraints. We
observed that if the number of tested constraints was five,

there would be no conflicts. A similar result was obtained e
by setting the population sizes to 300 and 500. We observed
that conflicts appeared six or more constraints were applied,
and the number of conflicts were higher than those when the
population size was set to 150. Thus, we can conclude that the
algorithm can produce effective results if the population size is
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set to 100, even if the numbers of courses and staff increase.
Furthermore, the algorithm would obtain a reasonable result
when the population size was set at 150.

The conflict rate results shown in Fig. 10b were used to test
the violating number of student groups using similar settings
for crossover and mutation rates, as shown in Fig. 10a. We
observed that the conflict rate appeared for all quantities of
tested constraints. For example, while examining the conflict
rate for a population size of 100, the average number of
conflicts for testing five constraints was close to eight. If the
number of tested constraints was between 6 and 8, the conflict
rate was between 10 and 14. Nevertheless, when the population
was set at 150, the conflict rate was higher than when it is
set at 100. Similar results were obtained when the number of
tested constraints was five and above. As shown in Fig. 10b,
if the population size is set at 300 and 500, the conflict rate
for all the tested constraints is between 12 and 16. Therefore,
for a situation wherein various numbers of student groups are
tested, a good result can be obtained if the number of tested
constraints is maintained at five or lower for a population size
of 100. However, the algorithm must be improved to handle
various situations more effectively by partitioning the search
for each level. However, this requires further investigation and
will be addressed in a future study.

The final test involved changing the crossover and mutation
rates, as shown in Fig. 10a and 10c. By comparing the results
shown in Fig. 10a and 10c it can be observed that there the
conflict rates did not differ if the population size was set at
100 in both situations. However, the conflict rate shown in Fig.
10c is higher than that in Fig. 10a.

To summarize our findings:

1)  The effective population size that will lead the algo-
rithm to produce results without any violation of the
constraints and with minimum execution time is 100,
and the crossover and mutation rates are set at 0.7
and 0.01, respectively. This occurs even if both the
courses and the number of teaching staff are increased
at each level. However, we aim to make the algorithm
work with more constraints, especially user-defined
constraints. This requires further improvement, which
will be the subject of future study.

2)  We also discovered that if the number of student
groups is increased at each level, the execution time
and conflict rates increase significantly. To handle
more student groups at each program level, we will
develop a partitioning process for inclusion within the
proposed algorithm, which will be executed only if
more groups need to be allocated. However, this also
requires further investigation.

IX. CONCLUSION

In this study, we looked at the problem for manual gen-
eration for courses timetable at universities that uses Vendor
Management System (VMS) as centralized system for course
registration. To solve the problem, we proposed a decentral-
ized automatic course-timetable-generation service architec-
ture uses Genetic algorithm as a core for generating courses
timetable. The system can easily be integrated into university
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management systems. The architecture comprises several com-
ponents: a data notification center, data communication center,
notification service, and faculty autogen timetable service. The
faculty autogen timetable service comprises several compo-
nents, of which an essential component is customized timetable
generation, which implements using Genetic Algorithm. The
proposed decentralized software architecture in the paper can
handle scalability issues introduced by integrating architecture
with universities VMS. In addition, to make automatic gen-
eration a customized course model was used as implemented
component. The customized course model includes a set of
defined common hard and soft constraints.

However, the objective was to customize the constraint
definitions based on the requirements of each department. The
purpose of the GA is to allocate the courses that the student
groups have signed up for to teaching staff in feasible time
slots. During the initialization step, the class population was
generated based on the number of student groups that had
signed for it, and the teaching staff were randomly allocated
based on their rankings. The objective was to allocate these
classes to events. The algorithm was tested through a number
of experiments to determine the suitable parameters for gen-
erating feasible solutions. The algorithm generated a feasible
solution with a fitness value of 1 when the population number
was set to 100, and the crossover and mutation rates were set
to 0.7 and 0.01, respectively. Furthermore, we observed that if
the number of student groups increased with no increase in the
number of teaching staff, the conflict rate increased. Therefore,
to improve the algorithm, we must analyze cases wherein
the number of students groups taking a course is increased,
which will be the subject of a future study. If a timetable is
selected and the number of conflicts is constrained, the auto-
generation component has a conflict resolution algorithm that
either manually fixes the department staff conflicts or suggests
enhancement by omitting soft constraints that can be violated.

A future direction for this study is to propose a parallel
GA to enhance the component and handle a higher number of
student groups taking the same course. We will also investigate
the possibility of building customized hard and soft constraints
to add more flexibility in generating course timetables. This
requires a method to define a domain-specific language to build
constraints and automatically transform them into executable
constraints.
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