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Abstract—Non-dominated sorting genetic algorithm has
shown excellent advantages in solving complicated optimization
problems with discrete variables in a variety of domains. In
this paper, we implement a multi-objective genetic algorithm to
guide the design of the laminated structure with two objectives:
minimizing the mass and maximizing the strength of a specified
structure simultaneously, classical lamination theory and failure
theory are adopted to compute the strength of a laminate. The
simulation results have shown that a non-dominated genetic
algorithm has great advantages in the design of laminated
composite material. Experiment results also suggest that optimal
run times are from 16 to 32 for the design of glass-epoxy laminate
with non-dominated sorting genetic algorithm. We also observed
that two stages involve the optimization process in which the
number of individuals in the first frontier first increases, and
then decreases. These simulation results are helpful to decide the
proper run times of genetic algorithms for glass-epoxy design and
reduce computation costs.

Keywords—Non-dominated sorting genetic algorithm; optimiza-
tion; failure theory; laminated composite material; classical lami-
nation theory

I. INTRODUCTION

Non-dominated sorting genetic algorithm (NSGA-II) pro-
vides [1], [2], [3] a collection of techniques to maintain
multiple solutions in the mating pool and has shown excellent
performance in domains [4], [5], [1], [6], [7], [8], [9], [10],
[11], [12], [13]. Slowik and Kwasnicka [9] present the family
of evolutionary algorithms for real-life application, such as
genetic algorithms, genetic programming, differential evolu-
tion, and evolution strategies. Lu [10] et al. adopt NSGA for
neural architecture search and has demonstrated the ability in
finding competitive neural architecture with less computational
resources. Kou [11] et al. propose a two-stage multiobjective
feature-selection method for bankruptcy prediction of small
and medium-sized enterprises.

The design of a laminate in nature is a tricky optimization
problem involving several discrete variables and additional
constraints. The traditional wisdom [14], [15], [16], [17], [18],
[19], [20], [21], [22] suggests using an evolutionary algo-
rithm to solve this problem with a single objective function,
appending additional constraints to the objective function as
punishment items, in which the coefficient of each punishment
is a random number with a range from O to 1. Adams [23] et
al. use a genetic algorithm approach by locally reducing a
thick laminate to generate and evaluate valid globally blended
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designs for composite panel structure optimization. Cho and
Rowlands [24] implement a genetic algorithm to minimize
tensile stress concentrations in a perforated laminated structure,
obtaining more than one favorable stacking sequence with
different fiber orientations. An [25] et al. present the two-
objective design of composite laminates: minimizing cost and
maximizing fundamental frequency and frequency gaps.

Although the non-dominated sorting genetic algorithm has
demonstrated great efficiency in fields, there is rare literature
on the application of NSGA-II for the design of a laminated
structure. In this work, we implement this algorithm to guide
the design of laminated composite material with multiple
constraints. The experiment results have shown that NSGA
offers great advantages in assisting the design of a laminate,
where it provides a set of solutions. As far as we know, this
is the first time to adopt a non-dominated sorting genetic
algorithm for laminate design.

The rest of this work is organized as follows: Section
IT reviews the non-dominated genetic algorithm; Section III
gives a brief introduction to laminate and covers the strength
calculation process; in Section IV, we formulate the objective
functions; in Section V, we present the experiment; finally, we
analyze the simulation result and give the conclusion.

II. NON-DOMINATED SORTING GENETIC ALGORITHM
AND LAMINATE REPRESENTATION

Non-dominated sorting genetic algorithm is an evolutionary
algorithm that maintains solutions in the mating pool. The
solutions are in the same frontier if none of them dominate
each other, and NSGA-II can reserve frontiers in the popula-
tion. NSGA-II outperforms other multiobjective algorithms in
three aspects: 1) O(M N?) computational cost, where M is the
number of objectives and N is the population size; 2) without
specifying sharing parameters; 3) new selection operator which
combines parents and children and selects individuals from
the combination. Fig. 2 shows the process of NSGA-II in
which the non-dominated sorting technique reduces the sorting
time complexity from O(MN?) to O(M N?). The crowding
distance sorting trick ranks the individual according to the
values of the individual’s objective function. We propose to
adopt these techniques to guide the design of a laminate.

Fig. 1 shows individuals in the mating pool with two
objective functions, f1 and f,. In this figure, the cuboid is to
measure the distance of individuals in the same frontier instead
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Fig. 1. Frontiers in the Population in which Individuals Marked with the
same Color belong to One Frontier [26].
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Fig. 2. NSGA-II Procedure[27].

of using sharing function. This technique can also measure
the distance of laminates because the distance calculation only
requires the value of objective functions. And a sequence of
integers is able to represent the structure of a laminate. So we
can evaluate the objective function according to the integer
representation of a laminate.

III. A LAMINATE AND THE STRENGTH PREDICTION

As shown in Fig. 3, a laminate sequence of lamina binding
together along the thickness direction, and lamina is a special
composite material whose properties are determined by several
variables: ply angle, ply thickness, and material properties. In
this paper, to decide the strength of a laminate, it is necessary
to know how to compute the strength of a single lamina.

A lamina’s strength is highly related to the stress and strain
within it. For a lamina under load, it is straightforward to
calculate the stress and strain in a lamina by using of three-
dimensional stress and strain model, as shown in
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Fig. 3. A Lamina and the Structure of a Laminate.
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In this equation, Q11, Q12, @22, Q¢s are engineering con-
stants, o1, 02, T12, €1, €2, Y12 are stress and strain along differ-
ent directions.

Then failure theories can predict the strength of a lamina
according to obtained stress and strain. Various failure theories
have been proposed to compute the strength of lamina, and
each has its advantage and disadvantages. Here we adopt the
two most widely adopted criteria to calculate the strength:
Tsai-Wu [28], [29] failure theory and Maximum stress [30],
[31] failure theory.

The Tsai-Wu failure theory can compute the strength ratio
of a laminate with the following equation. The strength ratio
is an indicator of a material’s strength under load.

Hyoy + Hooo + HeTio + Hy10% + Hooos

2 (2)
+ H65T12 + 2H 50109 < 1

In this equation, Hi, Ho, Hg, H11, Hoo, Hgg are coeffi-
cients related to five engineering constantso? , o1 , o, 0§, T12.
The relation among them are as follows:

0
90
90

0
90

Fig. 4. Cross-Ply Laminate.
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The five engineering constants are as follows: (UT)ult
ultimate longitudinal tensile strength(in direction 1); ({7 )uit
ultimate longitudinal compressive strength; (o1'),;; ultimate
transverse tensile strength; (0§ ),;; ultimate transverse com-
pressive strength; and (712).;+ and ultimate in-plane shear
strength.

A laminate consists of laminas with a specified sequence, in
which the ply angle, thickness, and composite material of one
lamina could be different from another; Therefore, the strength
computation of a laminate is more complicate than the strength
prediction of a lamina. Classical lamination theory [32] is an
analytical tool to compute the stress and strain for every lamina
in a laminate. For a laminate, the relation between stress and
strain is formulated as

o Qu Q12 Qie €z
[ Oy ] =| Q12 Qa2 Q2 [ €y ] . €]
Qe Q26 Qoo Vay

In this equation, 0;0y,7zy and €z,€y,7zy are stress
and strain in global coordinate. And we can compute

Q11, Q12, Q16, @22, Q26, Qo With the following equations.

Q11 = Q110080 + 2 (Q12 + 2Qes) sin®Ocos*0+
~ Q22510
Q2= (Qu1+ Q22 — 4Qss) sin*Bcos®0
~ Q12 (cos*0 + sin0)
Q22 = Quisin*f +2(Q12 + 2Qes) sin*fcos?0+
~ Qa2c05*0 )
Qe = (Qu — Q12 — 2Qss) cos>Osind—
_ (Q22 — Q12 — 2Qg6) sin>0cosh
Q2 = (Q11 — Q12 — 2Qe6) coshsin®0—
_ (Q22 — Q12 — 2Qg6) cos>Osinb
Qo6 = (Q11 + Q22 — 2Q12 — 2Qs6)
sinb?cosh? + Qe (sind* + cosd*)

The mid-plane strains and curvature of laminate global
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coordinates are obtained with the following equation:
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We can use Equation 7 to calculate every entry in matrice
A, B, and D.

n

Ay = Z(@)k(hk —hy—1)i =1,

k=1

2,6, =1,2,6

n

Bij = . Z(Qm) (

Z Qij)k

—hi_)i=1,2,6,j=1,26 (7)

k 1)Z: 152767j:17276
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In Equation 7, hy is the local coordinate of every lamina.
With these equations, we can obtain the strength ratio of a
laminate.

In this work, the experiment material is a laminate with 0
and 90 ply orientation, also known as cross-ply laminate, as
shown in Fig. 4.

IV. PROBLEM FORMULATION

Our problem is to design cross-ply laminate whose strength
ratio should be greater than two. So the ply orientation is 0
and 90. So the search problem can be reformulated as follows:

(1) design variable: {0y, n} 0 € {0,90};

(2) objective: maximization of strength ratio and minimiza-
tion of mass

(3) constraint: strength ratio should be greater than two.

V. SIMULATION RESULTS AND DISCUSSION

This section presents the experiment. Glass/epoxy is the
experiment material and its properties are shown in Table I.
The dimension of a lamina is 1000x 1000 x 0.165mm3, and the
load applied to the laminate is 2MPa. There are two objectives
in this experiment: maximization of the strength ratio and
minimization of the mass.

The Fig. 5 displays individuals in the mating pool during
the NSGA-II process. In this figure, the x-axis is the mass,
and the y-axis is the negative strength ratio because NSGA-II
can only deal with minimization problems. Each individual
corresponds to one feasible solution which represents the
sequence of a laminate. In this figure, individuals are marked
with a different color if they belong to a different frontier,
then connect individuals in the same frontier, and there are two
frontiers: the black and red frontiers. In the same frontier, no
individual dominates the rest. For our problem, no individual is
better than the other both in mass and strength ratio. This figure
demonstrated that NSGA-II could maintain multiple solutions
in the mating pool with one-time simulation.
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TABLE 1. GLASS/EPOXY PROPERTIES

Property Symbol Unit Glass/Epoxy
Longitudinal elastic modulus Ey GPa 38.6
Traverse elastic modulus Es5 GPa 8.27
Major Poisson’s ratio V12 0.26
Shear modulus G GPa 4.14
Ultimate longitudinal tensile strength (o ?)ult MP 1062
Ultimate longitudinal compressive strength (o 1C)ult MP 610
Ultimate transverse tensile strength (02 )uts MPa 31
Ultimate transverse compressive strength (onf)ult MPa 118
Ultimate in-plane shear strength (T12) wit MPa 72
Density p g/em? 1.903

It also clearly shows that the whole NSGA-II process
is consist of two stages: 1) in the first stage, the number
of individuals in the first frontier keeps increasing. At the
beginning of this process, there are only 10 individuals in the
first frontier, and the number of individuals comes to a peak
when the generation is 24th. 2) In the second stage, the number
of individuals in the first frontier begins to decrease. As shown
in Fig. 5(e), (f), (g), and (h), the number of individuals in the
first frontier is less than the number in the previous figure.

In this experiment, a set of feasible solutions is obtained
using NSGA-II, which satisfies different strength requirements.
In Javidrad [33] et al. work, only one feasible solution is
found after one simulation with a hybrid PSO-SA algorithm,
and therefore it is necessary to run this algorithm many
times according to different constraints. Using non-dominated
sorting genetic algorithms to optimize the design of laminates
could reduce simulations times and improve efficiency.
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Fig. 5. The Variation of Individuals’ Number in each Frontier in the
Population as the NSGA-II Proceeds.

VI. CONCLUSION

In this work, we implement the non-dominated sorting
genetic algorithm to guide the design of the laminated com-
posite structure with two objectives: minimizing the mass and
maximizing the strength ratio simultaneously. The experiment
results have demonstrated that NSGA-II is an efficient algo-
rithm to obtain multiple solutions in the first frontier. In our
experiment, this algorithm obtains 19 individuals in the mating
pool where each individual represent a feasible solution for
solving the design problem. No solution dominates others in
these individuals.

This simulation also demonstrated that the optimal run
times for NSGA-II are from 16 to 32 for the design of
glass/epoxy laminates. We also observe that the NSGA-II
optimization process is consist of two stages: in the first
stage, the number of individuals keeps increasing; however,
during the second stage, the number in the first frontier keeps
decreasing. The number of individuals in the first frontier
comes to a peak if the run times of NSGA-II are from 16
to 32, which would significantly reduce computation cost and
obtain an optimal result.
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