
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

From Monolith to Microservices: A Semi-Automated
Approach for Legacy to Modern Architecture

Transition using Static Analysis

Mohd Hafeez Osman1, Cheikh Saadbouh2, Khaironi Yatim Sharif3, Novia Admodisastro4 and Muhammad Hadri Basri5
Faculty of Computer Science and Information Technology

University Putra Malaysia
43400 Serdang, Malaysia1,2,3,4

Malaysian Administrative Modernisation and Management Planning Unit
Prime Minister Department, Malaysia5

Abstract—Modern system architecture may increase the main-
tainability of the system and promote the sustainability of the
system. Nowadays, more and more organizations are looking
towards microservice due to its positive impact on the business
which can be translated into delivering quality products to the
market faster than ever before. On top of that, native support of
DevOps is also desirable. However, transforming legacy system
architecture to modern architecture is challenging. As manual
modernization is inefficient due to its time-intensive and the
significant amount of effort required, the software architect is
looking for an automated or semi-automated approach for easy
and smooth transformation. Hence, this work proposed a semi-
automated approach to transform legacy architecture to modern
system architecture based on static analysis techniques. This
bottom-up approach utilized legacy source code to adhere to
the modern architecture framework. We studied the manual
transformation pattern for architectural conversion and explore
the possibility of providing transformation rules and guidelines.
A task-based experiment was conducted to evaluate the correct-
ness and efficiency of the approach. Two open-source projects
were selected and several software architects participated in an
architectural transformation task as well as in the survey. We
found that the new approach promotes an efficient migration
process and produces correct software artifacts with minimum
errors rates.

Keywords—Static analysis; software architecture; software mod-
ernisation; microservices

I. INTRODUCTION

Monolithic architecture is a typical cohesive paradigm for
the construction of a software system. In this perspective,
Monolithic means that it’s all composed in one piece. Mono-
lithic technology is developed to be self-contained; program
components are strongly interconnected instead of decoupled,
as is the case with modular software programs. Each element
and its related accessories must be available in a tightly linked
design for the software to be functional.

Microservices are a type of architecture of systems in
which a huge and complex system is designed as a series
of lightweight services (i.e. loosely coupled). Every module
serves a common business purpose and provides a simple, ex-
cellently defined endpoint to connect with all other resources.

Modern architecture such as microservices is introduced to in-
crease the maintainability of a system. However, the transition
from monolith to modern architecture is challenging as the
manual migration process is inefficient due to its Time inten-
sive and the significant amount of effort required. Researches
[1] [2] [3] [4] have confirmed that the manual migration
process is complex and lacks automated (or semi-automated)
tools supported. Nowadays, more and more organizations are
looking towards microservice due to its positive impact on
the business which can be translated into delivering quality
products to the market faster than ever before. On top of that
native support of DevOps is also desirable.

The study aims at providing a semi-automated platform to
guide software architects in transforming legacy architecture to
modern system architecture. Furthermore, we aimed to fulfil
the research gaps in software modernization by developing a
semi-automated tool that may increase the efficiency of the
software modernization process which may satisfy the need of
software companies that are looking forward to such a tool
to minimize the resources of the software modernization and
deliver more value to their prospects. Thus, we perceive that
providing a practical solution is crucial. The refactoring rules
should be formulated based on the practitioner’s and experts’
practice. Hence, the refactoring rules are extracted from the
refactoring practice that was discussed by the microservices
experts from online discussion forums. Several possibilities on
(semi-)automating the refactoring task in modernising legacy
systems to microservices are investigated.

The main contributions of this study are the following:
(i) Refactoring rules to transform legacy to microservices; (ii)
Legacy to microservices refactoring framework and metamodel
and (iii) Semi-automated legacy to microservices tool.

The remainder of this paper is structured as follow: Section
II discusses the related research. Section III explains the re-
search methodology while Section IV describes the correctness
and efficiency evaluation. Section V discusses our findings and
Section VI presents the conclusions and future work.

II. RELATED WORK

This section discusses the transformation of the monolith to
microservices architecture from the perspective of techniques

www.ijacsa.thesai.org 907 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

that were used such as model-driven, static analysis, dynamic
analysis. We also discuss the other works that are related.

A. Model-Driven

There are several work that used model-driven technique
in migrating monolith to microservices, such as [1], [4], [10],
[23] and [24]. We detail some of these works in this paper.

Fritzsch et al. [1] has presented 10 refactoring methods
in scientific literature to migrate monolithic systems into mi-
croservice. The methods are subdivided into four classes. The
result has shown that most of these techniques shall only apply
under several situations. The limitations have been identified
such as input data size and the need for an implementation
tool.

Kamimura et al. [4] discussed the efforts to distinguish
candidates from monolithic systems to microservices, i.e.
endpoints or sometimes called webservices resources which
could be turned into coherent, work-alone smaller services.
This is a long and complicated manual endeavor that involves
the review of several aspects of information engineering and
always relies heavily on the professional performer’s knowl-
edge and expertise. To solve this issue, they established a
method that distinguishes microservice applicants from the
codebase using the SARF technology clustering algorithm with
the given application classes and information’s to be able to
generate microservice candidates. The approach also captures
the candidates derived to demonstrate the connection between
the candidates being extracted with the whole system.

B. Static Analysis

Several works have used static analysis as the main tech-
nique for the monolith to microservices migration. The work
includes [5], [6], [2], [3] and [11]. We discuss some of this
work in more detail.

Mazlami et al. [2] focus on the failure of automated
support instruments and formal models in the area of software
migration. They proposed a formal extraction model as a
form of an algorithm suggestion to identify the microservices
candidates as a web application prototype. They applied their
proposed algorithm to 21 open-source projects (developed
using different programming languages, e.g Java, C++, Python)
and showed that the generated microservice can decrease the
size of the development team to half.

Gysel et al. [5] introduced Service Cutter, a service de-
composition based on 16 coupling criteria distilled from the
literature and industry experience. Service Cutter offers a
service extractor framework that implements graph aggregating
algorithms along with includes ranking based on scoring
beginning from building blocks and structured documents such
as domain model with its use-cases.

Li et al. [3] proposed a semi-automatic decomposition
approach that used data flow to extract services from the
legacy monolith that relates to business logic. The decom-
position has been specified into three stages: (i) define the
use case along with business logic is assessed as a baseline
of specifications; (ii) comprehensive DFD over various rates
and its process-datastore are constructed through the business
logic based on functional requirements; (iii) developed an

algorithm to instantly bind the DFD to an undependable DFD.
A comparative analysis that focused on relevant cohesion
metrics and coupling metrics showed that a data flow-driven
methodology is ideal in providing fair, repeatable, and readable
microservice applicants. However, two (2) major limitations
have been identified: (i) the dataflow method largely relies on
the precise DFDs at all levels, and (ii) secondly do not put
into consideration the non-functional requirements (NFR) of
the microservices.

Levcovits et al. [6] outlined a strategy for describing
and distinguishing microservices on a monolithic enterprise
application. The assessment indicated that their methodology
may recognize successful microservice candidates on a 750
KLOC financial system in which decreased the size of the
code base modules and took full advantage of the architecture
of microservices, such as the independent development and
deployment of services and technological freedom. However,
in certain situations, extra effort would be necessary to move
mutual subsystems to a collection of microservices.

C. Dynamic Analysis

This subsection discussed the related work that uses dy-
namic analysis and also the combination of dynamic and static
analysis.

Mayer and Weinreich [14] proposed an approach to con-
stantly extracting services from a legacy software system based
on REST microservices. Their approach relies on static and
dynamic data collection, gathering input at runtime execution,
and merging static and dynamic analysis. This customizable
analysis technique captures runtime information to one dimen-
sion, allowing an analysis of the architectural design transfor-
mation over a longer period. Evaluated the proposed technique
of a system, by establishing an empirical test that included
several communicating services. The findings demonstrated the
feasibility of the process of collecting and aggregating data.

Carrasco et al. [12] have discussed nine (9) potential
mistakes in terms of specific bad smells. Such mistakes can be
noticed and fixed along the way while transitioning to the new
architectural style. As an illustration of a common mistake,
when team members are separated across layers, for example,
a front-end, code business Logic, and operation department,
basic changes can require resources and time between the
members of the team in authorizing the required action. From
that point of view, a team member may propose a change on
which level of the application they possess direct exposure
to which can be limited by dividing responsibilities within
specific services only. This work offers a strong foundation
for relevant insights on the effective transition of monolithic
architecture to the new architectural style.

ToLambda is a tool created by Kaplunovich [13] that
dynamically allows the generation of system base code, turning
the existing systems into healthier architectures, and contin-
ually improving. The tool converts existing java code into
Nodejs code and changing the code structure to more modular
using a microservices architecture. No experiment has been
conducted to evaluate the correctness of the conversion and
the architectural change.

www.ijacsa.thesai.org 908 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

D. Other Related Work

There are several works that related such as [7], [8], [9],
[15], [16], [17], [18], [19], [20], [21] and [22]. We discuss
some of these works in more detail.

Ahmadvand and Ibrahim [8] introduced a scientific method
for breaking up monolithic applications into microservice
applicants, aimed at an optimal level in safety and scalability
as a quality attribute. Using this methodology, requirements
engineers should carefully compare security and scalability
criteria. This initiates design decisions at the requirement
engineering activity and thereby extends the vision of the
software architect’s point of view regarding the system to be.

Meanwhile, Ren et al. [9] introduced a program-based
research approach for moving the traditional monolith code
to cloud applications. They suggested merging dynamic and
static analysis of the binary code to derive the properties of the
existing monolith program. The reactive tracing has been used
to trace the functionality of the application, the user input data,
the called methods and the accessed database information,
and the rate of the method invocation throughout tracing. The
experimental findings indicated that the new approach was
successfully addressed the re-designing issue of the legacy
system.

Tyszberowicz [15] proposed a systemic and rational ap-
proach to identify Microservices based on requirements in use
and functional breakdown of those specifications. This method
offered highly cohesive and tight decomposition coupled. The
evaluation was conducted by implementing the approach on
three different systems.

Meanwhile, Jin et al. [16] suggested a feature-oriented
microservice retrieval approach to automatically create mi-
croservices candidates through a monolithic legacy system.
Execution traces are used to facilitate the classification of
features. Compared to the conventional approaches (which
use static analysis), traces of execution can better represent
software functionalities.

III. METHODOLOGY

This section provides the study design and methodology of
every stage and ethical considerations, in order to develop a
supporting tool that can assist software architects while mod-
ernizing applications. The methodology of this study consists
of the following four stages.

A. Stage 1 - Framework Development

At this stage, we develop the overall architecture of the
framework that consists of several components that define the
framework which will define the rules of software modern-
ization. The relationship between the framework components
will be depicted and describe briefly. Each component of the
framework will follow the single responsibility principle so
that components reuse is easy for further enhancement. The
overall framework processes will be summarized in short and
consist of an algorithm written in pseudo-code. Furthermore,
the refactoring rules that will be applied on the web layer will
be listed in detail as a table along with the UML class diagram
that depicts how rules work.

B. Stage 2 - Tool Design and Development

For this first step, we will concentrate on developing our
framework and the overall architecture to better understand
the system elements, and we will use UML diagrams and
IntelliJ as an integrated development environment platform to
implements these design architectures. The tool would include
features that allow users to import the legacy application to our
current tool, then be able to re-architect the legacy applications
using basic drag-and-drop features and automatically refactor
rules to modernize the legacy features on the web layer and
create compatible cloud artifacts.

C. Stage 3 - Evaluating Correctness and Efficiency of the Tool

We will conduct an experiment that is favorable in software
engineering research to enable us to verify the proposed tool’s
correctness and efficiency. We will use 2 open source projects
in this experimental research as a laboratory for this study.
In this case, for a broader view of the problem anatomy,
2 open-source projects were both built-in java with distinct
requirements. Selections will be made for the two open-source
initiatives and further information will be given. In addition,
with our latest proposed tool, we are also preparing to conduct
an expert assessment and the participants will first be told
of the general purpose of the analysis and asked to perform
software migration using the semi-automated built tool and
manual migration, then metrics will be guided by the outcomes
of migration to compare both the manual and semi-automated
solution. In addition, a structured questionnaire will be used to
invite the participants selected for the research to participate
in the survey and to share their views on the effectiveness of
the process in the industry.

D. Stage 4 - Findings and Conclusion

Results from stage three (Experiment and expert assess-
ment of the correctness and efficiency of the tool) will be ad-
dressed in this segment to see how the outcome fits the targets
based on our established tool and eventually, conclusions will
be drawn and potential work progress will be explored next.

E. Framework Architecture

Fig. 1 illustrates the framework components and how they
interact to achieve a common goal which is modernizing legacy
java application that is built on top of spring framework. A
brief explanation of the Fig. 1 is as follows:

• Legacy Code Container is responsible for holding
the legacy code and passing it to the filter component
to be filtered.

• Filter is responsible for filtering incoming legacy
codebase on the web Layer where controllers are
located. Once controllers are identified they will be
passed to the Refactoring component to be refactored.

• Refactoring is responsible for modernized legacy
code to a new modern way it consists of four sub-
components which are:

◦ Refactoring Rules contains all the rules which
will be applied to the legacy code

www.ijacsa.thesai.org 909 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Fig. 1. Modernator Framework.

Fig. 2. Refactoring Rules Metamodel.

◦ Refactoring Manager process and takes care
of the refactoring processes.

◦ AST’s API contains needed API to understand
the structure of the legacy code.

◦ Reflection API contains needed API to call
rules that will be applied at runtime.

• Microservices Creator is responsible for taking refac-
tored code and organize it and auto-generate the new
microservices.

• Microservices Packager is responsible for taking
newly created service and package it as a Docker
image or jar/war.

• Microservices Exporter is responsible for exporting
ready service to the user.

F. Framework Refactoring Rules Metamodel

Fig. 2 illustrates the metamodel of refactoring rules that
are used in the framework. This figure shows that each rule

is associated with a function. Either it is associated with a
function signature or a function body. Each rule should have an
Id, Type, Description, Condition, Action Description, Action
Method Name and Related Rules.

G. Framework Refactoring Rules Table

The below table contains all the rules that will be applied
to a legacy code. The rules are categorized into two types as
follow:

• Function Signature rules that will be applied on
the legacy function signature which is either on the
function parameter or function return type.

• Function Body is rules which will be applied in the
body of the legacy function.

The main target of this work is designing and developing
a tool that can modernize java applications. The legacy appli-
cation will be used as input to the tool. The refactoring task
will be performed at the controller’s level in the web layer.

www.ijacsa.thesai.org 910 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

TABLE I. SET OF REFACTORING RULES

Rule
ID

Rule-Condition Related -
Rules

Before Refactoring After Refactoring

Rule Type: Function Signture
R1 Applied when :

ModelMap object
is presented
as function
parameter

R [2, 3, 4,
5, 6, 7, 8,
9, 10]

String FunX (ModelMap map) String FunX (){}

R11 Applied when:
ModelAndView
object is
presented
as function
parameter

R [12 – 36] String FunX(ModelAndView MAV){} String FunX(){}

R37 Applied when:
ConcurrentModel
object is
presented
as function
parameter

String FunX(ConcurrentModel CM){} String FunX(){}

R38 Applied when:
ExtendedMod-
elMap object
is presented
as function
parameter

String FunX(ExtendedModelMap
EMM){}

String FunX(){}

R39 Applied when:
RedirectView
object is
presented
as function
parameter

String FunX(RedirectView rv){} String FunX(){}

Rule Type: Function Signture
R40 Applied when:

Map object
is presented
as function
parameter

String FunX(Map m){} String FunX(){}

R2 Applied when:
addAttribute
function is called

R1 String FunX(ModelMap map)
map.addAttribute(“msg”,”hello”)

String FunX(ModelMap map) Ar-
rayList<String,String>data = new Ar-
rayList<>();
data.add(“msg”,”hello)

R3 Applied when:
ModelMap
function is called

R1 ModelMap md = new ModelMap (at-
tributeName, attributeValue);

ArrayList<String,String>md = new
ArrayList<>();
md.add (attributeName, attributeValue)

R4 Applied when:
ModelMap
function is called

R1 ModelMap md = new Mod-
elMap(attributeValue);# attributeValue
is of type Object

ArrayList<String,String>md
= new ArrayList<>();
md.add(attributeValue)

R5 Applied when:
addAtribute
function is called

R1 addAttribute(attributeValue); #
attributeValue is of type Object

ArrayList<String,String>md
= new ArrayList<>();
md.add(attributeValue)

www.ijacsa.thesai.org 911 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

R6 Applied when:
addAllAttributes
function is called

R1 addAllAttributes(attributeValues); # at-
tributeValue is of type Collection<?>

ArrayList <String,String>md = new
ArrayList<>();
md. add(attributeValues)

R7 Applied when:
addAllAttributes
function is called

R1 addAllAttributes(attributes); #
attributes is of type Map<String,?>

ArrayList<String,String>md = new
ArrayList<>(); md.add(attributes)

R8 Applied when:
mergeAttributes
function is called

R1 mergeAttributes(attributes); #
attributes is of type Map<String,?>

ArrayList<String,String>md = new
ArrayList<>(); md.add(attributes)

R9 Applied when:
containsAttribute
function is called

R1 containsAttribute(attribute);
attribute is of type String

deleted

R10 Applied when:
getAttribute
function is called

R1 getAttribute(attribute);
attribute is of type String

deleted

R12 Applied when:
ModelAndView
function is called

R11 ModelAndView mav = new Mode-
lAndView()

look for mav references move its
data then delete it

R13 Applied when:
ModelAndView
function is called

R11 ModelAndView mav = new Mode-
lAndView(viewName)

look for mav references move its
data then delete it

R14 Applied when:
ModelAndView
function is called

R11 ModelAndView mav = new Mode-
lAndView(view)

look for mav references move its
data then delete it

R15 Applied when:
ModelAndView
function is called

R11 ModelAndView mav = new Mode-
lAndView (viewName,Model)
#model is type of Map<String,?>

HashMap<String,?>model = new
HashMap<>(); Model.putAll(Model);

R16 Applied when:
ModelAndView
function is called

R11 ModelAndView mav = new Mode-
lAndView (viewName,status) #model
is type of HttpStatus

HttpStatus hs = status ;

R17 Applied when:
ModelAndView
function is called

R11 ModelAndView mav = new Mode-
lAndView (viewName,model,status)
#model is type of HttpStatus

HashMap<String,?>model = new
HashMap<>(); Model.putAll(Model);
HttpStatus hs = status ;

R18 Applied when:
ModelAndView
function is called

R11 ModelAndView mav = new Mode-
lAndView (modelName,ModelObject)
#ModelObject is of type Object

HashMap<String,Object>model=
new HashMap<>();
Model.put(ModelName, Mode-
lObject);

R19 Applied when:
setViewName
function is called

R11 setViewName(viewname) # delete

R20 Applied when:
getViewName
function is called

R11 getViewName() # delete

R21 Applied when:
setView function
is called

R11 setView(view) # delete

R22 Applied when:
getView function
is called

R11 getView() # delete

R23 Applied when:
hasView function
is called

R11 hasView() # delete

www.ijacsa.thesai.org 912 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

R24 Applied when:
isReference
function is called

R11 isRefrence() # delete

R25 Applied when:
getModelInternal
function is called

R11 getModelInternal() # delete

R26 Applied when:
getModelMap
function is called

R11 getModelMap()
#return Model (need review)

delete

R27 Applied when:
getModel function
is called

R11 getModel()
#return Model (need review)

delete

R28 Applied when:
setStatus function
is called

R11 setStatus(status) # HttpStatus hs = status ;

R29 Applied when:
getStatus function
is called

R11 getStatus() # delete

R30 Applied when:
addObject
function is
called

R11 addObject(attributeName,
attributeValue)

HashMap <String,Object>model
= new HashMap<>();
Model.put(attributelName,
attributeVAlue);

R31 Applied when:
addAllObjects
function is called

R11 addAllObjects(modelMap) # attribute-
Value is of type Map<String,?>

HashMap<String,?>model
= new HashMap<>();
Model.putAll(modelMap);

R32 Applied when:
clear function is
called

R11 clear() # delete

R33 Applied when:
isEmpty function
is called

R11 isEmpty() # delete

R34 Applied when:
wasCleared
function is called

R11 wasCleared() # delete

R35 Applied when:
toString function
is called

R11 toString() # delete

R36 Applied when:
formatView
function is called

R11 formatView() # delete

Fig. 3. Tool’s Backend Architecture.

www.ijacsa.thesai.org 913 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

The refactoring task will be based on a set of rules (as shown
in Table I) predefined by the tool to modernize the legacy
application. Right after the refactoring, the tool can package
the new application into a container which enables it to be
cloud compatible, and in the final stage, the software architect
will be able to download the newly modernized application.

The main target of this work is designing and develop-
ing a tool that can modernize java applications. The legacy
application will be used as input to the tool. The refactoring
task will be performed at the controller’s level in the web
layer. The refactoring task will be based on a set of rules (as
shown in Table I) predefined by the tool to modernize the
legacy application. Right after the refactoring, the tool can
package the new application into a container which enables it
to be cloud compatible, and in the final stage, the software
architect will be able to download the newly modernized
application. The proposed tool has been divided into two
separate architectures: front-end architecture which represents
the tool views and the Back-End architecture which represents
the backbone of the developed tool and its functionalities. The
front-end architecture is being developed using the Angular
framework and comprises four (4) main modules:

• App Module: represent the starting point of the appli-
cation such as index.html.

• Core Module: contains singleton components and ser-
vices such as toolbar components.

• Feature Module: provides a feature that the application
offers such as file upload.

• Shared Module: contains highly reusable components
and services such as services that communicate with
the back-end.

The core components (as illustrated in Fig. 3) of the back-
end architecture are the following:

• Service Layer: handle incoming requests and security
mechanisms such as authorization and authentication.

• Business Layer: concerned with service creation,
refactoring, and packaging.

• Data access object layer: persist data into database.

IV. CORRECTNESS AND EFFICIENCY EVALUATION

In this study, we have conducted a survey to conduct an
initial evaluation of the proposed semi-automated approach.
The subsequent questions are formulated based on the research
problem:

• Q1: Does the semi-automated approach promote effi-
ciency in transforming legacy architecture into modern
system architecture?

• Q2: How is the correctness of the generated system
using a semi-automated approach?

A. Evaluation Setting

Since this work is an initial work of microservice moderni-
sation, we conducted an initial expert evaluation to evaluate
the effectiveness and the correctness of our approach. We

selected three (3) experts to evaluate our approach (based
on our developed tool). All of the selected experts have at
least five years of experience and have a software engineering
background. The evaluation setting is the following:

• Step 1: The experts were asked to manually modernise
a simple architecture module of software to microser-
vice architecture.

• Step 2: The experts were introduced to the tool and
allowed to use the tool.

• Step 3: The experts were asked to modernise a sim-
ple architecture module of software to microservice
architecture by using the semi-automated tool.

• Step 4: The experts were required to answer several
questions regarding the tool’s correctness and effi-
ciency in performing the modernisation task.

B. Results

As mentioned above, we aim at evaluating the correctness
and the effectiveness of our approach (by using the semi-
automated tool) in performing modernisation tasks. The result
is based on the experts’ answers to our survey.

1) Correctness: After performing all the required steps, we
asked the experts about the error found (on average) when they
use the manual approach and the error found after performing
the modernisation task using our approach. In terms of the
manual approach, one (1) expert mentioned that the 0 errors
were found and the other two (2) experts stated that 1 –
5 errors were found in the manual approach. On the other
hand, when we asked the experts on the correctness of our
approach, all experts mentioned that (on average) they found
1 – 5 errors after they used our approach. From this result, we
can summarize that the manual approach still produces better
accuracy than using our approach. However, the result shows
that the difference is not far (as illustrated in Fig. 4).

2) Efficiency: To evaluate the efficiency of our approach
based on the semi-automated tool, after performing all the
steps in Section IV, the experts were required to answer on the
time to complete the tasks. By using a manual approach, all
experts mentioned that they need to spend more than 4 hours
to complete the microservice modernisation task. In contrast,
by using the semi-automated approach, the experts stated that
the modernisation task will be faster. One (1) expert mentioned
that it takes 1-2 hours, one (1) expert mentioned that it takes
2-3 hours and another expert stated that it will take 3-4 hours.
With this, we can summarize that by using our semi-automated
approach, the modernisation task will be faster to complete
compared to the manual approach (as illustrated in Fig. 5).

V. DISCUSSION

This chapter discusses the implications of the practical and
theoretical implications of the study as well as a list of the
limitation of this approach.

A. Practical Implications

To better understand the practical implication of this study
will compare it to previous studies from an enterprise’s point of

www.ijacsa.thesai.org 914 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Fig. 4. Evaluation on the Tool’s Correctness.

Fig. 5. Evaluation on the Tool’s Efficiency.

view. Service cutter is a tool that assists in software transition
from monolith to microservice by taking monolith domain
model as input and suggested new decomposed domain model
as microservices. On the other hand, our approach, Modernator
is a tool that has been proposed and developed by this study
which takes as an input monolith application(spring MVC) and
does refactoring on the web layer, and produces microservice
(spring boot) as an output.

We believe as organizations are looking to ease the transi-
tion from monolith to microservice while reducing the number
of resources allocated to the transition in this case Modernator
will have a positive impact on their transition as it produces
production source code that can be alerted if needed comparing
to service cutter that will produce domain model that needs
to be implemented from scratch. However, Modernator will
be useful only in the spring framework environment but
since spring framework is widely used by enterprises as the
backbone of their information systems that give Modernator a
high rate to be widely used as well.

B. Theoretical Implications

This study has introduced a list of refactoring rules that
can be used to refactor legacy spring MVC controllers that
in nature returns JSP pages to modern spring boot controllers

that return data in JSON format that is compatible with modern
architecture such as microservice.

The construction of the rules has been made by following
spring framework documentation and by identifying spring
MVC legacy classes and mapping them to spring boot classes.
The proposed rules can be dived into two type function signa-
ture which focuses of refactoring legacy function signature and
function boy that find legacy function calls. We were able to
construct around 40 rules, however; these rules do not include
all possible cases there might be other legacy classes that we
did not discover in this study.

C. Limitation

Since this work is an initial work for this study, we see a
lot of possibility to improve this work based on the following
limitations:

• Lack of boarder Evaluation.

• Support limited to java and more specifically applica-
tion built with spring framework.

• Did not test all proposed refactoring rules.

• Refactoring focused only on Web Layer.

• Did not propose all possible refactoring rules.

www.ijacsa.thesai.org 915 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

VI. CONCLUSION AND FUTURE WORK

The motivation behind this study is to fulfill the need of
the industry to have a semi-automated approach for easy and
smoothly transforming legacy system architecture to modern
architecture. As the manual transition is inefficient due to its
time-intensive and the significant amount of effort required.
Therefore, this research proposed to develop a semi-automated
tool to provide transformation rules and guidelines. An Expert
Evaluation was conducted to evaluate the correctness and the
efficiency of the approach. Lastly, this research has proved that
the new approach promotes an efficient migration process and
produces correct software to some extent.

For future work, we plan to conduct a Broader Evaluation
of the proposed refactoring rules to further validated their
correctness as well as constructing new rules for refactoring
other layers such as the business layer and data access object
layer.

REFERENCES

[1] Fritzsch J, Bogner J, Zimmermann A, Wagner S. From monolith to
microservices: A classification of refactoring approaches. InInternational
Workshop on Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment 2018 Mar
5 (pp. 128-141). Springer, Cham.

[2] Mazlami G, Cito J, Leitner P. Extraction of microservices from mono-
lithic software architectures. In2017 IEEE International Conference on
Web Services (ICWS) 2017 Jun 25 (pp. 524-531). IEEE.

[3] Li S, Zhang H, Jia Z, Li Z, Zhang C, Li J, Gao Q, Ge J, and Shan Z, “A
dataflow-driven approach to identifying microservices from monolithic
applications,” J. Syst. Softw., vol. 157, p. 110380, Nov. 2019, doi:
10.1016/j.jss.2019.07.008.

[4] Kamimura M, Yano K, Hatano T, Matsuo A. Extracting candidates
of microservices from monolithic application code. In2018 25th Asia-
Pacific Software Engineering Conference (APSEC) 2018 Dec 4 (pp. 571-
580). IEEE.

[5] Gysel M, Kölbener L, Giersche W, Zimmermann O. Service cutter: A
systematic approach to service decomposition. InEuropean Conference
on Service-Oriented and Cloud Computing 2016 Sep 5 (pp. 185-200).
Springer, Cham..

[6] Levcovitz A, Terra R, Valente MT. Towards a technique for extract-
ing microservices from monolithic enterprise systems. arXiv preprint
arXiv:1605.03175. 2016 May 10.

[7] Knoche H, Hasselbring W. Using microservices for legacy software
modernization. IEEE Software. 2018 May 4;35(3):44-9.

[8] Ahmadvand M, Ibrahim A. Requirements reconciliation for scalable and
secure microservice (de) composition. In2016 IEEE 24th International
Requirements Engineering Conference Workshops (REW) 2016 Sep 12
(pp. 68-73). IEEE.

[9] Ren Z, Wang W, Wu G, Gao C, Chen W, Wei J, Huang T. Migrating
web applications from monolithic structure to microservices architecture.
InProceedings of the Tenth Asia-Pacific Symposium on Internetware
2018 Sep 16 (pp. 1-10).

[10] Abdullah M, Iqbal W, Erradi A. Unsupervised learning approach
for web application auto-decomposition into microservices. Journal of
Systems and Software. 2019 May 1;151:243-57.

[11] Shimoda A, Sunada T. Priority order determination method for extract-
ing services stepwise from monolithic system. In2018 7th International
Congress on Advanced Applied Informatics (IIAI-AAI) 2018 Jul 8 (pp.
805-810). IEEE.

[12] Carrasco A, Bladel BV, Demeyer S. Migrating towards microservices:
migration and architecture smells. InProceedings of the 2nd International
Workshop on Refactoring 2018 Sep 4 (pp. 1-6).

[13] Kaplunovich A. ToLambda–Automatic Path to Serverless Architectures.
In2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR)
2019 May 28 (pp. 1-8). IEEE.

[14] Mayer B, Weinreich R. An approach to extract the architecture
of microservice-based software systems. In2018 IEEE symposium on
service-oriented system engineering (SOSE) 2018 Mar 26 (pp. 21-30).
IEEE.

[15] Tyszberowicz S, Heinrich R, Liu B, Liu Z. Identifying microservices
using functional decomposition. InInternational Symposium on Depend-
able Software Engineering: Theories, Tools, and Applications 2018 Sep
4 (pp. 50-65). Springer, Cham.

[16] Jin W, Liu T, Zheng Q, Cui D, Cai Y. Functionality-oriented mi-
croservice extraction based on execution trace clustering. In2018 IEEE
International Conference on Web Services (ICWS) 2018 Jul 2 (pp. 211-
218). IEEE.

[17] Balalaie A, Heydarnoori A, Jamshidi P. Migrating to cloud-native
architectures using microservices: an experience report. InEuropean
Conference on Service-Oriented and Cloud Computing 2015 Sep 15 (pp.
201-215). Springer, Cham.

[18] Gouigoux JP, Tamzalit D. “Functional-First” Recommendations for
Beneficial Microservices Migration and Integration Lessons Learned
from an Industrial Experience. In2019 IEEE International Conference
on Software Architecture Companion (ICSA-C) 2019 Mar 25 (pp. 182-
186). IEEE.

[19] Mazzara M, Dragoni N, Bucchiarone A, Giaretta A, Larsen ST, Dustdar
S. Microservices: Migration of a mission critical system. IEEE Transac-
tions on Services Computing. 2018 Dec 21.

[20] De Alwis AA, Barros A, Fidge C, Polyvyanyy A. Discovering mi-
croservices in enterprise systems using a business object containment
heuristic. InOTM Confederated International Conferences” On the Move
to Meaningful Internet Systems” 2018 Oct 22 (pp. 60-79). Springer,
Cham.

[21] Eski S, Buzluca F. An automatic extraction approach: Transition to
microservices architecture from monolithic application. InProceedings
of the 19th International Conference on Agile Software Development:
Companion 2018 May 21 (pp. 1-6).

[22] Sayara A, Towhid MS, Hossain MS. A probabilistic approach for
obtaining an optimized number of services using weighted matrix and
multidimensional scaling. In2017 20th International Conference of Com-
puter and Information Technology (ICCIT) 2017 Dec 22 (pp. 1-6). IEEE.

[23] Baresi L, Garriga M, De Renzis A. Microservices identification through
interface analysis. InEuropean Conference on Service-Oriented and
Cloud Computing 2017 Sep 27 (pp. 19-33). Springer, Cham.

[24] Escobar D, Cárdenas D, Amarillo R, Castro E, Garcés K, Parra C,
Casallas R. Towards the understanding and evolution of monolithic
applications as microservices. In2016 XLII Latin American Computing
Conference (CLEI) 2016 Oct 10 (pp. 1-11). IEEE.

www.ijacsa.thesai.org 916 | P a g e

