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Abstract—The price of the solid-state drives has become a 

major factor in the development of flash memory technology. 

Major semiconductor companies are developing quadruple-level 

cell NAND-based SSDs for smart devices. Unfortunately, SSDs 

composed of quadruple-level cell (QLC) flash memory may suffer 

from low performance. In addition, few studies on internal page 

buffering mechanisms have been conducted. As a solution to these 

problems, an address pattern recognition flash translation layer 

(APR-FTL) is proposed in this study. APRA-FTL gathers the data 

in a page unit and separates random data from sequential data. 

Furthermore, APRA-FTL proposes address mapping algorithm 

which is compatible to the page buffering algorithm. Experimental 

results show that APRA-FTL generates a lower number of write 

and erase operations compared to previous FTL algorithms. 
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I. INTRODUCTION 

Price has become an important factor in the development of 
flash memory system, as many semiconductor manufacturing 
companies are competing for dominance in the smart device 
market [1]. Some semiconductor companies have recently 
turned their attention to developing QLC flash memories for 
smart devices as a means of providing large capacity at a low 
price [2]. As a result, instead of applying high-performing 
single-level cell (SLC) or multi-level cell (MLC) technology to 
smart devices, major semiconductor companies are developing 
QLC flash memory for smart devices. However, implementing 
QLC flash memories on smart devices may drastically diminish 
device performance and durability and even generate 
inconsistent response times, as smart devices must generate 
frequent updates from temporary files and metadata [3]. 

Furthermore, smart devices may execute unnecessary write 
operations on QLC-based SSDs because of the large page size 
of QLC flash memory. Although the page size of SLC or MLC 
flash memory is only four to eight times larger than the data 
sector of the file system [4], the page size of QLC flash memory 
is predicted to be 64 to 512 sectors. Because of the large page 
size of QLC flash memory, there is a considerable chance that 
the file system may frequently command a page re-access in the 
flash memory. However, the number of partial programming 
(NOP) requirements within a page is limited to only one to 
avoid program-disturbing errors [5]. Therefore, QLC flash 
memory tends to use an internal register or page buffer to gather 
data in a page unit. 

Well-optimized flash translation layers (FTLs) are based on 
SLC/MLC/TLC flash memory [6], and therefore they do not 
give considerable attention to their own page buffering 
mechanisms (PBMs). This is an issue that has yet to be fully 
researched. In this study, the implementation of an address 
pattern recognition flash translation layer is proposed. APRA-
FTL gathers the data sectors and rearranges them into the page 
size of the QLC flash memory, instead of writing data on the 
flash memory immediately. Furthermore, APRA-FTL proposes 
address mapping algorithm which is compatible to the page 
buffering algorithm. The efficient data collection of APRA-
FTL provides improved performance and consistent response 
despite the use of low-performing QLC flash memories. 

II. RELATED WORKS 

Previous PBMs can be classified into fine- and coarse-level 
PBMs. A fine-level PBM [7] gathers data sectors without a 
logical address boundary. However, this method reveals every 
corresponding physical sector number in DRAM. Therefore, it 
requires approximately 8 GB per 1 TB of flash memory. By 
contrast, a coarse-level PBM [8][9] gathers data using the same 
logical page number (LPN). Fig. 1 shows an example of a 
coarse-level PBM. Here, the extensive data from the write 
command are broken down into a unit of file system data 
sectors. A logical sector number (LSN) and its corresponding 
data are shown as (LSN, data). For simplicity, the size of a 
block is assumed to be four pages, where each page consists of 
only four sectors. Because they all belong to LPN 0, (0, A), (1, 
B), and (2, C) belong to a single page (= 0/4, = 1/4, = 2/4). 
However, when (16, D) occurs, the data within the page buffer 
are sealed as a page and written to flash memory because (16, 
D) belongs to LPN 4 (= 16/4). Finally, the page buffer is 
flushed, and data “D” are written to the emptied page buffer. 
Similarly, other data are gathered as a page unit. The coarse-
level PBM generates six subpages, as shown in Fig. 1, although 
the file system issues only nine data sectors. If each page is 
filled with data, the coarse-level PBM generates only three 
pages. In Fig. 1, it is assumed that a page consists of only four 
subpages. However, we should note that the page size of QLC 
flash memory ranges from 64 to 512 sectors. There is a 
considerable chance that the space utilization of a QLC-NAND 
SSD will decrease drastically because of the frequent 
occurrence of subpages. 
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Fig. 1. Coarse-level Page Buffering Mechanism. 

III. ADDRESS PATTERN RECOGNITION FLASH TRANSLATION 

LAYER 

A. Address Pattern Recognition Algorithm 

Address pattern recognition algorithm (APRA) modifies 
previous adaptation layer [10] and provides compatible address 
mapping algorithm according to the experiments in Section 
III.B. In other words, the address pattern recognition FTL is 
composed of address pattern recognition algorithm and address 
mapping algorithm. 

The QLC flash memory cannot access to a page for an 
additional write operation because of the restricted NOP. 
Therefore, the QLC flash memory requires an efficient PBM.  
Unfortunately, the coarse-level PBM generates five page write 
operations, as previously explained in Section II. We should 
note that the QLC flash memory consists of 8 to 16 sectors per 
page. Because the amount of random data tends to fill the space 
of only one to four sectors, it is likely that the scenario will 
frequently occur. As a solution for the unnecessary write 
operations, the address pattern recognition algorithm (APRA) 
has been proposed [10]. 

APRA is shown as Algorithm I. The main objective of 
APRA is to segregate the random data from the sequential data 
and to allow the address mapping algorithm in FTL to 
separately manage them [10]. When the file system issues a 
write command along with the LSN, APRA first checks 
whether (LSN, data) is sequential to the sequential buffer 
(Algorithm 1 line 1). If (LSN, data) is sequential to the 
sequential page buffer, it is considered as the sequential data, 
and therefore it is inserted into the sequential page buffer 
(Algorithm 1 line 2). On the other hand, if the incoming data’s 
LSN already exists in the page buffers (Algorithm 1 line 3), 
APRA consider (LSN, data) as an update, and therefore it is 
inserted into the random page buffer (Algorithm 1 line 4). 
Finally (LSN, data) is included in the undefined buffer if (LSN, 
data) is not sequential pattern nor an update. 

ALGORITHM I: Address Pattern Recognition 

Input:  logical sector number (LSN), data (data) 

Procedure:  write_page_buffer (LSN, data) 

1: if (LSN, data) is sequential then 

2: data_insert(sequential_buffer, LSN, data); 

3: else if (LSN, data) is update then 

4: data_insert(random_buffer, LSN, data); 

5: else 

6: data_insert(undefined_buffer,  LSN, data); 

13 end if 

  

Input:  page buffer (PB), LSN, data 

Procedure:  data_insert (PB, LSN, data) 

14: if PB is full then 

15: Write PB to flash memory; 

16: Flush PB; 

17: Insert (LSN, data) into PB; 

18: else 

19: Insert (LSN, data) to PB; 

20: end if 

B. Address Mapping Algorithm 

The page buffering layer reorganizes the data sectors at the 
page unit, and the address mapping layer determines the 
physical address of the data to be written onto the flash 
memory. To evaluate the performance of the PBM and APRA, 
previous log-block algorithms were implemented in the address 
mapping layer. 

Log blocks are temporary buffers for physical blocks. Of 
previous address mapping algorithms, log-block algorithms are 
well known to be the most optimized FTL algorithms with 
respect to their DRAM requirements and performance. 
Previous log-block algorithms made use of variations in the 
associativity between the blocks and log blocks, which can be 
classified into block-level associativity, full associativity, and 
superblock-level associativity. In this study, address mapping 
algorithms based on block-level associativity, full associativity, 
and superblock-level associativity are referred to as BAST, 
FAST, and SAST, respectively. 

IV. PERFORMANCE EVALUATION 

A. Experimental Setup 

For this study’s experiment, an FTL simulator was 
developed, and trace-driven simulations were conducted. The 
traces were retrieved from smartphones running various 
multimedia services and applications. The developed FTL 
simulator consisted of two layers: a page buffering layer and an 
address mapping layer. The previous PBM and APRA were 
implemented in the page buffering layer, and the number of 
pages generated by both algorithms were then monitored. It is 
also assumed that each page and block consist of 64 sectors and 
256 pages, respectively, and that the performances of the read, 
write, and erase operations are 100 μs, 1,500 μs, and 6 ms, 
respectively. Furthermore, ARPA-FTL is analyzed by 
implementing block-level, full, superblock-level associative 
address mapping algorithms. 
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B. Performance Analysis 

After PBM and APRA generates the data in the unit of a 
page, the address mapping layer determines the physical 
address within the flash memory. Fig. 2 shows the number of 
write and erase operations executed on BAST, FAST, and 
SAST. In the case of Trace A, the PBM generated 
approximately 1,575,200, 1,571,900, and 1,569,800 write and 
358, 347, and 321 erase operations in BAST, FAST, and SAST, 
respectively. By contrast, APRA-FTL it executed 
approximately 1,546,700, 1,547,300, and 1,543,900 write and 
271, 269, and 261 erase operations in BAST, FAST, and SAST, 

respectively. Similarly, APRA-FTL executed fewer write and 
erase operations in the overall traces, as shown in Fig. 2. 

As previously indicated, the number of pages transferred 
from the page buffering layer considerably affects the number 
of write and erase operations. A close observation reveals that 
APRA-FTL avoids numerous operations in the address 
mapping layer because it collects small-sized random data at 
the page unit. We should note that the number of write 
operations executed on the flash memory is higher than that of 
the pages themselves. 

 
 

(a) Trace A (b)  Trace B 

  

(c)  Trace C (d)  Trace D 

  

(e)  Trace E (f)  Trace F 
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Fig. 2. Number of Write and Erase Operations. 
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The cause of the deviation between the number of pages and 
write operations might be of interest, as the page buffering layer 
issues a write operation to the address mapping layer whenever 
it gathers the data into a page unit. This is because the address 
mapping layer executes additional write operations internally to 
copy the data from an old to a new block. When a block is 
determined to be erased in the address mapping layer, BAST, 
FAST, and SAST copy the valid data from the old block to a 
new block and then execute an erase operation on the old data 
block. Therefore, the number of additional write operations for 
copying the data is considerably influenced by the number of 
erase operations. Because APRA-FTL reduces the number of 
erase operations by gathering random data and avoiding 
unnecessary write commands, it reduces the overall number of 
write operations as well. 

V. CONCLUSION 

Major semiconductor companies are using QLC flash 
memory in smart devices to lower the prices of smart devices. 
Unfortunately, previous page buffering algorithms do not 
segregate random data, thus generating many unnecessary write 
commands in the QLC flash memory. This results in a drastic 
performance degradation in smart devices. Furthermore, there 
has not been any experiment that considers the compatibility 
between page buffering algorithm and address mapping 
algorithm. As a solution, an APRA-FTL was proposed in this 
study. The APRA-FTL may require additional DRAM or the 
use of an internal buffer. However, we showed that it accurately 
identifies random data and thus considerably reduces the 
number of write operations. From experiments conducted in 
this study, APRA-FTL reduced the overall number of 
operations. In a future study, APRA-FTL will be implemented 
in various wear-leveling algorithms, and additional 

experiments will be conducted on the durability and power-off 
recovery of smart devices. 
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