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Abstract—Precise identification of Alzheimer's Disease (AD) 

is vital in health care, especially at an early stage, since 

recognizing the likelihood of incidence and progression allows 

patients to adopt preventive measures before irreparable brain 

damage occurs. Magnetic Resonance Imaging is an effective and 

common clinical strategy to diagnose AD due to its structural 

details. we built an advanced deep sparse autoencoder-based 

architecture, named Alz-SAENet for the identification of 

diseased from typical control subjects using MRI volumes. We 

focused on a novel optimal feature extraction procedure using 

the combination of a 3D Convolutional Neural Network (CNN) 

and deep sparse autoencoder (SAE). Optimal features derived 

from the bottleneck layer of the hyper-tuned SAE network are 

subsequently passed via a deep neural network (DNN). This 

approach results in the improved four-way categorization of AD-

prone 3D MRI brain images that prove the capability of this 

network in AD prognosis to adopt preventive measures. This 

model is further evaluated using ADNI and Kaggle data and 

achieved 98.9% and 98.215% accuracy and showed a 

tremendous response in distinguishing the MRI volumes that are 

in a transitional phase of AD. 

Keywords—Alzheimer’s disease; MRI; CNN; sparse 

autoencoder; DNN; mild cognitive impairment 

I. INTRODUCTION 

Alzheimer's Disease (AD) is the most predominantly 
reported dementia observed in elder people more than 60 
years old. Late-onset effects of AD are most often seen in the 
mid-60s, whereas early-onset effects appear between the 30s 
and the mid-60s. Because of the world's aging population, it is 
anticipated that around 640 million individuals will be 
impacted by AD by the year 2050. Each year, more than 10 
million fresh dementia cases are diagnosed worldwide, 
implying one fresh patient for every 3.2 seconds [1]. This 
situation leads to imposing significant impact on patients' and 
caretakers' daily living routines, physical and emotional states, 
and the economy. Early diagnosis is the only solution to find 
suitable medication that prevents additional damage to the 
cognitive ability of a patient. 

Both the Mini Mental State Examination (MMSE) and the 
Clinical Dementia Rating (CDR) parameters are commonly 
used to estimate the severity of AD. Magnetic Resonance 
Images (MRI) are shown to be the most effective imaging 
biomarker [2, 3] in clinical assessment for analysing and 
getting a conclusion about the stage of dementia due to their 
ability in reflecting the structural details of human brain. In 

practise, several computer-aided diagnostic tools that employ 
machine learning methodologies [4, 5, 6, and 7] such as 
Support Vector Machine (SVM), K-Nearest Neighbor (KNN), 
and ensemble methods [8], are suggested, developed and 
widely implemented using MRI to assist the medical 
practitioners community. 

Due to the rapid advancement of Artificial Intelligence 
algorithms in diagnosis procedures, the deep learning 
techniques have been able to categorise, extract high level 
features, and will also aid in the right diagnosis of AD patients 
in short span of time. The potential for gratifying feedback 
from using deep learning algorithms in medical imaging 
prompted several investigators to emphasize the approach 
when tackling research difficulties and concerns [9, 10, and 
11]. Convolutional Neural Network (CNN) [35] changed the 
complete picture of pattern recognition especially in AD 
diagnosis [12] with their capability in extraction of latent 
features from various objects by fine tuning its hyper 
parameters using optimizers. Sparse autoencoder (SAE), 
another architecture of deep learning model has shown 
exceptional performance in a wide range of unsupervised 
applications due to their ability in utilizing the sparsity in 
information bottleneck [13, 14, 15, and 16]. It excels in 
learning useful feature representations in very complex and 
large datasets, making it a possible solution to handle the 
difficulties of AD prediction. 

In this research paper, a 3-stage neural network model that 
combines 3D CNN, SAE, and Deep Neural Network (DNN) is 
presented. Before feeding MRI volumes into this network, the 
first MRI volumes are pre-processed and converted into 2D 
slices in a series. In this research work, only 40 medial slices 
covering the hippocampal portion were considered so that 
MRI volume consists of AD symptoms. After pre-processing, 
convolutional layers in CNN are trained to extract the latent 
features from MRI data. SAE in the next stage reduces the 
feature dimension so that only dominant features are 
incorporated into DNN [17] in the third stage to classify the 
subjects into AD subcategories namely AD, low and stable 
Mild Cognitive Impairment (ls-MCI), progressive Mild 
Cognitive Impairment (p-MCI), and Cognitive Normal (CN). 
In contrast to earlier approaches, the proposed Alz-SAENet 
exhibits good accuracy, and fast convergence by leveraging 
the convolutional layer’s potential in CNN and the SAE 
sparsity. 

The key contributions of this work are: 
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• Alz-SAENet is developed for robust 4-way 
classification for AD diagnosis. 

• For early diagnosis, this model can be utilized since 
classifying MCI stages were more concentrated. 

The rest of this research article is organized as follows: 
literature is studied and challenges were drawn in Section II. 
Datasets and design of Alz-SAENet are discussed 
systematically in Section III. Experimental remarks and 
discussions are provided and Section IV. Finally, Section V 
summarized the work and future enhancement of this work. 

II. LITERATURE REVIEW 

A. Related Works 

Jha et al. [18] developed a deep architecture that comprises 
SAE, scale conjugate gradient, stacked autoencoders, and 
finally one SoftMax layer for effective classification of AD 
subjects. When compared to other renowned investigations, 
this approach demonstrated a significant improvement in 
diagnosis, yielding an adequate and reliable accuracy of 
91.6%. 

Jabason et al. [19] described a novel technique to handle 
the missing data patterns in Alzheimer’s diagnostic methods 
by leveraging the benefits of sparse autoencoder. It is a 
stacked sparse autoencoder that assign the missing data 
patterns with values and to select the discriminative features 
for supporting 3-way Alzheimer’s disease diagnosis. The 
proposed model has attained 95.90% diagnostic accuracy over 
ADNI dataset by imputing the missing data patterns. 

Soliman et al. [20] proposed an enhanced sparse 
autoencoder base CNN for 3-way Alzheimer’s prediction. The 
authors tuned the hyperparameters of CNN and SAE 
thoroughly using the Adam optimizer and obtained 87.8% 
diagnostic accuracy over ADNI datasets. This diagnostic 
accuracy is attained not only due to the structure of the 
network and also with the pre-processing phase. Further 
improvement of diagnostic accuracy is a bit challenging 
matter. 

Venugopalan et al. [21] implemented a deep learning (DL) 
model for analyzing multimodal data for the 3-way 
classification of AD. They used Stacked Denoising 
Autoencoders (SDAE) for feature extraction from multimodal 
data that comprise both clinical and genetic data and 3D-
CNNs are employed for the categorization of MR volumetric 
data. This model outperformed almost all shallow 
architectures in terms of key evaluation metrics. 

Zhu et al. [22] presented a sparse regression approach that 
utilizes a novel feature selection algorithm that considers task-
wise relations amongst the clinical labels and neuroimaging 
features and ‘self-representation’ relations. Authors performed 
both binary and multiclass classification and this procedure 
outstripped all the conventional methods by improving the 
accuracy by an average of 4.5%. 

Yagis et al. [23] focused on the end-to-end development of 
an AD detection technique that integrates supervised 
prediction with unsupervised representation using 
convolutional autoencoders. To capture hidden representations 

in structural MRI slices, a 2D convolutional autoencoder is 
built. Testing the network over OASIS repository data, it is 
revealed that their model beats several competing classifiers 
with 74.66% accuracy when employing a single slice. 

Lin et al. [24] employed CNN to extract discriminative 
features from MRI volumetric image data. The authors 
concentrated on some specific subjects in the transition period 
from MCI to AD. They attained 79.9% accuracy with their 
model by a solid balance between specificity and sensitivity. 

Basheera et al. [25] demonstrated an innovative method to 
extract the grey matter from the brain voxels, and CNN is 
employed for AD classification. The authors resliced 18,017 
voxels from 1820 MRI volumes that were retrieved from the 
ADNI repository. With the support of their enhanced 
Independent Component Analysis (ICA), they extracted 
hidden structural features from pre-processed voxels. With 
this hybrid method, authors achieved 90.47% accuracy in the 
3-way classification of AD, MCI, and CN subjects. Slow 
convergence and moderate diagnostic accuracy are challenges 
here. 

Akramifard et al. [26] designed and developed a hybrid 
method that combines Autoencoder and SVM for Alzheimer’s 
diagnosis using multimodal datasets including MMSE, MRI, 
PET, CSF, and personal information. An autoencoder is 
designed to inputting the missing data. PCA is employed for 
reducing data dimension. Finally, the SVM algorithm is 
utilized for classification. During the evaluation, their 
algorithm yielded 95.57% accuracy for multimodal data 
whereas for only MRI it produced 84.46% diagnostic accuracy. 
Although the algorithm performance is superior, processing 
such limited datasets in all phases is a challenging task. 

Almuqhim et al. [27] developed ASD-SAENet, a deep 
sparse network for distinguishing autism spectrum disorder 
(ASD) patients from typical control subjects. The authors 
proposed and implemented an SAE, that proposed an 
optimized feature extraction procedure for Autism patients’ 
classification. These features are subsequently loaded into a 
DNN for accurate classification of ASD-prone fMRI brain 
voxels. Based on both the restored data error and the classifier 
error, this model is trained to extract optimal hidden details. 
The model is evaluated over 1,035 Autism Brain Imaging Data 
Exchange (ABIDE) datasets, and 17 research centers and 
achieved 70.8% accuracy and 79.1% specificity. 

B. Review 

Detailed literature analysis is tabulated in Table I. 
Although the existing literature has many advantages, they are 
suffering from certain issues viz. number of AD stages, 
convergence, feature selection, overfitting, and 
hyperparameters tuning. These challenges to be addressed 
with productive outcomes by developing a novel network. 
From overall existing works, it is very clear that 3D CNN will 
holistically extract MRI latent features and converge quickly. 
The feature vector obtained from CNN would have huge 
redundant details that may not affect the classifier overall 
performance. In second stage, the sparsity of SAE aids in the 
mapping of low-level features from high-dimensional features 
while preventing overfitting due to its sample size. Finally, a 
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DNN is employed for the classification of subjects into four 
AD categories viz. CN, ls-MCI, p-MCI, and AD. With the 

hyperparameters tuning, SAE can avoid overfitting by 
minimizing its cost function and with quick convergence. 

TABLE I. LITERATURE DEEP ANALYSIS 

Authors Data Methodology Features Challenges 

Jha et al. [18] OASIS SAE 
Diagnostic accuracy is obtained as 91.6% over very small 

datasets. 
Diagnostic accuracy is low. 

Jabason et al. [19] ADNI SAE 
Imputation of missing data patterrns is employed. 

3-way classification is performed. 

Accuracy is moderate. 

Early diagnosis is not precise. 

Soliman et al. [20] ADNI SAE+CNN 
Differentiates healthy controls from AD subjects. 

3-way classification is performed. 

Suffers from classifying MCI subjects. 

Less accuracy 87.8%. 

Venugopalan et 

al. [21] 
ADNI 

3D CNN+ 

stacked DAE 

3-way classification is performed. 

Multimodal data is used as biomarker for training. 

Suffers from limited dataset sizes. 

Takes long running time. 

Early diagnosis is a bit tough. 

Almuqhim et al. 

[27] 
ADNI SAE+DNN 

Authors designed  a network named ASD-SAENet to 

diagnose Autism Sepctrum Disorder. 

Evaluated their model on ABIDE dataset and 70.8% 

accuracy is achieved. 

Very low accuracy i.e. 70.8%. 

 

Features were not extracted separately in this 

network. 

Basheera et al. 

[25] 

ADNI 

 
CNN+ICA 

An enhanced Independent Component Analysis is 

employed for segmentation. 

For classification, CNN is utilised. 

Multiclass classification accuracy is 90.47%. 

Diagnostic accuracy is moderate. 

Converging slowly. 

Zhu et al. [22] ADNI SVM 

A novel feature selection approach is employed using task 

specific relations. 

Binary and Multiclass classification is performed. 

Deep learning could be used to improve the 

analysis. 

Diagnostic Accuracy is less. 

Yagis et al. [23] OASIS 2D CAE 

Integrated supervised prediction with unsupervised 

representations using CAE. 

Single slice of MRI is used in diagnosis. 

3D volumetric latent features were not extracted. 

 

Diagnostic accuracy is also less i.e 74.66%. 

Akramifard et al. 

[26] 
ADNI CNN+SAE 

2D CNN and 3D CNN both were employed. 

3-way classification with 89.47% accuracy is obtained. 

Tuned hyper-parameters could further enhance 

these findings. 

Dongren et al [8] 
ADNI 

 

Ensemble 

methods 

Authors presented a hierarchical grouping process in 

feature selection method. 

Binary and 4-way classification both were performed. 

Deep learning architectures may improve 

accuracy further. 

Diagnostic accuracy is very poor i.e., 54.375%. 

Vu et al [32] 
ADNI 

 
CNN+SAE 

A novel classification model is presented in a 

multimodality fusion of MRI and PET. 

91.14% accuracy is obtained using MRI-PET. 

Instead of random, authors could select a specific 

patch. 

Overall, system converge very slowly. 

Yang et al. 
OASIS 

 
SVM+ICA 

Machine learning is employed so it is compulsory to 

specify ROI. 

3-way AD diagnosis is employed. 

classification accuracy is still not optimal due to 

various factors. 

Age and gender are not considered. 

Lin et al. [24] 
ADNI 

 
CNN 

This model is centric about MCI to AD conversion 

subjects. 

This approach achieved an accuracy of 79.9%. 

AD progression was not analyzed. 

Diagnostic accuracy is moderate. 

 

III. NETWORK DESIGN AND DEVELOPMENT 

This research work seeks to properly diagnose AD stages 
while using less processing power and storage space. To 
achieve these goals, 3D CNN along with SAE is presented for 
obtaining high-level dominant features related to multi-class 
AD from MRI neuroimage intensities. As shown in Fig. 1, 
unprocessed MRI volumes are thoroughly scaled, resized, and 
segmented properly before being directed into the 
hyperparameters tuned CNN followed by SAE to extract latent 
features. The low dimensional features from the bottleneck 
layer of SAE are subsequently loaded into a deep neural 
network (DNN) which results in the enhanced diagnosis of 
brain voxels more prone to AD. 

A. Dataset 

From the ADNI repository, 1120 unprocessed MRI 
volumes of 460 people of various ages and genders were 
obtained. We employed 1.5-Tesla, T1-weighted, MRI volumes 
from the patient community [28] that included patients 

ranging in age from 55 to 70 and of different genders. The 
configuration of the MRI dataset utilized to implement this 
research is displayed in Table II. In the entire dataset, 351 CN, 
230 ls-MCI, 234 p-MCI, and 305 AD subject volumes were 
meticulously gathered to orient the study effort toward the AD 
prognosis. Furthermore, 6400 samples of MRI slices were 
retrieved from the Kaggle repository and utilized for 
evaluating the proposed network. In all 6400 samples, 3200 
CN subjects, 2240 ls-MCI subjects, 896 p-MCI subjects, and 
64 AD subjects MRI slices are selected to validate the network 
capability in classifying the MCI subcategories. 

TABLE II. ADNI DATASET CONFIGURATION [28] 

Parameters CN p-MCI ls-MCI AD 

Age 55 60 58 62 

Gender 60% male 40% male 50% male 30% male 

MMSE 29 24 26 21 

CDR 0 0.5 0.3 0.5-1 
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Fig. 1. Alz-SAENet Architecture. 

B. Preprocesing 

Generally, the raw MRI data are stored in NifTi (.nii) 
format after retrieving from the ADNI repository. These NifTi 
files were further pre-processed utilizing the provision of the 
SPM12 package [29] installed under default settings. This 
stage pipeline is very much responsible for the removal of 
non-brain tissues and registering it into Montreal Neurological 
Institute (MNI) space. After pre-processing, the registered 
volumes are smoothed and scaled such that all volumes are 

with the same dimension of 157*189*156 and sliced to 
generate 1.5*1.5*1.5mm3 voxels. Further, the MRI volumetric 
data is normalized voxel by voxel such that all intensities in 
the voxel fall in the 0 to 1 range for additional processing by 
retaining the disease features. For this investigation, only 40 
medial MRI slices were considered such that they replicate 
AD progression clearly via hippocampal lesions to enable the 
network to distinguish the AD subjects.  Sagittal plane views 
of pre-processed MRI volume for a sample are shown in 
Fig. 2. 

 

Fig. 2. Pre-processed Medial Sagittal Planes of Brain MRI. 
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C. 3D CNN 

Generally, CNN models consist of convolutional layers, 
batch normalization layers, pooling layers, and fully 
connected layers in sequential and backpropagation algorithm 
is used to learn latent features from MRI slices. Advanced 
architectures follow more complicated topologies for 
extracting features in complex applications where highly 
correlated data is present. In this work, we focused on a 
sequential model inspired by VGG 19 architecture [30], i.e., 
one popular version of Visual Geometric Group. VGG19 is a 
deep CNN that has been trained on millions of images with 
complex classification tasks. 

This architecture consists of five blocks, amongst the very 
first two blocks comprise two convolutional layers preceded 
by a pooling layer each, and the last three blocks have four 
convolutional layers preceded by a pooling layer with a filter 
size of 2x2x2. In this method, all pretrained layers are frozen, 
and the output of the last convolution block is considered a 
discriminative feature of the MRI volume. This feature map is 
flattened using a flattening layer before being sent to a sparse 
encoder. All layers, dimensions, and several parameters for 
training the VGG19 network employed in this work for one 
MRI slice were tabulated in Table III. 

D. Sparse Autoencoder 

A sparse autoencoder [31, 32] is merely an autoencoder 
with a sparsity penalty as a training benchmark. This 
autoencoder is used to draw more valuable insights from MRI 
with reasonable dimensionality. In addition, the bias applied at 
the encoder and decoder forces the AE to restore the input 
more accurately by avoiding overfitting. 

Let si is the ith input among the given training samples (s1, 
s2,….sN). Then, the designed SAE is accomplished to restore 
the input si maximum similar to the estimated function 
hw,b(xi). The cost function of SAE consists of three very 
important factors, viz., Mean squared error (MSE), Weight 
Decay (WD) and Sparsity [33]. The mean squared error for all 
N training samples and weight decay is mathematically 
expressed as in eq. (1) and eq. (2). 

𝑀𝑆𝐸 =
1

𝑁
∑

1

2
‖ℎ𝑤,𝑏(𝑥𝑖) − 𝑦𝑖‖𝑁

𝑖=1             (1) 

𝑊𝐷 =
𝜆

2
∑ ∑ ∑ (𝑤𝑗𝑖

𝑙 )2𝑠𝑙+1
𝑗=1

𝑠𝑙
𝑖=1

𝑛𝑙−1
𝑙=1             (2) 

This weight decay eq. (2) helps to avoid overfitting. 
Overfitting may result from a small value of 𝜆, whereas 
underfitting may result from a big value of 𝜆. To choose 
lambda for the term's best match, we, therefore, carried out a 
number of empirical studies. 

TABLE III. LAYERS AND FEATURE MAPS OF 3D CNN 

Block Layer Dimension Parameters 

 Input [(None, 157, 189, 3)] 0 

1 

conv1 (Conv) (None, 157, 189, 64) 1792 

conv2 (Conv) (None, 157, 189, 64) 36928 

pool (MaxPooling) (None, 78, 94, 64) 0 

2 

conv1 (Conv) (None, 78, 94, 128) 73856 

conv2 (Conv) (None, 78, 94, 128) 147584 

pool (MaxPooling) (None, 39, 47, 128) 0 

3 

conv1 (Conv) (None, 39, 47, 256) 295168 

conv2 (Conv) (None, 39, 47, 256) 590080 

conv3 (Conv) (None, 39, 47, 256) 590080 

conv4 (Conv) (None, 39, 47, 256) 590080 

pool (MaxPooling) (None, 19, 23, 256) 0 

4 

conv1 (Conv) (None, 19, 23, 512) 1180160 

conv2 (Conv) (None, 19, 23, 512) 2359808 

conv3 (Conv) (None, 19, 23, 512) 2359808 

conv4 (Conv) (None, 19, 23, 512) 2359808 

pool (MaxPooling) (None, 9, 11, 512) 0 

5 

conv1 (Conv) (None, 9, 11, 1024) 2359808 

conv2 (Conv) (None, 9, 11, 1024) 2359808 

conv3 (Conv) (None, 9, 11, 1024) 2359808 

conv4 (Conv) (None, 9, 11, 1024) 2359808 

pool(MaxPooling) (None, 4, 5, 1024) 0 
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Sparsity is the last term of the cost function that help to 
avoid overfitting by generating the activation for hidden 
neurons of the SAE to avoid overfitting. The eq. (3) is the 
average activated value of hidden layer, where ‘𝑎’ is the 
ReLU activation function. 

𝑝�̂� =
1

𝑁
∑ [𝑎𝑗

2(𝑥𝑖)𝑁
𝑖=1 ]             (3) 

The sparsity is calculated so that 𝑝�̂�=p constraint is 

satisfied, where p is the sparsity parameter. The deviation of 
𝑝�̂� from p help the network to activate and deactivate neurons 

in the hidden layer. KL divergence is used to define the 
parameter as in eq. (4). 

∑ 𝐾𝐿(𝑝||𝑝�̂�)  = ∑ [𝑝 log (
𝑝

𝑝�̂�
) + (1 − 𝑝)

𝑠𝑙
𝑗=1

𝑠𝑙
𝑗=1  log (

1−𝑝

1−𝑝�̂�)
)]  (4) 

By combining the three terms, the cost function of the 
SAE JSAE is defined as shown in eq. (5). 

𝐽𝑆𝐴𝐸 =
1

𝑁
∑

1

2
‖ℎ𝑤,𝑏(𝑥𝑖) − 𝑦𝑖‖𝑁

𝑖=1 +
𝜆

2
∑ ∑ ∑ (𝑤𝑗𝑖

𝑙 )
2𝑠𝑙+1

𝑗=1
𝑠𝑙
𝑖=1

𝑛𝑙−1
𝑙=1 +

 𝛽 ∑ 𝐾𝐿(𝑝||𝑝�̂�)
𝑠𝑙
𝑗=1     

          (5) 

Here 𝛽 is the sparse penalty. 

The primary goal of the Sparse Autoencoder [34] in this 
investigation is to reduce the dimensionality of 55,296 
features obtained from 3D CNN. The SAE bottleneck layer 
provides more dominant insights, i.e., features that can be 
employed in classification. The bottleneck layer size is 2048 
hidden units. Output from bottleneck generally has very 
limited number of features i.e. 2048 elements in the vector. 
These features are subsequently passed through DNN in final 
stage for classification purpose. 

E. DNN 

DNN is an artificial neural network with several hidden 
layers for solving complex classification problems. All these 
layers are dense, and the role of DNN here is in the final phase 
for classifying the latent features obtained from SAE. This 
DNN comprises two hidden layers, one input and output layer, 
with sizes 2048, 1024, 256, and 4, respectively. A SoftMax 
layer is generally employed as an output layer to estimate the 
incoming feature vector's four possible classes, i.e., CN, p-
MCI, ls-MCI, and AD. A dropout layer is also used between 
two dense layers to avoid overfitting. Finally, cross-entropy is 
used for determining the classifier cost function, and the 
weight decay term is added. 

IV. RESULTS AND INVESTIGATIONS 

Concurrent training of the SAE and the DNN improved 
feature extraction while optimizing the classifier's decision. 
The training was completed in 50 epochs with 16 batch size. 

Sparse penalty, weight decay and sparsity parameter p were 
initialized 2, 0.0001, and 0.05, respectively. In last 20 epochs, 
DNN was fine-tuned, and parameters updated to minimize the 
cost function while the SAE parameters were frozen. 

All the experimentations described in this paper were 
carried out in the Google Colab platform using python 
scripting with the support of 1X Tesla K80 GPU. To run our 
deep learning network, the Tensorflow Keras library is 
employed. To demonstrate the generalizability of the network 
in AD diagnosis, Alz-SAENet is examined by applying ADNI 
dataset and the Kaggle dataset in two scenarios. 

In the first scenario, the proposed Alz-SAENet architecture 
is trained over 80% of the whole 1120 MRI volumes of the 
ADNI dataset that consists of MRI volumes with uniform 
dimensions of 157*189*156. After rigorous training, the 
network is tested using the remaining MRI volumes among 
the dataset acquired. The test results were assessed in terms of 
diagnostic accuracy, network sensitivity, precision, specificity, 
Negative Predictive Value (NPV), False Positive Rate (FPR), 
F1-Score, False Negative Rate (FNR), False Discovery Rate 
(FDR), and Mathew Correlation Coefficient (MCC). All these 
parameters are evaluated and listed in Table IV. AD vs CN 
classification over the ADNI dataset is 99.54% accurate and 
100% sensitive, and produce MCC is 89.93%. p-MCI vs ls-
MCI classification that facilitates early diagnosis of AD yields 
98.56% accuracy, 100% sensitivity and 96.64% MCC. p-MCI 
vs AD classification is 97.90% accurate, 100% sensitive and 
92.10% correlated data. CN vs ls-MCI classification that 
facilitates early diagnosis of AD yields 97.71% accuracy, 
98.15% sensitivity and 95.24% MCC. However, Multiclass 
diagnosis produced 98.9% accuracy, 97.5% sensitivity and 
94.25% MCC. These results demonstrate that Alz-SAENet has 
significantly classified AD stages, especially for the 
transitional period between ls-MCI and p-MCI, with an 
accuracy of 98.56%. The graphical representation is also 
depicted in Fig. 3. 

In the second scenario, the proposed model was evaluated 
using another repository, i.e. Kaggle, to prove the 
generalization ability of this network over the unseen data 
during training. 6400 sample MRI medial slices belonging to 
four AD classes were acquired from the repository and 
evaluated in this model. Unlike in the first scenario, the 
evaluation metrics accuracy, precision, sensitivity, and F1-
Score were only obtained and tabulated in Table V. The bar 
chart for these evaluation metrics is also shown in Fig. 4. AD 
vs CN classification yields 98.62% accuracy, 92% sensitivity 
and 98% precision. p-MCI vs ls-MCI diagnosis also attained 
98.37% accuracy, 97% sensitivity, and 98% precision. This 
network produced 98.215% accuracy, 92.25% sensitivity, and 
82.25% precision in multiclass classification. 

TABLE IV. ALZ-SAENET PERFORMANCE OVER ADNI DATASET 

Classification Accuracy F1-Score Sensitivity Specificity Precision NPV MCC 

AD vs CN 0.9954 0.8966 1 0.9953 0.8125 1 0.8993 

p-MCI vs ls-MCI 0.9856 0.9761 1 0.9797 0.9534 1 0.9664 

p-MCI vs AD 0.9790 0.9450 1 0.9821 0.9452 1 0.9210 

ls-MCI vs CN 0.9771 0.9807 0.9815 0.9707 0.9799 0.9729 0.9524 

Multiclass 0.989  0.975  0.915  0.9425 
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Fig. 3. Graphical Presentation of Alz-SAENet Performance over ADNI Data. 

TABLE V. ALZ-SAENET PERFORMANCE OVER KAGGLE DATASET 

Classification Accuracy F1-Score Sensitivity Precision 

AD vs CN 0.9862 0.95 0.92 0.98 

p-MCI vs ls-MCI 0.9837 0.98 0.97 0.98 

p-MCI vs AD 0.9759 0.98 0.97 0.98 

ls-MCI vs CN 0.9828 0.49 0.81 0.35 

Multiclass 0.98215 0.85 0.9225 0.8225 

 

Fig. 4. Graphical view of Alz-SAENet Performance over Kaggle Data. 

The results obtained in second scenario reveal that the 
network has shown good generalizability among the datasets 
which never seen during training. The model did not overfit 
due to the unbalanced datasets appeared in training process. 
This was happened because the SAE hyperparameters are 
tuned systematically so that its cost function gets minimized 
as the weight updation is in progress. With this support, the 
network can reliable outcomes even in non-supportive 
environments. 

Attained results demonstrate that the proposed model, i.e., 
Alz-SAENet has greater generalizability in classifying the 
unseen data during the training process. The deep learning 
techniques from literature [9], [20], [25], and [26] are suffered 

from different challenges in terms of convergence speed, 
overfitting, and hyperparameters tuning to obtain optimal 
performance from their networks. The results of Alz-SAENet 
have revealed that it has attained almost all those objectives by 
leveraging the benefits of Sparse autoencoder by minimizing 
the cost function. 

The proposed model exhibited very poor performance over 
ADNI data in attaining precision, f1-score, and MCC for 
classifying AD and CN subjects. When applied to Kaggle 
data, it has not produced inadequate performance in terms of 
f1-score, sensitivity, precision, etc. for ls-MCI vs CN 
classification. 
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TABLE VI. COMPARISON OF ALZ-SAENET WITH LITERATURE REPORTED 

Author Modality Datasets Classifier Subjects 
Classification Metrics 

Accuracy (%) Precision (%) Recall (%) 

Soliman et al. [20] MRI ADNI SAE+CNN Multiclass 87.8 91% 88% 

Akramifard et al. [26] MRI ADNI 

Autoencoder 

+ PCA +  

SVM 

AD vs MCI 

MCI vs CN 

AD vs CN 

66.84 

66.97 

84.46 

- 

48.70 

78.94 

81.87 

Basheera et al. [25] MRI ADNI CNN+ICA 

Multiclass 

AD vs MCI 

MCI vs CN 

AD vs CN 

86.7  

96.2 

98.0 

100 

89.6 

93.0 

96.0 

100 

86.61 

100 

100 

100 

Alz-SAENet MRI 
ADNI, 

Kaggle 

3D CNN+SAE 

+DNN 

AD vs CN 

CN vs ls-MCI 

AD vs p-MCI 

ls-MCI vs p-MCI 

Multiclass 

99.54 

97.71 

97.90 

98.56 

98.90 

81.25 

97.99 

94.52 

95.34 

91.5 

100 

98.15 

100 

100 

97.5 

 

Fig. 5. Comparison of Alz-SAENet with Literature Reported. 

The outcomes of the Alz-SAENet, i.e. integrated version 
of 3D CNN, SAE, and DNN illustrate that the performance of 
AD diagnosis is enhanced with the support of features that has 
learned and fine-tuning of hyperparameters of SAE during 
training. The model performs well on the test data, which is an 
important indicator of its generalizability, given that the model 
has never seen the data before. In addition, the proposed 
approach is also compared with recent literature in deep 
learning domain on ADNI data. This comparison is evidently 
shown in Table VI, and the proposed network outperformed 
all those methods focused by the literature deep analysis in 
Section II in terms of key parameters accuracy, precision, 
recall, etc. The same comparison is also depicted in Fig. 5. 

V. CONCLUSION 

In this paper, we built a novel deep sparse autoencoder-
based learning model named Alz-SAENet for classifying brain 
MRI volumes that exhibit severe AD symptoms to cognitive 
normal. This network utilized 3D CNN, SAE, and DNN 
components that assisted in understanding the neurobiological 
foundations of the AD brain in a better way. 3D CNN 
extracted 55,296 latent features from MRI volume. These 
features were flattened and their dimension was reduced 
through SAE via bottleneck layer and fed to DNN for 
classifying them into four stages of AD. During testing, this 

network gave an accuracy of 98.9% over the ADNI dataset 
and 98.215% over the Kaggle data. These results 
demonstrated that Alz-SAENet outscored all the state-of-the-
art approaches that worked on AD classification. In the future, 
we test the architecture over real-world data along with 
metadata to improve the generalizability, efficiency, and 
efficacy of early diagnosis of AD. Furthermore, the results 
obtained for ls-MCI and CN classification over the Kaggle 
dataset are needed to be enhanced. 
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