
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

376 | P a g e

www.ijacsa.thesai.org

Performance Analysis of Software Test Effort

Estimation using Genetic Algorithm and Neural

Network

Vikas Chahar, Prof. Pradeep Kumar Bhatia

G. J. University of Science and Technology, Hisar, Haryana, India

Abstract—In present scenario, the software companies are

frequently involving software test effort estimation to allocate the

resources efficiently during the software development process.

Different machine learning models are developed to estimate the

total effort that would be required before the software product

could be delivered. These computational models are used to use

the past data to estimate the efforts. In the current studies, test

effort estimation for software is predicted using the Genetic

algorithm and Neural Network. The attributes are selected using

the Genetic algorithm and similarity measure between the

attribute values has been computed using the Cosine Similarity

measure. The simulation experiments were done using the

PROMISE and Kaggle repository and implementation was done

using the MATLAB software. The performance metrics namely,

precision, recall, and accuracy are computed to evaluate against

the existing techniques. The accuracy of the proposed model is

91.3% and results are improved by 8.9% in comparison to existing

technique and comparison has been made for superiority to

predict the test effort for software development.

Keywords—Test effort estimation; software testing; machine

learning; computational intelligence; neural network

I. INTRODUCTION

The success of a software project mainly depends on the
determination of effort for software development [1]. The cost
of the software can be computed by determining the efforts for
the development of software. Software engineering is the study
of techniques, quantifiable approach, software maintenance,
and quantifiable approach during the development phase:
application of engineering for software testing. The software
testing plays a very significant role and accounts almost 50%
for the total development in effort estimation.

Software testing allows the evaluation of attributes or
system capability in determining the requirements to meet the
desired results [2]. Software testing is mainly categorized as
static and dynamic testing. In the former testing phase, testing
has been done without executing the project and it is related to
prevention of defects [3]. The documentation estimation is
cheap and code assessment is provided in addition. Moreover,
it also includes checklist, estimation of variety of errors,
operated in the initial phase, and completion of 100% coverage
of statement within less time. In the later testing phase, dynamic
testing is very expensive, testing has been done during the
execution of the project and it is related to fixing the defects [4].
The bugs estimation and assessment of bottleneck is provided
whenever this phase is operated later or in the last phase of the

project. Moreover, it also includes test cases, fixing the variety
of errors, and completion of 50% coverage of statement. The
primary motive of testing the software is to eliminate the bugs
and improve the software security and other aspects such as
performance, user satisfaction level, and experience.
Furthermore, test effort estimation is necessary for the test
process and plays a crucial role in the operation of software
development life cycle. Software effort estimation allows the
organization to provide or allocate the necessary resources
accordingly. The best testing deal not only improves the overall
quality but also enhances the customer satisfaction level. In a
competitive market, there is a need to determine the highly
reliable software effort estimates. In the software project
development phase, the accurate estimation allows the success
of the project [5]. Further, the cost of the software is estimated
using the software effort required for the development of the
software. In the literature, there were large number of
techniques proposed to predict the software effort accurately.
The estimation of software effort is helpful for the allocation of
resources in a proper manner. The estimation of software effort
in terms of month and day per person, duration of the project is
very difficult to predict the project cost. It is crucial to negotiate
with the customer by estimating the cost and effort in an
accurate manner.

A. Computational Intelligence Techniques for Software Effort

Estimation

Inaccurate prediction of software effort and cost usually
results in huge financial loss and even in the failure of the
project. However, there are number of techniques developed in
the past such as expert judgement, machine learning techniques,
fuzzy technique, and regression analysis [6]–[8] to minimize
the instances of inaccurate prediction. Most of these techniques
were based on the algorithmic models such as COCOMO and
analogy-based estimation of effort techniques. The analogy
techniques generally include the use of different characteristics
such as size, interfaces, and effort of new project is estimated
by determining the details of project of similar type.
Furthermore, there are different techniques designed for
different datasets as no single technique is applicable for all the
datasets. In this process, programming language, development
technique, programmer experience, tools etc. play a significant
role in governing the software effort estimate. For instance, soft
computing models are used to deal with computational
problems and metaheuristic techniques are used to resolve the
complex optimization issues [9], [10]. The evolution of neural
network, fuzzy logic, support vector machine, optimization

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

377 | P a g e

www.ijacsa.thesai.org

technique, machine learning, chaotic theory, etc. fall under the
category of computational intelligence models as shown in Fig.
1 [11].

Computational techniques proved fruitful results in
predicting the attributes of software quality. In the past year, the
computational models were developed and applied in software
engineering to solve the different problems such as determining
the prediction of change in software, prediction of stakeholder
satisfaction, and estimation of reliability for component-based
software projects. The estimation of test effort is generally
performed by using the templates of Work Breakdown
Structure (WBS) that fragments the project into sub-tasks. The
analysis of each task during the testing phase allows the
determination of defects and underlying errors. The project
requirements are designed, and testing phase has been analyzed
thoroughly to avoid any defect. This required a detailed
overview of the project prototype and analyzing each task by
coordinating with the stakeholders. This generally takes around
1.5-2 weeks to perform test effort estimation. However,
employing the machine learning techniques for effort
estimation eases the process in a fast manner and it is generally
computed by determining the overall time to the total inputs
given for the completion of the project. The proposed technique
introduces the novel method by integrating the machine
learning with genetic algorithm for the effort estimation of
software testing. The contributions of the proposed work are
summarized as follows: -

• Machine learning techniques are integrated for
estimation of software effort.

• A novel combination of Genetic algorithm with
Machine Learning is used to predict the software effort.

• Two datasets are employed to evaluate the
computational strengths of the designed work.

The rest of the paper is organized as Section II that
illustrates the related work, Section III that describes the
research methodology including the different datasets and
discusses the technique used for software test effort estimation.
Section IV illustrates the results and finally concluded in
Section V.

Fig. 1. Test Effort Estimation Models.

II. RELATED WORK

The estimation of effort involved in the software
development is a crucial activity for monitoring the project
cost, time, and quality as well as for the software development
life cycle. As a result, proper estimating was crucial to the
success of projects and to lowering risks. Software effort
estimation has drawn a lot of research interest recently and has
become a problem for the software industry. Many academics
and industry professionals have suggested statistical and
machine learning-based approaches for estimating software
effort over the past 20 years.

Saljoughinejad and Khatibi, 2018 had taken advantage of
three metaheuristic techniques to enhance the effort accuracy
estimations associated with the COCOMO model. The concept
of metaheuristics mainly focused on the detailed analysis of the
involved cost derivers involved in the effort estimation. The
study had reflected that the integration of techniques such as
PSO, Invasive Weed Optimization and GA had significantly
improved the accuracy measures associated with estimations.
However, despite of better performance, the work was unable
to meet the desired level due to instability issues [12].

Nassif et al. 2019 compared the three different fuzzy models
to estimate the software effort. The authors designed the models
and conduct the regression analysis to evaluate the performance
of the proposed system. The evaluation of the proposed
regression fuzzy logic was measured by measuring the criteria
such as standardized accuracy, effect size, and relative error.
The authors used the ISBSG dataset, and it was estimated that
different projects have similar size with better productivity
ratio. The mean for effort dataset 1 was 883.5 and effort dataset
4 was 706 with a standard deviation of about 1194 with a
skewness of about 5.8. Further, Scott Knott test was performed
to determine the validity and best performance achieved using
the Suzzeno fuzzy model [7].

Ghatasheh et al. 2019, evolutionary algorithms called the
Firefly Algorithm was presented for optimising the parameters
of three COCOMO-based models. The authors used the NASA
dataset in which 30% data was tested and 60% data was trained
to acquire the adequate objectives. The proposed model and
two additional models that was suggested in the literature as
expansions of the fundamental COCOMO model. The
evaluation results using the Firefly algorithm show better
accuracy. The limitation of the study was instability issues,
prediction model; dataset type was affected by size [13].

Chhabra and Singh 2020 had proposed integration of non-
algorithmic modelling for software effort estimation based on
soft computing approaches. In the process, they had integrated
genetic algorithm followed by fuzzy logic and utilized the
COCOMO dataset for the evaluation of the designed work
architecture. It has been observed that due to improved
selection owing to the GA fitness function a 25% reduction has
been observed in Mean Magnitude of Relative Error. This high
improvement was mainly due to increased stability of GA in
optimizing the fuzzy model that improved the overall prediction
accuracy for the effort estimation [14].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

378 | P a g e

www.ijacsa.thesai.org

Öztürk et al. 2021, a feed forward DNN algorithm
(FFDNN) was put forth in this article. Finding hyperparameter
was done using a binary-search-based technique in the
algorithm. In the experiment using two performance
parameters, FFDNN performs better than five comparative
algorithms. The study’s findings indicate that: 1) Using
conventional techniques like grid and random search
significantly lengthens tuning time. Instead, sophisticated
parameter search techniques that was compatible with the
structure of regression methods should be developed; 2) SEE
performance was improved when the associated
hyperparameter search technique was designed in accordance
with the key principles of selected deep learning approach; and
3) Deep learning models outperform tree-based regression
techniques like CART DE8 in terms of CPU time. The
drawback of the study was that tuning time need to plan along
with pruning of network [11].

Karimi and Gandomani 2021 This research introduces a
new fuzzy inference technique and the differential evolution
(DE) algorithm. To estimate software development labor, more
precisely, this approach is capable of providing a more accurate
estimate for software projects than earlier efforts using the
COCOMO model. The suggested approach outperformed
existing optimization algorithms derived from genetic,
stochastic, conceptual, and Neuro-fuzzy technique, and could
increase accuracy using the proposed technique up to 7%. The
limitation of the study was assessment criteria and convergence
rate, still a challenge for the accurate software effort estimation
[15].

Zakaria et al. 2021 had integrated PSO as a swarm
intelligence technique to optimize the existing COCOMO II.
The optimized set was then fed to different machine learning
techniques to evaluate their strength for the prediction of effort
using NASA dataset. The machine learning techniques
integrated were, Linear Regression (LR), SVM and Random
Forest (RF). The simulation analysis had shown that SVM had
outperformed the other machine learning techniques in terms of
MMRE, accuracy and p-value computed for each of the
implemented combination [16].

López-Martín 2022 proposed software testing effort
estimation using the machine learning models. The authors
investigate the effort of software testing using the datasets
stored in the repository. The project selection was entirely
based on the rating of data quality, development type, platform,
programming language, sizing method, and level of resources
for projects. Further, the authors investigate the performance of
five machine learning models for software effort estimation
using the COCOMO model. The prediction accuracy was
computed for different ML techniques such as Neural Network,
Decision Tree, Genetic algorithm, SVM and Case based
reasoning. The limitation of the study was that software effort
estimation depends upon the certain factors such as quality
expectations, developer experience, tools and many other that
are not sufficient to consider for accurate prediction of software
effort estimation [6].

III. RESEARCH METHODOLOGY

The proposed methodology is divided into two parts in
which first part Implementation using the Genetic algorithm has

been done and Machine Learning model such as Neural
Network toolbox in MATLAB was used for the classification
of test effort estimation. The dataset used in this study for
implementation are illustrated in the later sections.

A. Dataset

There are several free datasets that were used in the
literature such as Kaggle, COCOMO NASA-I, COCOMO
NASA-II, Kaggle, and PROMISE [17], [18]. Out of these,
Kaggle and Promise datasets have been used in this study.
These are further divided into five datasets namely KC1, PC3,
PC4, MW1, and CM1 that support these datasets [19]. The
PROMISE repository was used to extract the attributes. The
dataset is an open source data set and is freely available online
[20]. The dataset contains the attributes that are extracted after
the operations performed through Object Oriented
Programming Architecture (OOPA). As for example, RELY is
an attribute that illustrates the reliability of a software and in the
similar fashion, RES represents the reusability of the software
component. Based on these attribute values, the overall
computation effort is also provided. The dataset does not have
independent attribute as they have been computed via OOPA.
The data retrieval was estimated using the KC1 classes and
further defect was analyzed. This study incorporates the Kaggle
and PROMISE database datasets that includes different
attributes such as KC1, CM1, MW1, PC3, and PC4. The
datasets was stored and further assisted for implementation in
the MATLAB software. Although, Kaggle and Promise data
repository includes the different data, but extraction of revenant
data is particularly important before the implementation.
Therefore, Cosine similarity technique was applied to extract
the data as per requirement for test effort estimation during the
software development life cycle.

B. Genetic Algorithm for the Selection of Relevant Attributes

In this study, the relevant attributes have been selected using
the Genetic Algorithm which is a heuristic technique employed
to avoid the challenges of modelling and optimization
techniques. The main features of the GA are to utilize the
features of crossover operator and execute the operations to
obtain the candidate solutions. The operation steps are
graphically illustrated using Fig. 2. The Genetic Algorithm has
been applied by considering the following steps: -

1) Start: The random population is generated considering

the n-chromosomes for best solution of the problem. The

random population is generated which is of n chromosomes.

2) Fitness: The fitness function f (a) is evaluated that

corresponds to the chromosome (a) in the generated population.

3) New Population: The new population is initialized by

repeating the following steps until the optimal solution is

attained.

• Selection: The selection has been done by considering
the fitness function of two chromosomes and then higher
fitness leads to the selection of chromosomes with more
possibility.

• Crossover: When the probability of crossover crosses
then new offspring attained. If there is no crossover,
then offspring is a duplicate of parent.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

379 | P a g e

www.ijacsa.thesai.org

• Mutation: The mutation probability is attained when the
new offspring mutates at each position in the population.

• Accepting: The new offspring has been placed with
respect to new population.

4) Replace: The generated population is utilized

considering the aim to execute the new solution.

5) Test: The best solution has been returned after the

current population attained.

6) Loop: Return to second step.

Fig. 2. Operation of GA.

After the operation of GA, further cosine similarity
technique has been applied for the selection of similar
attributes.

C. Cosine Similarity

Cosine similarity is a technique in which similarity of two
documents computed to determine the correlation between the
vectors. The information is represented in the vector form that
makes the process easier to eliminate the irrelevant data.
Furthermore, the angle between the vectors is determined as the
cosine angles between the attributes. Cosine similarity is one of
the most important similarity measures used for different
applications such as clustering, effort estimation, etc. and also
used to retrieve essential information. The cosine similarity

between two attribute vectors 𝑉𝑚⃗⃗ ⃗⃗ and 𝑉𝑛⃗⃗ ⃗ is given by;

𝐶𝑜𝑠𝑆𝑖𝑚(𝑉𝑚⃗⃗ ⃗⃗ and 𝑉𝑛⃗⃗ ⃗) =
𝑉𝑚⃗⃗⃗⃗⃗⃗ .𝑉𝑛⃗⃗ ⃗⃗

|𝑉𝑚⃗⃗⃗⃗⃗⃗ |×|𝑉𝑛⃗⃗ ⃗⃗ |
 (1)

Here, 𝑉𝑚⃗⃗ ⃗⃗ and 𝑉𝑛⃗⃗ ⃗ are the n number of dimensional vectors in
each term set of 𝑉 = {𝑉1, 𝑉2, 𝑉3 ……………………… . 𝑉𝑛}.
Every dimension in the term set includes weight, which is
positive, and therefore, the cosine similarity is positive and can
be bounded between {0,1}.

A significant feature of cosine similarity is that it is the
independent of its attribute for different set efforts in days or
months. For example, integrating two effort values of different
days require to obtain a novel attribute value, the cosine
similarity between 𝐴𝑡𝑡′ 𝑎𝑛𝑑 𝐴𝑡𝑡 is 1, which indicates that the
test effort attributes can be considered identical and can be
stored for further processing.

ALGORITHM 2: Cosine Similarity for effort estimation

Input: 𝑑𝑎𝑡𝑎𝑓𝑖𝑙𝑒𝑠

Output: 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡

1. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡

= 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠)

2.//𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

= [];/
/𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑒𝑚𝑝𝑡𝑦 𝑎𝑟𝑟𝑎𝑦

3.// 𝑆𝑖𝑚𝑐𝑜𝑢𝑛𝑡 = 0;//𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝐶𝑜𝑢𝑛𝑡

4. 𝐹𝑜𝑟𝑠 = 0 𝑡𝑜𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠. 𝑐𝑜𝑢𝑛𝑡 /
/ 𝑇𝑜𝑡𝑎𝑙𝑛𝑜. 𝑜𝑓𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠

5. 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = 𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑(𝑠);

6. 𝐹𝑜𝑟𝑧 = 𝐼 + 1 𝑡𝑜𝑡𝑎𝑙𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠. 𝑐𝑜𝑢𝑛𝑡// 𝑁𝑒𝑥𝑡𝑠𝑒𝑟𝑖𝑒𝑠

7. 𝑃 = |𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒)

− cos (𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠(𝑧))|;

8. 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡, 0] =
𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒;

9. 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡, 1] =
𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠(𝑧); 10. 𝐶𝑜𝑠𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

[𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡, 2] =

𝑃; The similarity value

11. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡 = 𝑆𝑖𝑚𝑐𝑜𝑢𝑛𝑡 + 1; Count is incremented

12. 𝐸𝑛𝑑𝑓𝑜𝑟;

13. 𝐸𝑛𝑑𝑓𝑜𝑟;

14. 𝐸𝑛𝑑𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛;

After the extraction of data for software test effort
estimation, the data is processed to select the attribute values
using the Genetic Algorithm and classification was done later
using the Neural Network.

D. Effort Estimation using the Computational Intelligence

Models

After the extraction of similar attributes, Neural Network
has been applied that contain processing elements that are
connected using some weights. It attempts to depict the
biological nervous system as per both architectures including
information processing logics. This network needs to train first
by applying an appropriate learning algorithm for the prediction
of weights which are interconnected. After training of weight
test signals are classified. The neural network’s class used
basically for task of classification is called the multilayer
perceptron network. The ordinal measures of Neural Networks
are as follows (Table I).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

380 | P a g e

www.ijacsa.thesai.org

TABLE I. ORDINAL MEASURES OF NEURAL NETWORKS

Propagation Architecture Software test effort estimation

Neuron Count 5-25

Nature of propagation Progressive

Propagation behaviour model Levenberg

Root node validation Mean Squared Error (MSE)

Validation parameters

a) Total number of epochs

b) Gradient

c) Count of fails in the

validation

Cross validation Linear Regression

Regression equation

𝑧 = 𝑎𝑥 + 𝑏 (eq hh)

Where x is a multi-objective fitness

function defined by sigmoid function

of neural networks

The neural network propagation is designed using Neural
Network toolbox of MATLAB and it is a propagation-based
model and hence the number of hidden layers has been varied
to check the performance of the network.

ALGORITHM 6: Test effort estimation using the Neural

Network (NN)

Input: Optimized feature (T)

Output: Test Effort Estimation Results

1) Initialization of NN parameters

𝐸 → Simulation or Epochs for NN

𝑁 → Neurons Count

Performance Measure→ Accuracy, Precision, Recall, and F-

measure

Techniques →Levenberg Marquardt

Data Division→ Random

2) For I = 1 → T

3) If (T matcheswith 1st feature category)

4) Group (1) = Features of training data according to the 1st

category

5) Else if (T matcheswith 2ndfeature category)

6) Group (2) = Features of training data according to the 2nd

category

7) Else

8) Group (3) = Extra properties of training data

9) End-if

10) End-for

11) Initialize the NN using Training data and Group

12) Net = patternet (𝑇, 𝐺𝑟𝑜𝑢𝑝, 𝑁)

13) Set the training parameters and train the system

14) Net = Train (Net, Training data, Group)

Testing Phase:

15) Current Data = Feature of current efforts in dataset

16) Output = simulate (Net, Current Data)

17) If Output is valid)

18) 𝑇𝑒𝑠𝑡 𝐸𝑓𝑓𝑜𝑟𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 → 𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒

19) Else

20) 𝑇𝑒𝑠𝑡 𝐸𝑓𝑓𝑜𝑟𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 → 𝐼𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒

21) End-if

22) Return: Prediction as an output

Since the NN architecture used multiple hidden layers,
therefore the input data is filtered many times and hence
chances of providing better results are increased. In this
research, the performance of NN is examined and cross-
validation outcomes are evaluated.

IV. RESULTS AND DISCUSSION

The performance is evaluated by dividing the total dataset
using the separation mechanism of training dataset to testing
dataset ratio.

A. Statistical Analysis

The results have been computed using the 70:30, 80:20, and
90:10 ratio analysis. The results obtained using the
implemented methodology in which four different performance
metrics has been computed as illustrated below: -

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

The evaluation has been done to determine the superiority
of the proposed approach and labelled dataset has been used
which is pre-defined and specific to determine the required
outcomes.

Table II shows the Recall, Precision, F-measure, and
Accuracy computed using the 70:30 dataset distribution ratio.
It is generalized that with increase in the number of projects the
recall of the proposed model also gets improved. The proposed
model shows a recall of about 0.90% for 80 projects. It is seen
that Precision and Recall show 0.9% and 0.91% respectively
for 20 projects and 0.90% and 90% for F-measure and
Accuracy respectively using the GA and NN. The proposed
results for 70:30 analyses are robust and improvised using the
Genetic Algorithm in conjunction with NN.

Table III shows the analysis of performance metric
computed using the 80:20 ratios. It is generalized that with
increase in the number of projects the performance of the
proposed model also gets enhanced. The proposed model shows
a recall of about 0.93 for 300 projects and F-measure of about
0.92. It is seen that average Precision and Recall show 0.9% and
0.91% respectively and 0.91% and 91% for F-measure and
Accuracy respectively using the GA and NN. The proposed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

381 | P a g e

www.ijacsa.thesai.org

results for 80:20 analyses are robust and improvised using the
Genetic Algorithm in conjunction with NN.

TABLE II. PERFORMANCE METRIC OF THE PROPOSED TECHNIQUE USING

THE 70:30 RATIO ANALYSIS

Total

Number

of Projects

Recall Precision F-measure
Accurac

y

10 0.852212 0.896543345
0.87381576

8
88.73637

20 0.8604666 0.897088945
0.87839622

1
88.9276

30 0.8687212 0.897634545
0.88294123

2
89.11883

40 0.8769758 0.898180145
0.88745132

9
89.31007

50 0.8852304 0.898725745
0.89192702

7
89.5013

60 0.893485 0.899271345
0.89636883

4
89.69253

70 0.9017396 0.899816945
0.90077724

7
89.88376

80 0.9099942 0.900362545
0.90515275

1
90.075

90 0.9182488 0.900908145
0.90949582

5
90.26623

100 0.9195034 0.901453745
0.91038911

7
90.45746

200 0.920758 0.907999345
0.91433416

6
90.64869

300 0.9220126 0.914544945 0.91826359 90.83992

400 0.9232672 0.921090545
0.92217758

8
91.03116

500 0.9245218 0.927636145
0.92607635

4
91.22239

700 0.9257764 0.934181745 0.92996008 91.41362

1000 0.927031 0.940727345
0.93382895

5
91.60485

TABLE III. PERFORMANCE METRIC OF THE PROPOSED TECHNIQUE USING

THE 80:20 RATIO ANALYSIS

Total

Number of

Projects

Recall

Proposed

Precision

Proposed

F-

measure
Accuracy

10 0.862212 0.899543 0.880482 88.93637

20 0.870467 0.900089 0.88503 89.1276

30 0.878721 0.900635 0.889543 89.31883

40 0.886976 0.90118 0.894022 89.51007

50 0.89523 0.901726 0.898466 89.7013

60 0.903485 0.902271 0.902878 89.89253

70 0.91174 0.902817 0.907256 90.08376

80 0.919994 0.903363 0.911603 90.275

90 0.928249 0.903908 0.915917 90.46623

100 0.929503 0.904454 0.916807 90.65746

200 0.930758 0.910999 0.920773 90.84869

300 0.932013 0.917545 0.924722 91.03992

400 0.933267 0.924091 0.928656 91.23116

500 0.934522 0.930636 0.932575 91.42239

700 0.935776 0.937182 0.936479 91.61362

1000 0.937031 0.943727 0.940367 91.80485

TABLE IV. PERFORMANCE METRIC OF THE PROPOSED TECHNIQUE USING

THE 90:10 RATIO ANALYSIS

Number of

Projects

Recall

Proposed

Precision

Proposed
F-measure Accuracy

10 0.875412 0.909543 0.892151 89.93637

20 0.883667 0.910089 0.896683 90.1276

30 0.891921 0.910635 0.901181 90.31883

40 0.900176 0.91118 0.905645 90.51007

50 0.90843 0.911726 0.910075 90.7013

60 0.916685 0.912271 0.914473 90.89253

70 0.92494 0.912817 0.918838 91.08376

80 0.933194 0.913363 0.923172 91.275

90 0.941449 0.913908 0.927474 91.46623

100 0.942703 0.914454 0.928364 91.65746

200 0.943958 0.920999 0.932337 91.84869

300 0.945213 0.927545 0.936295 92.03992

400 0.946467 0.934091 0.940238 92.23116

500 0.947722 0.940636 0.944166 92.42239

700 0.948976 0.947182 0.948078 92.61362

1000 0.950231 0.953727 0.951976 92.80485

Table IV shows the analysis of performance metric
computed using the 90:10 ratio. It is generalized that with
increase in the number of projects the performance of the
proposed model also gets improved. The proposed model
shows a recall of about 0.94 for 300 projects precision is 0.92
with F-measure of about 0.94. It is seen that average Precision
and Recall show 0.92% and 0.91% respectively and 0.91% and
91.3% for F-measure and Accuracy respectively using the GA
and NN. The proposed results for 90:10 analysis are robust and
improvised using the Genetic Algorithm in conjunction with
NN.

Table V shows the comparison of recall analysis with the
existing techniques. It is seen that recall for Attri et al. 2019 and
without GA show 0.81 and 0.77 respectively for 20 projects.
The proposed model exhibited a recall of 0.94 when analysed
for 200 projects. Similarly, recall for 1000 projects increases to
0.95 and using Attri et al. work and GA is 0.93 and 0.82
respectively. The overall recall using the proposed approach is
0.92 and 0.86 using the Attri et al. 2019. Thus, the proposed
outperformed the existing techniques due to the use of Genetic
algorithm and Neural Network.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

382 | P a g e

www.ijacsa.thesai.org

TABLE V. COMPARATIVE ANALYSIS OF RECALL AGAINST ATTRI ET AL.
WORK

Number of

Projects

Recall

Proposed

Recall

Without GA

Recall Attri et al.

2019

10 0.875412 0.77543345 0.81661566

20 0.8836666 0.77597905 0.81902469

30 0.8919212 0.77652465 0.82130693

40 0.9001758 0.78707025 0.82374494

50 0.9084304 0.78761585 0.82596965

60 0.916685 0.78816145 0.82841232

70 0.9249396 0.78870705 0.83274246

80 0.9331942 0.78925265 0.83457478

90 0.9414488 0.78979825 0.83755162

100 0.9427034 0.79034385 0.86264824

200 0.943958 0.79688945 0.88751949

300 0.9452126 0.80343505 0.90388464

400 0.9464672 0.80998065 0.91401356

500 0.9477218 0.81652625 0.92611913

700 0.9489764 0.82307185 0.92945552

1000 0.950231 0.82961745 0.93788335

TABLE VI. COMPARATIVE ANALYSIS OF PRECISION AGAINST ATTRI ET

AL. WORK

Number of

Projects

Precision

Proposed

Precision

without GA

Precision Attri et

al. 2019

10 0.909543 0.824474 0.8453636

20 0.910089 0.8320093 0.8518202

30 0.910635 0.8395446 0.8582768

40 0.91118 0.8470799 0.8647334

50 0.911726 0.8546152 0.87119

60 0.912271 0.8621505 0.8776466

70 0.912817 0.8696858 0.8841032

80 0.913363 0.8772211 0.8905598

90 0.913908 0.8847564 0.8970164

100 0.914454 0.8922917 0.897473

200 0.920999 0.892827 0.9039296

300 0.927545 0.9003623 0.9103862

400 0.934091 0.9078976 0.9168428

500 0.940636 0.9154329 0.9232994

700 0.947182 0.9229682 0.929756

1000 0.953727 0.9305035 0.9362126

Table VI shows the comparison of precision analysis with
the existing techniques. The precision for Attri et al. 2019 and
without GA 0.86 and 0.84 for 40 projects. Similarly, precision
for 1000 projects the recall value increases to 0.95 for proposed
work and Atri et al. work and GA is 0.93. The overall precision
using the proposed estimation model is 0.92 and using Attri et
al. is 0.89. Thus, an improved performance is exhibited by the
proposed work using Genetic algorithm and Neural Network.

TABLE VII. COMPARATIVE ANALYSIS OF F-MEASURE AGAINST ATTRI ET

AL. WORK

Number of

Projects

F-measure

Proposed

F-measure

without GA

F-measure Attri

et al. 2019

10 0.892151182 0.799202127 0.830740998

20 0.896683196 0.80301799 0.835100588

30 0.901180958 0.806805868 0.839384987

40 0.905644474 0.815973231 0.843741665

50 0.910075216 0.819748813 0.847977383

60 0.914472674 0.823497386 0.852319047

70 0.918838317 0.827219343 0.857654582

80 0.923172111 0.830915072 0.861658862

90 0.927473993 0.834584952 0.866264719

100 0.928363848 0.838229357 0.879716109

200 0.932337179 0.842134687 0.895649385

300 0.936295462 0.84914163 0.907123771

400 0.940238375 0.856148552 0.915425994

500 0.944165606 0.863155454 0.924707115

700 0.948078351 0.870162335 0.929605736

1000 0.95197579 0.877169198 0.93704723

Table VII shows the comparison of F-measure analysis with
the existing techniques. The analysis results show that there is
an increase in F-measure with increase in project count. It is
seen that F-measure for Attri et al. 2019 and without GA is 0.87
and 0.83 for 100 projects. Further, it is observed that the F-
measure for 1000 projects shows a rise and increases to 0.95
and Attri et al. and GA is 0.87. The overall average F-measure
using the proposed approach is 0.92 and 0.88 using the Attri et
al. 2019 which shows that the proposed work outperformed the
Attri et al work.

Fig. 3. Improvement Analysis of the Proposed Work over Attri et al. Work.

The observed performance in terms of precision, recall and
f-measure values of both proposed and the existing work of
Attri et al. are further analyzed to identify the extent of
improvement exhibited by the proposed work. The individual
% improvement for each of the parameters is individually
computed and plotted in Fig. 3 for graphical illustration. It is
concluded that despite of the variable % improvement observed

0

2

4

6

8

10

12

14

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

7
0

0

1
0

0
0

%
 im

p
ro

ve
m

e
n

t

Number of Projects

Recall Improvement Precision Improvement

F-measure Improvement

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

383 | P a g e

www.ijacsa.thesai.org

in each of the case, the overall analysis depicts the
outperformance of the proposed work.

Fig. 4. Comparative Analysis for Accuracy.

Fig. 4 shows the comparison analysis for Accuracy analysis
using the proposed and existing techniques. The analysis results
show that there is an increase in Accuracy with increase in
project count. It is seen that average Accuracy for Attri et al.
2019 and without GA is 84% and 81%. However, the proposed
model shows Accuracy of about 91.3. The proposed technique
has been improved by 8.9% in comparison to without GA and
Attri et al. 2019. Thus, the proposed outperforms the existing
work due to the integration of Genetic algorithm and Neural
Network.

V. CONCLUSION

In the present work, machine learning based algorithms
such as Neural Network, Genetic Algorithm and their attributes
selection have been analyzed for the prediction of software
effort. Software testing allows the evaluation of attributes or
system capability in determining the requirements to meet the
desired results. The primary motive of testing the software is to
eliminate the bugs and improve the software security and other
aspects such as performance, user satisfaction level, and
experience. The study is based on the development of
computational intelligence models to deal with the different
complex problems. The implementation using the PROMISE
and Kaggle dataset has been done and machine learning models
such as Genetic algorithm and Neural Network used for
implementation. The results of the proposed technique are
promising. The accuracy of the proposed model is 91.3% and
results are improved by 8.9% in comparison to existing
technique. In future, an attempt has been made to improve the
accuracy using the other computational techniques such as
Fuzzy logic.

REFERENCES

[1] A. Saeed, W. H. Butt, F. Kazmi, and M. Arif, “Survey of software
development effort estimation techniques,” in Proceedings of the 2018 7th
International Conference on software and computer applications, 2018,
pp. 82–86.

[2] V. K. Attri and J. Singh Bal, “An Advanced Mechanism for Software Size
Estimation Using Combinational Artificial Intelligence,” Int. J. Intell.
Eng. Syst., vol. 12, no. 4, 2019, doi: 10.22266/ijies2019.0831.24.

[3] W. Rhmann et al., “Survey on software defect prediction techniques,” Int.
J. Appl. Sci. Eng., vol. 17, no. 4, pp. 331–344, 2019.

[4] C. L. Prabha and N. Shivakumar, “Software defect prediction using
machine learning techniques,” in 2020 4th International Conference on
Trends in Electronics and Informatics (ICOEI)(48184), 2020, pp. 728–
733.

[5] Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, and M. Ali, “Software
effort estimation accuracy prediction of machine learning techniques: A
systematic performance evaluation,” Softw. Pract. Exp., vol. 52, no. 1, pp.
39–65, 2022.

[6] C. López-Mart\’\in, “Machine learning techniques for software testing
effort prediction,” Softw. Qual. J., vol. 30, no. 1, pp. 65–100, 2022.

[7] A. B. Nassif, M. Azzeh, A. Idri, and A. Abran, “Software development
effort estimation using regression fuzzy models,” Comput. Intell.
Neurosci., vol. 2019, 2019, doi: 10.1155/2019/8367214.

[8] A. Banimustafa, “Predicting Software Effort Estimation Using Machine
Learning Techniques,” 2018 8th Int. Conf. Comput. Sci. Inf. Technol.
CSIT 2018, pp. 249–256, Oct. 2018, doi: 10.1109/CSIT.2018.8486222.

[9] K. Dutta, V. Gupta, and V. S. Dave, “Analysis and comparison of neural
network models for software development effort estimation,” in Research
Anthology on Agile Software, Software Development, and Testing, IGI
Global, 2022, pp. 165–193.

[10] W. Rhmann, B. Pandey, and G. A. Ansari, “Software effort estimation
using ensemble of hybrid search-based algorithms based on metaheuristic
algorithms,” Innov. Syst. Softw. Eng., vol. 18, no. 2, pp. 309–319, 2022.

[11] M. M. Öztürk, “A tuned feed-forward deep neural network algorithm for
effort estimation,” J. Exp. \& Theor. Artif. Intell., vol. 34, no. 2, pp. 235–
259, 2022.

[12] R. Saljoughinejad and V. Khatibi, “A new optimized hybrid model based
on COCOMO to increase the accuracy of software cost estimation,” J.
Adv. Comput. Eng. Technol., vol. 4, no. 1, pp. 27–40, 2018.

[13] N. Ghatasheh, H. Faris, I. Aljarah, and R. M. H. Al-Sayyed, “Optimizing
software effort estimation models using firefly algorithm,” arXiv Prepr.
arXiv1903.02079, 2019.

[14] S. Chhabra and H. Singh, “Optimizing design parameters of fuzzy model
based COCOMO using genetic algorithms,” Int. J. Inf. Technol., vol. 12,
no. 4, pp. 1259–1269, 2020.

[15] A. Karimi and T. J. Gandomani, “Software development effort estimation
modeling using a combination of fuzzy-neural network and differential
evolution algorithm,” Int. J. Electr. Comput. Eng., vol. 11, no. 1, p. 707,
2021.

[16] N. A. Zakaria, A. R. Ismail, N. Z. Abidin, N. H. M. Khalid, and A. Y. Ali,
“Optimization of COCOMO Model using Particle Swarm Optimization,”
Int. J. Adv. Intell. Informatics, vol. 7, no. 2, pp. 177–187, 2021.

[17] “Software Quality Attributes Dataset | Kaggle.”
https://www.kaggle.com/datasets/sayedmohsin/sqa-dataset (accessed
Aug. 09, 2022).

[18] A. Kaushik and N. Singal, “A hybrid model of wavelet neural network
and metaheuristic algorithm for software development effort estimation,”
Int. J. Inf. Technol., pp. 1–10, 2019.

[19] P. Singal, A. C. Kumari, and P. Sharma, “Estimation of software
development effort: A Differential Evolution Approach,” Procedia
Comput. Sci., vol. 167, pp. 2643–2652, 2020.

[20] “PROMISE DATASETS ENGINEERING REPOSITORY.”
http://promise.site.uottawa.ca/SERepository/datasets-page.html
(accessed Oct. 21, 2022).

70

75

80

85

90

95

10 30 50 70 90 200 400 700

A
cc

u
ra

cy
 (

%
)

Number of projects

Accuracy Proposed Accuracy without GA

Accuracy Attri et al. 2019

