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Abstract—The need for instantaneous processing for Internet 

of Things (IoT) has led to the notion of fog computing where 

computation is performed at the proximity of the data source. 

Though fog computing reduces the latency and bandwidth 

bottlenecks, the scarcity of fog nodes hampers its efficiency. Also, 

due to the heterogeneity and stochastic behavior of IoT, traditional 

resource allocation technique does not suffice the time-

sensitiveness of the applications. Therefore, adopting Artificial 

Intelligence (AI) based Reinforcement Learning approach that 

has the ability to self-learn and adapt to the dynamic environment 

is sought. The purpose of the work is to propose an Auto Centric 

Threshold (ACT) enabled Monte Carlo FogRA system that 

maximizes the utilization of Fog’s limited resources with minimum 

termination time for time-critical IoT requests. FogRA is devised 

as a Reinforcement Learning (RL) problem, that obtains optimal 

solutions through continuous interaction with the uncertain 

environment. Experimental results show that the optimal value 

achieved by the proposed system is increased by 41% more than 

the baseline adaptive RA model. The efficiency of FogRA is 

evaluated under different performance metrics. 

Keywords—Cloud; edge; fog; Internet of Things (IoT); 

Reinforcement Learning (RL) 

I. INTRODUCTION 

The evolution of smart devices has led to the proliferation 
of the Internet of Things (IoT), thus making the world, a better-
connected place for wireless communication and high-speed 
applications. The “Little Data, Big Stream” notion of IoT is 
mostly about time-sensitive applications [1]. The number of 
connected devices per capita is anticipated to be 01 trillion 
devices by 2025. This massive usage of IoT will generate 
mobile data services of 150 zettabytes by 2025 which 
corresponds to 5-7 times of IP traffic today [2]. The immense 
amount of mobile data can be processed instantaneously, only 
if the computing facility is available near the data source. 

Ultra-low latency, energy efficiency, distributed 
processing, and storage are a few of the expectations of IoT 
applications. So far, the cloud was tailored to tackle these 
demands. But, in reality, the remotely located cloud causes 
delay and hinders the QoS requirements of the IoT requests [3]. 
By the time the data from IoT is transmitted to the centralized 
cloud, the inevitability to act on it might be gone, which cost 
lives. Disastrous management, Industrial IoT, and real-time 
aeronautical cum nuclear reactions are some of the time-critical 
IoT applications where the response delay of even nanoseconds 
makes a huge difference [4]. Hence, a fog computing paradigm 
that addresses time-critical applications in its proximity is 
recommended. 

Fog computing is a distributed paradigm where the 
processing nodes are dispersed geographically near the data 
source. The proximal distribution of the processing elements 
promises ultra-low latency for time-critical applications [5]. 
IoT requires a Resource Allocation (RA) mechanism that 
prioritizes time-critical tasks over others. Also, a sufficient 
amount of fog resources may not be available, as and when 
required. Hence, allocation of compute nodes to the incoming 
IoT requests, in a resource-constrained fog environment is 
challenging [6]. The RA mechanism has to adopt an optimal 
strategy to make a sequence of smart decisions [7]. Although 
evolutionary algorithms, dynamic programming, and policy 
gradient are commonly used to derive optimal policy, these 
techniques require prior knowledge of the model [8]. But, the 
proposed work FogRA is a sequential decision-making problem 
in a model-free environment. 

The environment involves IoT devices whose behaviour is 
stochastic and hence the dynamics of the model are not known. 
In such a case, Reinforcement Learning (RL) is sought to solve 
the FogRA problem for two reasons. First, RL is a machine 
learning, trial and error methodology that can self-learn and 
adapt through continuous interaction in an uncertain 
environment. Second, by its origin in Markov Decision Process 
(MDP), RL is a sequential decision theory that generates high-
quality decisions in the long term [9]. 

Monte Carlo (MC), MC-Exploring Starts (MC-ES), and 
On-Policy Monte Carlo Control (OMC) are variants of RL 
algorithms that compute optimal policy. They are the 
straightforward methods that do not bootstrap and eliminate the 
curse of dimensionality problem [8]. They compute the optimal 
value by averaging the samples obtained through various 
iterations and derive the optimal policy from it. 

Studies reveal that the existing RA works focused more on 
the development of frameworks that reduced latency and 
increased the quality of service [10]. The works carried out 
using feed-forward NN, MINLP, and other optimization 
techniques also obtained better outcomes [11]. But these 
techniques were heuristic-based and time-consuming. Q-
learning algorithm of RL was mostly used to devise RA 
strategy. The combination of RL algorithms with queuing 
theory and neural networks too proved more efficient but 
involved cost overhead. 

Moreover, the earlier works addressed intra-dependent and 
parallel tasks, while focus on time-critical applications was 
hardly found. Further, the earlier RL-based RA works were 
mostly proactive, in the sense that they depend on history for 
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prediction and hence mostly model-based [12]. But, the 
proposed work allocates the fog resources on demand. The 
reactive technique does not require any dynamics of the model. 
The availability of the scarce fog resources, and the 
heterogenous latency requirement of IoT describes the 
uncertain behavior of the environment. Allocation of fog’s 
limited resources and prioritizing the time-critical requests are 
highly challenging that need attention. The proposed work is 
about designing an efficient FogRA system that handles the 
challenges of model-free stochastic environment at ease. 

 The proposed work employs ACT enabled MC approach to 
construct the FogRA system for time-critical IoT applications. 
The FogRA system involves a smart agent that finds the optimal 
policy to allocate the fog’s limited resources to the time-critical 
requests. The significance of the work is perceived by its usage 
in the modern network environment and its potential for the fog 
computing paradigm. The main contribution of the intended 
work is summarized as follows: 

• A Reinforcement Learning (RL) based FogRA system is 
developed in which the Fog nodes are used as 
computing resources, to process incoming requests. 

• In the pursuit of maximizing fog utilization, the Fog 
Controller Agent (FCA) undergoes learning to allocate 
its resources to time-critical application requests. 

• The ACT-enabled FogRA system is proposed using 
Monte Carlo (MC), MC-Exploring Starts (MC-ES), and 
On-Policy Monte Carlo Control (OMC). 

• The proposed system is compared with an existing 
Adaptive RA system to evaluate its performance. 

• Result demonstrates that the optimal long-term reward 
achieved by ACT-enabled FogRA is 41% more than the 
existing RA model. 

The rest of the article is structured as follows: Section II 
discusses the background knowledge that substantiates FogRA 
as an RL problem. An overview of the RL approach and the 
formulation of FogRA as an MDP are briefly discussed in this 
section. The system model of the proposed work is elaborated 
in Section III. The experimental results are evaluated and 
analyzed in Section IV, and Section V concludes the paper with 
prospects for the future. 

II. REINFORCEMENT LEARNING BACKGROUND 

A. Resource Allocation as RL Problem 

As mobile apps go more and more 24/7, online solutions 
that deliver instantaneous decisions are highly sought. The 
time-critical IoT requests demand response with almost 
negligible delay [13]. To achieve delay-less response, fog nodes 
that reside near the edge devices are used as computing 
elements. But the distributed nature of fog creates a scarcity of 
its resources. This makes the allocation of fog resources 
tedious, hence is considered an essential problem to be dealt 
with [14]. Due to the limited resources, not all the requests are 
served in the fog layer. It has to be constantly monitored 
whether the incoming request is time-critical or not. Prioritizing 
the time-critical applications to be served in the fog delivers 
prompt service with negligible and tolerable delay [15]. 

The FogRA comprises a Fog Controller Agent (FCA) that 
allocates the available fog resources to the most time-critical 
tasks. Through continuous interaction with the environment, 
the agent derives the optimal policy through which it decides 
whether to allocate the fog resource or not. The problem that 
involves learning and decision-making as a continuous process 
is defined as the RL problem [16]. As the allocation of fog 
resources to IoT requests need constant learning, and decision 
making, FogRA is considered an RL problem. 

RL problem consists of the agent and the environment as 
the two main components as shown in Fig. 1. An agent is a 
learner and decision-maker. The environment is the entity with 
which the agent interacts [17]. Markov Decision Process 
(MDP) is used to articulate the interaction between the agent 
and the environment in terms of states, actions, and rewards, 
MDP is the mathematical framework to define how the 
environment behaves in response to the agent’s action. The 
Markov process is a memoryless random process [8]. It states 
that the future is independent of the past given its present. Any 
environment in which the current state is sufficient to determine 
the next state, irrespective of its previous states (history) is said 
to possess the Markov property. Thus, MDP eliminates the need 
to preserve the value of past states thereby reducing the memory 
cost considerably. 

 

Fig. 1. Agent-Environment Interaction in RL [8]. 

The agent observes the environment's state (𝑠𝑡 ∈ S) and 

performs one of the actions (𝑎𝑡 ∈A(s)) at each time step (t) of 

the interaction. The agent's activity results in a reward 

(𝑟𝑡+1 ∈R) and a transition to the following state (𝑠𝑡+1). Hence 

a sequence of trajectory 

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2𝑟3 … … … .. is observed [18]. 

The crucial constraint on the agent is that it operates in an 
uncertain environment. 

In most problems, the agent is not guided about the action 
that it has to carry out, instead, by trial and error, it learns the 
right action. The agent likely acts differently in a state for the 
first time, rather than after visiting the same state many times 
[19]. With experience, the agent learns the consequence of its 
action on that state. The consequence of an action influences 
not only the immediate reward but the next state and its 
subsequent rewards. 

RL is a computational approach to designing a goal-directed 
learning agent that interacts with an uncertain environment 
[20]. In the Long-term, the agent seeks to maximize the 
cumulative payoff. At every time step (t), the agent receives a 
reward in the form of a scalar value which is either positive or 
negative. A positive value specifies how good the current action 
is, whereas a negative value indicates the penalty for the wrong 
action. The sum of the rewards starting from time ‘t’ until the 
termination time ‘T’ is defined as returns (𝐺𝑡). Thus, returns is 
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the metric that the agent aims to maximize in the long run. The 
definition of returns varies depending upon whether the task 
taken into consideration is episodic or continuous. 

In Episodic tasks, the interaction between the agent and the 
environment breaks once the terminal state is reached [8]. The 
next episode starts in a state independent of the previous one 
ended. Tasks in episodes of this kind are called episodic tasks. 
Returns (𝐺𝑡) for the episodic tasks starting from time ‘t’ is 
expressed as the sum of undiscounted rewards as shown in 
equation (1). 

𝐺𝑡 =  𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+2 + 𝑟𝑡+3 + ⋯ … … … . 𝑟𝑇           (1) 

where 𝑟𝑡+1 is the reward obtained at time-step (t+1) as an 
effect of the action (𝑎𝑡) taken at time-step (t) on the state (𝑠𝑡). 
The Time of termination (T), varies from episode to episode. 
The FogRA problem considered in the work is episodic. Each 
episode ends when all the fog resources are allocated to the 
incoming requests. Then the system is reset with the maximum 
number of fog nodes for the next episode. 

On the other hand, for the tasks with continuous states, the 
interaction between the agent and the environment does not 
break, but rather continues without any terminal state [8]. Such 
tasks that do not have an identifiable terminal state are called 
continuous tasks. The rewards obtained at each time-step of 
continuous task accumulate to a big value that becomes 
uncountable. Also, the immediate reward got is more valuable 
than the one obtained in the future [21]. Hence, the value of the 
future reward is discounted by a factor of gamma (𝛾). 

The value of gamma ranges from 0 to 1. When 𝛾=0, the 
agent is myopic and concerned about maximizing the 
immediate reward, whereas 𝛾=1 specifies that the agent gives 
more importance to the future reward. The literature study 
shows that values between 0.2 and 0.8 were found to be optimal 
in many scenarios [15]. Thus, returns (𝐺𝑡) for the continuous 
tasks starting from time ‘t’ is expressed as the sum of 
discounted rewards as shown in equation (2). 

𝐺𝑡 =  𝑟𝑡+1 + 𝛾1𝑟𝑡+2 + 𝛾2𝑟𝑡+2 + 𝛾3𝑟𝑡+3 +           (2) 

where G is the reward gained at time-step (t+1) as feedback 
of the action (𝑎𝑡) taken at time-step (t) on the state (𝑠𝑡). The 
FogRA problem in the work is evaluated as an episodic task, 
with an initial and terminal state. 

The concepts of Value function and Policy play a major role 
in implementing RL methodology [8]. The value function is the 
sum of all rewards that are expected in the future from every 
subsequent state. While the reward signal defines what is 
beneficial in the immediate sense, the value function signifies 
what is beneficial in the long run. In short, the reward is the 
immediate feedback for the current action, whereas the value 
function is the long-term estimation of rewards [18]. The goal 
of the agent is to maximize the long-term rewards in the form 
of the value function. Also, there is no value function without 
reward. As the iteration proceeds, the actions made by the agent 
are based on the value function. 

The state value function 𝑉(𝑠) given by the equation (3), is 
the expectation of the returns (𝐺𝑡 ) at the time ‘t’ from the state 
𝑠. It is the sum of immediate reward (𝑟𝑡+1) and the discounted 

value of the next state 𝑉(𝑠𝑡+1) estimated iteratively, following 
the sequence of observation, starting from the state. 

𝑉(𝑠) = 𝔼[𝐺𝑡| 𝑠𝑡 = 𝑠]=𝔼[𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1)| 𝑠𝑡 = 𝑠]           (3) 

The value of a state is expressed as a function of expectation 
because future states are stochastic. Similarly, the action-value 
function (𝑄(𝑠, 𝑎)) given by equation (4), is the expectation on 
the Returns (𝐺𝑡) for the action ′𝑎′, taken at time t, in the state 
′𝑠′. 

𝑄(𝑠, 𝑎) =  𝔼[𝐺𝑡| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 

 = 𝔼[𝑟𝑡+1 + 𝛾𝑄[𝑠𝑡+1, 𝑎𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]           (4) 

The value obtained by these value functions helps the agent 
to decide the best action at a particular instant of time. Hence it 
is essential to know the value of the state and state-action pair. 
Identifying the best action for a state is termed as policy. 
Policies are the rules or the strategy the agent adopts to 
maximize the return in the long run [22]. Policies determine the 
optimal action that the agent has to adopt to achieve its goal. 

The value of a state 𝑉(𝑠) following the policy (𝜋) is written 
as 𝑉𝜋(𝑠). Consequently, the value of taking action ′𝑎′ in state 
′𝑠 ′and following the policy (𝜋) thereafter is denoted as 
𝑄𝜋(𝑠, 𝑎). The agent looks for a policy that delivers maximum 
value for the state rather than the highest immediate reward. 
Unlikely, it is difficult to determine the state value 𝑉(𝑠), 
compared to the reward. Because rewards are the instantaneous 
feedback from the environment while value functions are long-
run values that are estimated iteratively until the value 
converges with an optimal policy [15]. The value of the state 
resulting after convergence is the optimal value through which 
an optimal policy is derived. The agent uses the optimal policy 
to take the best action thereafter. 

The Bellman Optimality equation is one of the methods to 
find the optimal value function [8]. The optimal value function 
𝑉∗(𝑠) is one which yields the highest returns compared to all 
other value functions. 𝑉∗(𝑠) is expressed as a value function 
obtained by taking maximum over the policy (𝜋) as given in 
the equation (5). 

𝑉∗(𝑠) = 𝑚𝑎𝑥𝜋𝑉𝜋(𝑠)              (5) 

where 𝑉∗(𝑠) signifies the maximum quantity of long-term 
returns that is obtained from the system. Optimal policies also 
share optimal state-action value pairs 𝑄∗(𝑠, 𝑎). The Bellman 
Optimality equation for 𝑄∗ is given by equation (6), which 
states that the optimal state action-value function is the one that 
is the maximum of all action functions following the policy 𝜋. 

𝑄∗(𝑠, 𝑎) =  𝑚𝑎𝑥𝜋𝑄𝜋(𝑠, 𝑎)             (6) 

The goal of the RL problem is to find the optimal policy that 
yields the highest returns in the long run. A policy 𝜋 is better 
than another policy 𝜋′  if the value of a state obtained by 
following policy 𝜋 is greater than the value of the state obtained 
by the following policy 𝜋′ ie., 𝑉𝜋(𝑠) ≥ 𝑉𝜋′(𝑠). The optimal 
policy is derived by taking the maximum over the policy ‘𝜋’ 
under the state ‘𝑠’ of the value function as given in equation (7). 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑉𝜋(𝑠), ∀𝑠              (7) 
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Computation of optimal policy involves iterative estimation 
of the value function. RL is a method for the efficient estimation 
of value functions and optimal policy. As the FogRA problem 
taken into account is model-free, Monte Carlo (MC), MC 
Exploring Starts (MC-ES), and On-Policy Monte Carlo 
Controls methodologies are employed to compute the optimal 
policy. 

B. Monte Carlo Approach 

Monte Carlo (MC) is a model-free RL algorithm that learns 
by averaging the samples drawn from the observation [15]. It 
learns to derive the policy in an environment where transition 
probabilities and reward distribution are not known [8]. Hence, 
the proposed FogRA problem adopts the Monte Carlo method 
to estimate the optimal policy. An episode is generated starting 
from an initial state till the terminal state. The trajectory of an 
episode in the MC algorithm is shown in Fig. 2. 

 

Fig. 2. Back-up Diagram for Monte Carlo Approach [8]. 

At any instant of time ‘𝑡’ the agent observes the state ‘𝑠𝑡’ 
chooses an action ‘𝑎𝑡’, transits to a new state 𝑠𝑡+1, and gains a 
reward ‘𝑟𝑡+1’. Returns 𝐺𝑡 is computed for every episode. Then 
the value of the state 𝑉(𝑠) is estimated by averaging the returns. 
This process is repeated till 𝑉(𝑠) converges for all states and 
thus obtains the optimal value 𝑉∗(𝑠) for every state. Then the 
optimal policy is derived for each state using the equation (7). 

Given some experience (samples), FCA estimates the value 
of states following policy 𝑉𝜋(𝑠), for all the non-terminal states 
𝑠𝑡 that occur in the trajectory. The agent waits until the returns 
𝐺𝑡 following the visit is known, then use the returns as a target 
to update 𝑉𝜋(𝑆𝑡) as given in equation (8). 

𝑉𝜋(𝑆𝑡) ←  𝑉𝜋(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉𝜋(𝑆𝑡)]            (8) 

where 𝐺𝑡, is the actual returns following the time ‘𝑡’, and 
′𝛼′ is the step size at which the agent learns. Alpha ′𝛼′ is the 
learning rate hyperparameter. It balances the weight that has 
been observed in the recent past with the weight of the newly 
observed target. Equation (8) is also called Exponential 
Recency Weighted Average (ERWA), which estimates the 
incremental moving average by giving more weight to the 
immediate reward [18]. It very much suits a non-stationary 
environment like FogRA in which the action and the reward 
undergo continuous learning. 

C. Monte Carlo Exploring Starts (MC-ES) 

Monte Carlo (MC) estimates the optimal value function 
𝑉(𝑠) for all states appearing in the episode. It simply looks 
ahead and chooses the action that leads to the best combination 
of reward and the next state, which means it does not consider 
the choice of actions in the state. Another issue is that MC 
works better when the state space is known in advance. Hence, 
finding 𝑄(𝑠, 𝑎) through MC-ES is the best way, as it considers 
the choice of actions across all the states and finds the optimal 
policy by maximizing the action value that produces high 
returns in the long run [23]. 

The difference is that the existing adaptive RA model used 
the MC approach to estimate the value of state ‘𝑉(𝑠)’, while the 
MC-ES uses the state-action value pair ‘𝑄(𝑠, 𝑎)’ to improve the 
policy. The change in the algorithm is that, the returns ‘𝐺𝑡’ is 
computed as 𝐺𝑡(𝑠, 𝑎) rather than 𝐺𝑡(𝑠). Hence, MC-ES 
evaluates 𝑄(𝑠, 𝑎) for all state-action pairs as given in equation 
(9). 

𝑄(𝑠𝑡 , 𝑎𝑡)  ← 𝑄(𝑠𝑡 , 𝑎𝑡) +  𝛼[𝐺𝑡(𝑠, 𝑎)  − 𝑄(𝑠𝑡 , 𝑎𝑡)]           (9) 

Then the optimal policy 𝜋∗(𝑎/𝑠) is derived by choosing the 
action with maximum action value for each state 𝑠𝑡 ∈  S as 
given by the equation (10). 

𝜋∗(𝑎/𝑠) ←  𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎)           (10) 

D. On Policy Monte Carlo Control (OMC) 

The estimation of state-action value function 𝑄(𝑠, 𝑎) in 
MC-ES give rise to two issues. First, it increases the state space 
from S to (𝑆𝑥𝐴) leading to memory and time complexity [8]. 
Secondly, the agent might not be able to explore all state-action 
pairs, if it acts too greedy towards the policy from the start. 
Hence, the value of 𝑄(𝑠, 𝑎) and the policy obtained through 
MC-ES, cannot be optimal without a proper balance of 
exploration and exploitation [23]. Instead, the On-policy Monte 
Carlo Controls (OMC) estimates the optimal policy through the 
epsilon (ϵ) greedy approach. The agent picks a random action 
at epsilon (ϵ) times and acts greedy during the period (1- ϵ) 
times thus balancing the explore-exploit instability [24]. The 
Epsilon is a value chosen between zero and one by trial and 
error, and it is problem-dependent. 

III. THE PROPOSED WORK 

A. System Model  

The FogRA system comprises IoT devices and Fog nodes 
as its core components. The fog nodes reside between the IoT 
devices and the cloud. These fog nodes are equipped with 
computing cum network functionality to process incoming 
requests. FogRA is modeled as an RL problem, where a fog 
node act as the Fog Controller Agent (FCA). Monitoring the 
number of fog nodes utilized, observing the time criticality of 
the incoming request, and then deciding to act accordingly is 
the prime process of FCA. The fog nodes and the requests from 
the IoT devices at the edge network make up the environment. 
The agent-environment interaction of the RL-based FogRA 
system is portrayed in Fig. 3. 
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Fig. 3. The FogRA System. 

At any instant of time, the time-criticality of the incoming 
request and the number of utilized fog nodes define the state 
(𝑠𝑡). The FCA’s decision either to accept the request in fog or 
decline it forms the action. As a consequence of the action 
taken, the FCA receives either a positive or negative reward as 
feedback. The heterogeneity of time-criticality from the IoT 
and the fog’s limited resources make the environment 
stochastic. 

The objective of the ACT-enabled FogRA system is to 
allocate the fog’s limited resources to the time-critical 
applications within a short time. In the pursuit of the objective, 
the system maximizes the accepted requests, rewards, and value 
of state-action pairs which is termed Fog Utilization (𝑈𝐹𝑜𝑔). 

Fog’s limited resource forms the constraint of the resource 
allocation problem. The objective of the FogRA system is 
expressed as a multi-objective optimization problem as given 
in the equation (11). 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑈𝐹𝑜𝑔 =  ∑ 𝑁𝑎𝑐𝑐𝑒𝑝𝑡

𝑇

𝑡=0

+ ∑ 𝑟𝑤𝑑𝑎𝑐𝑐𝑒𝑝𝑡

𝑇

𝑡=0

+ 𝑉𝐹𝑜𝑝𝑡 

and 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 =  ∑  𝟙𝑇𝑖𝑚𝑒 𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 𝑉𝐹𝑜𝑝𝑡
𝑇
𝑡=0  

𝑠. 𝑡. 𝑐 ∑ 𝑁𝑎𝑐𝑐𝑒𝑝𝑡 = 𝑁𝑚𝑎𝑥
𝑇
𝑡=0            (11) 

where, ′𝑇′ is the terminal time-step of each episode. 𝑁𝑎𝑐𝑐𝑒𝑝𝑡 

refers to the number of requests accepted by the Fog layer, 
𝑟𝑤𝑑𝑎𝑐𝑐𝑒𝑝𝑡 symbolizes the amount of reward received for 

allocating fog node, 𝑉𝐹𝑜𝑝𝑡 represents the optimal value 

achieved and 𝑁𝑚𝑎𝑥 signifies the number of fog nodes present 
in the fog layer. 𝐹𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 refers to the finish time by which all 

states converge to their optimal value. Hence, the work 
concentrates on maximizing Fog Utilization and minimizing 
the convergence time. 

FogRA is modeled as MDP to define the mathematical 
framework of the RL problem. The fog nodes are defined as a 
set of states in the Markov model, and at each time step, it is in 
one of the states (𝑠0, 𝑠1, 𝑠2, 𝑠3, … … … . . 𝑠𝑛). At any instant of 
time t = 1,2, …T, the state is represented by 𝑠𝑡. To achieve the 
objective, the FCA undergoes learning to choose the best action 
in a current state. 

B. Problem Definition 

The Fog Controller Agent (FCA) perceives the state of the 
environment by constant interaction with it. With the 
continuous stream of application requests, the FCA takes RA 
decisions regularly. As the current action taken by the FCA, 
influences the next state and in turn possibility of future actions 
and rewards, the FogRA problem is formulated as MDP. The 
MDP to allocate fog nodes for the time-critical IoT requests is 
defined as MDP_FogRA = {S, A, P, R, 𝛾} where, 

• S = {(m, 𝑛𝑡, 𝑐𝑡)/m=10, and 0 ≤ n ≤ 𝑁𝑚𝑎𝑥 and 1 ≤ c ≤ 
𝐶 } is the set of possible states of the MDP. At any 
instant of time, the state of the fog node is expressed as 
{𝑠0, 𝑠1, 𝑠2, 𝑠3 … … . . 𝑠𝑡 ∈S} in which, 

 m ∈ ℕ defines the number of applications considered in  

 the work. 

 𝑛𝑡 ∈ ℕ is the number of fog nodes utilized at any instant  

 of time ′𝑡′ bounded by 𝑁𝑚𝑎𝑥. 

 𝑐𝑡 ∈ ℕ is the time criticality of the incoming request at  

 any instant of time ′𝑡′. It is a random number in the 
range. 

 of one and ten with 𝐶 =10 as the highest priority.  

• A = {a∈ (‘accept’, ‘decline’)} is the action set where 
‘accept’ denotes allocation of fog node, and ‘decline’ 
indicates refusal of fog node. 

• P = 𝑆 × 𝐴 ×S → [0,1] is the probability of transition P 
(𝑠′|𝑠, 𝑎) to a new state 𝑠′ from state ‘𝑠’ when action ‘𝑎’ 
is taken. 

• R = 𝑆 × 𝐴 → ℕ denotes the expected reward when the 
environment is in state ‘s’ and action ‘a’ is taken. 

• 𝛾 → 0< 𝛾 <1 is the discount factor that computes the 
present value of the expected future reward. 

Allocation of fog resources to the IoT application requests 
depends on the number of available resources and the time 
criticality of the incoming request. The state of the MDP at any 
instant of time (𝑡) as defined in equation (12), 

 𝑠𝑡 = 𝑚. 𝑛𝑡 + 𝑐𝑡            (12) 

where 𝑛𝑡 ∈ {0,1,2,3………𝑁𝑚𝑎𝑥} is the number of fog 
nodes utilized/allocated. The current state is based on the 
number of utilized fog nodes, and the time-criticality of the 
successive task. The time criticality of the service request 
arriving at time ′𝑡′ is denoted by “𝑐𝑡”. It is obtained based on 
the latency requirement of the incoming request presented in 
Table I. “𝑐𝑡” is calibrated by a ten-point scale ranging between 
1 and 10, with 10 being the highest priority. Starting with ten 
applications (m), the total number of states encountered is 
m(𝑁𝑚𝑎𝑥) + 𝐶. The next state 𝑠𝑡+1 depends on the current state 
and the action taken, thereby reflecting the Markov property. 
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TABLE I. LATENCY TIME-CRITICALITY MAPPING 

 

When the fog node is in one of the possible states 𝑠𝑡 ∈  S =
{1, 2, 3, ….. 𝐶 (𝑁𝑚𝑎𝑥 + 1)}, the agent either accepts the 
incoming task or declines it. Thus, ‘A’ is the set of actions 
{accept, decline} where the action ‘accept’ denotes allocation 
of a fog resource and ‘decline’ indicates forwarding the request 
without allocation of a fog resource. The action chosen is based 
on the sum of the immediate reward and the value of the 
possible next state as given in equation (13). 

   (13) 

where the immediate reward is based on the time criticality 
and intended action as described in the reward system. 
𝑟𝑡𝑎𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 and 𝑟𝑡𝑑𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 describes the reward obtained 
on acceptance and declination respectively. The value of a state 
denotes the quantity of goodness for the agent to remain in that 
state. It is determined by its immediate reward and the 
discounted value of the next possible state. The value of the 
terminal states is zero. 

Similarly, the action from the current state in terms of the 
state-action pair 𝑄(𝑠, 𝑎) is given in equation (14). The choice 
of the equation for action selection depends on whether the 
algorithm is MC, MC-ES, or OMC respectively. 

(14) 

An effective reward system influences the learning ability 
of an agent. With the right reward as the feedback, the FCA 
learns better and fast. In FogRA the reward is defined as a 
function of time criticality, priority threshold, and action taken 
as shown in Table II. Every incoming request is associated with 
a time-criticality value (𝑐𝑡) which is appended in an array. Then 
the median of the array value is computed in every episode to 
obtain the Priority threshold (𝑝𝑡ℎ𝑡) at the time ‘t’. Considering 
the chance of uneven distribution of 𝑐𝑡 values, FogRA chooses 
the median as the measure of central tendency. 

TABLE II. REWARD SYSTEM 

Action taken Time-Criticality Reward 

accept 𝑐𝑡 ≥ 𝑝𝑡ℎ𝑡 𝑝𝑡ℎ𝑡 

decline 𝑐𝑡 ≥ 𝑝𝑡ℎ𝑡 -𝑝𝑡ℎ𝑡 

accept 𝑐𝑡 < 𝑝𝑡ℎ𝑡  -𝑝𝑡ℎ𝑡 2⁄  

decline 𝑐𝑡 < 𝑝𝑡ℎ𝑡  𝑝𝑡ℎ𝑡 2⁄  

At any instant of time, if the time-criticality of the arrived 
request (𝑐𝑡) is greater than the priority threshold (𝑝𝑡ℎ𝑡), then 
the request is considered to be of high priority. Accepting such 
a request indicates the right action of the agent. Hence, the agent 
is encouraged with a positive value of the priority threshold as 
a reward. Declining the high priority request indicates a wrong 
action, for which the agent is rewarded with a negative value of 
𝑝𝑡ℎ𝑡. On the other hand, a time-criticality value less than that 
of the priority threshold indicates the less time-sensitiveness of 
the incoming request. Accepting the less time-sensitive task is 
considered a wrong action anyway, hence the agent is rewarded 
with (−𝑝𝑡ℎ𝑡/2). Otherwise, the agent is rewarded with 
(𝑝𝑡ℎ𝑡/2) for declining the less time-sensitive request. Thus, the 
reward obtained at time ‘t’ depends on the priority threshold 
computed at that time step. 

The probability of state transition (P) and reward 
distribution (R) describes the dynamics of the environment. 
When the dynamics of the environment are known, the optimal 
policy is directly obtained through Dynamic Programming 
(DP) [8]. Also, DP is bound to fixed values of P, R, and policy 
𝜋. But, the FogRA environment considered in the work is 
neither stationary nor policy deterministic. With m(𝑁𝑚𝑎𝑥) + 𝐶 
number of states and 2 actions per state, the problem of 
computing the transition probability for all states grows 
exponentially and cumbersome rather than solving the RA 
problem itself. Hence, Monte Carlo (MC) method that learns 
the optimal policy without P and R is sought. Hence, the 
proposed work does not consider the distribution parameters 

and employs MC to derive the optimal policy. 

C. ACT enabled MC for FogRA  

Time criticality (𝑐𝑡) of an incoming request is defined in the 
range of one to ten, with ten designated as the highest priority. 
As Fog resources are limited, only those requests whose time 
criticality value is greater than the priority threshold is given 
importance to get processed in fog nodes. But, fixing a suitable 
priority threshold (𝑝𝑡ℎ𝑡) at every time step is not a trivial task 
in FogRA whose environment is stochastic and non-stationary. 
An increased 𝑝𝑡ℎ𝑡 value leads to poor performance of the FCA, 
in which the number of accepted requests becomes less than the 
decline. A decrease in the 𝑝𝑡ℎ𝑡 results in the allocation of fog 
nodes to non-time-critical applications, which conflicts with the 
objective of the system. Hence the work suggests Auto Centric 
Threshold (ACT) that self-generates the threshold at every time 
step. The incoming time criticality (𝑐𝑡) is appended in an array. 
Then, the priority threshold (𝑝𝑡ℎ𝑡) is computed as the median 
of the time criticality (𝑐𝑡) values stored in the array at every 
time step. 

Initially, the FogRA system allocates the fog resource with 
the priority threshold computed at time t=0. As the episode 
proceeds, the FCA learns the best policy in which only those 
requests with a critical value greater than the recently computed 
priority threshold are allocated the fog resource. The algorithm 
to learn the optimal policy by the ACT-enabled MC for the 
FogRA is given in Algorithm 1. 
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The FogRA system is implemented as an episodic task. 
Once a task arrives, based on its latency requirement, the time-
criticality is obtained from the latency time-criticality mapping 
table. The value of states 𝑉(𝑠) is initialized with Zero for all 
states. Based on equation (13), FCA decides whether to accept 
the request in the fog or decline it. By continuous interaction 
with the environment, the FCA updates the state value of all 
states and derives the optimal policy for every state. 

Given the episode, generated by following the policy 𝜋 (ie., 
action taken based on equation (13), the ACT-enabled MC 
optimal policy algorithm evaluates 𝑉𝜋(𝑆𝑡) for all the non-
terminal states 𝑆𝑡 occurring in that episode. The returns 𝐺𝑡 is 
computed as the sum of undiscounted rewards starting from the 
initial state till the terminal state of the episode. The returns of 
every state are used as the target to update the value of the 
respective state 𝑉𝜋(𝑆𝑡) as given in equation (8). Episodes are 
generated as long as the state values converge for all states. 
Once state value converges, the optimal policy is obtained 
based on equation (7). 

IV. EXPERIMENTAL ANALYSIS AND DISCUSSION 

The MDP for FogRA system adopts the definition of state 
from adaptive resource allocation but differs in certain aspects 
[15]. First, the proposed work obtains the time-criticality value 
(𝑐𝑡) from the Latency Time-criticality mapping Table I, which 
maps the preference level of the IoT request with its criticality 
value. Secondly, as the proposed MDP is episodic, the returns 
are computed with undiscounted rewards. Thirdly, priority 
threshold is computed by a self-generated Auto Centric 
Threshold (ACT) method which suits more for the stochastic 
nature of the IoT environment. Finally, unlike constant value-
based rewards, the novel reward system acts in coherence with 
the priority threshold and provides the best incentive for the 
agent to learn better and faster. 

The experiment is implemented in python Spyder. The 
simulation was conducted for the latency generated at random. 
Then the priority level of the request is obtained from the 

latency-time criticality mapping Table I. The simulation 
parameter and their corresponding values are maintained as 
given in the Table III. 

TABLE III. SIMULATION PARAMETERS 

  

This section analyses the experimental results obtained 
through MC, MC-ES, and OMC to evaluate the performance of 
FCA. The work considers ten IoT applications, hence the value 
of ′𝑚′ is set to 10 in the work. With the number of fog nodes 
𝑁𝑚𝑎𝑥 as 15, and the maximum time criticality value 𝐶 as 10, 
the MDP leads to m(𝑁𝑚𝑎𝑥) + 𝐶 possible states, which are 
given by 𝑠𝑡 ∈  S = {1,2,3, ….. m(𝑁𝑚𝑎𝑥) + 𝐶}. Initially, at the 
time t=0, all fog nodes are available, so the number of occupied 
fog nodes 𝑛𝑡 remains zero in the equation (12) with the possible 
initial state as 𝑠0 ∈ {1,2,3 … . 𝐶}. The MDP terminates at time T 
when all the fog nodes are occupied, ie., 𝑛𝑡 =  𝑁𝑚𝑎𝑥 with the 
possible terminal states as 𝑠𝑇 ∈ {𝐶𝑁𝑚𝑎𝑥 + 1, 𝐶𝑁𝑚𝑎𝑥 +
2, 𝐶𝑁𝑚𝑎𝑥 + 3 … … . . 𝐶(𝑁𝑚𝑎𝑥 + 1)}. Hence, the proposed work 
is experimented with 160 states, with {1, 2, 3, ….10} as one of 
the possible initial states and {151,152,153…………160} as 
one of the terminal states. 

A. Adaptive MC vs ACT MC 

First, the performance of FogRA is evaluated with the 
adaptive MC and the proposed ACT-based MC model. Fig. 4 
reflects the value of a few states estimated by the Adaptive MC 
algorithm in the earlier work [15]. The adaptive model 
converges after 10000 episodes resulting in the optimal state 
value 16. Fig. 5 shows that the ACT-based MC derives an 
optimal state value of 17.5 which is 9.375 % more than the 
Adaptive MC. The metrics observed in the implementation of 
Adaptive and ACT-based MC are tabulated in Table IV. 

 

Fig. 4. Optimal State Value in Adaptive RA. 
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Fig. 5. Optimal State Value with ACT-MC. 

The estimation of 𝑉∗(𝑠) obtained by the MC algorithm fits 
more for the model-based MDP. As FogRA is a model-free 
system, the exploration-oriented ACT MC-ES (Monte Carlo 
Exploring Starts), is implemented to compare its results with 
the Adaptive model. 

B. Adaptive MC-ES vs ACT MC-ES 

The FogRA system is then evaluated in MC-ES for both the 
Adaptive and ACT model. The ACT-based MC-ES algorithm 
estimates 𝑄(𝑠, 𝑎) rather than 𝑉(𝑠). Hence, the state space 
increases from 𝑠 to (𝑠 x 𝑎), and the action selection depends on 
equation (14). Fig. 6 and Fig. 7 show the convergence of 
optimal action-value Q*(state, accept) and Q*(state, decline) in 
Adaptive RA for twelve states chosen at random. 

 

Fig. 6. Q*(s, Accept) for Adaptive MC-ES. 

 

Fig. 7. Q*(s, Decline) for Adaptive MC-ES. 

Unlike the Adaptive approach, the values obtained by ACT-
based MC-ES in Fig. 8 and Fig. 9 show improved optimal 
values comparatively. The estimated 𝑄∗(𝑠, 𝑎) value in the 
Adaptive approach is lesser than the ACT model. The reason 
behind the poor 𝑄∗(𝑠, 𝑎) value is that the Adaptive MC-ES is 
not able to explore widely in an episodic environment with a 
limited number of fog nodes. 

Table IV shows the improved value from 16 in the MC 
model to 18.7025 in ACT-based MC-ES. The increase in the 
percentage of 16.8906% indicates the robustness of the ACT-
enabled FogRA over the Adaptive system even in an 
environment with scarce resources. Still, the improvement is 
not considered favourable as the action selection process of 
MC-ES is greedy without enough exploration. Hence, the ACT-
based FogRA System is tuned towards a balanced mix of 
exploration and exploitation in the OMC approach. 

C. Adaptive OMC vs ACT OMC 

The OMC algorithm estimates the value of state-action pair 
𝑄(𝑠, 𝑎), but the action based on equation (14) is decided only 
after a balanced trial of exploration and exploitation. FCA 
controls the level of exploration and exploitation based on a ϵ-
greedy policy and is hence named as On-Policy Monte Carlo 
Control (OMC). The agent explores such that a random action 
is picked epsilon times and the greedy action based on equation 
(14) is picked for the (1- ϵ) times. In this case, epsilon (ϵ) is 
chosen as a small positive number of 0.2 after trial and error. 
Fig. 10 and Fig. 11 show the convergence of optimal action 
value 𝑄∗(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑐𝑒𝑝𝑡) and 𝑄∗(𝑠𝑡𝑎𝑡𝑒, 𝑑𝑒𝑐𝑙𝑖𝑛𝑒) for twelve 
states chosen at random using an Adaptive approach. 

 

Fig. 8. Q*(s, Accept) for ACT MC-ES. 

 

Fig. 9. Q*(s, Decline) for ACT MC-ES. 
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Fig. 10. Q*(s, Accept) for Adaptive OMC. 

 

Fig. 11. Q*(s, Decline) for Adaptive OMC. 

Despite its balanced explore-exploit strategy, the adaptive 
OMC terminates fast, resulting in minimal 𝑄∗(𝑠, 𝑎) value. It 
expresses the inability of the adaptive system for exploration. 
Whereas the ACT enabled OMC outperforms its counterpart by 
improved 𝑄∗(𝑠, 𝑎) with minimal termination time in Fig. 12 
and Fig. 13. The numerical results obtained during execution 
are tabulated in Table IV. 

 

Fig. 12. Q*(s, Accept) for ACT OMC. 

 

Fig. 13. Q*(s, Decline) for ACT OMC. 

The optimal state-action value estimated by ACT-based 
OMC is increased by 41% more than the Adaptive MC. Thus, 
the ACT-based OMC surpasses other methods by maximizing 
long-term returns. The high value of the long-term returns with 
minimum termination time denotes that the FCA has learned 
the best policy at a fast rate, thanks to the smart learning ability 
of the ACT-based On Policy Monte Carlo Control. 

TABLE IV. PERFORMANCE EVALUATION 
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V.  CONCLUSION AND FUTURE WORKS 

In this work, an RL-based ACT-enabled FogRA system is 
implemented for time-critical applications of IoT. The proposed 
system instantaneously decides whether to allocate fog 
resources or not, based on the time-criticality of the incoming 
request and the availability of fog resources. In the pursuit to 
derive the optimal policy, the algorithm trains the FCA to learn 
better decision-making. The RA problem is executed for the 
incoming requests both on the Adaptive and ACT-enabled 
FogRA systems. Results show that the ACT-enabled FogRA 
system prioritizes time-critical applications to allocate fog 
nodes. Also, utilization of fog resources is maximized in terms 
of the percentage of requests accepted by fog, rewards obtained 
and optimal value achieved. The performance assessment of the 
ACT-enabled FogRA system exhibits an improved optimal 
state-action value by 41% more than the Adaptive model. In 
future work, the FogRA system is planned for continuous tasks 
with the auto-scaling feature of fog resources. Also, it is 
planned to extend the work as RL enabled Energy Efficient 
FogRA system that minimizes the energy cost with maximized 
performance. 
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