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Abstract—As the result of Open Edge Computing (OEC) 

project, cloudlet embodies the middle layer of edge computing 

architecture. Due to the close deployment to the user side, 

responding to user requests through cloudlet can reduce delay, 

improve security, and reduce bandwidth occupancy. In order to 

improve the quality of user experience, more and more cloudlets 

need to be deployed, which makes the deployment and 

management costs of Clouldlet service Providers (CLP) 

significantly increased. Therefore, the cloudlet federation appears 

as a new paradigm that can reduce the cost of cloudlet deployment 

and management by sharing cloudlet resources among CLPs. 

Facing the cloudlet federation scenario, more attention still needs 

to be paid to the heterogeneity of resource prices, the balance of 

benefits among CLPs, and the more complex delay computation 

when exploring task migration strategies. For delay-sensitive and 

delay-tolerance tasks, a delay-aware and profit-maximizing task 

migration strategy is proposed considering the relationship 

between the delay and the quotation of different tasks, as well as 

the dynamic pricing mechanism when resources are shared among 

CLPs. Experimental results show that the proposed algorithm 

outperforms the baseline algorithm in terms of revenue and 

response delay. 
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I. INTRODUCTION 

With the development of intelligent Mobile Devices (MD), 
a large number of computation-intensive and delay-sensitive 
mobile applications keep emerging [1]. To address the resource 
constraints of mobile devices, tasks are offloaded to remote 
cloud centers in traditional cloud computing [2][3], but it is 
followed by the problem of high response delay [4]. This makes 
it difficult for requirements of delay-sensitive task to be 
satisfied [5]. 

To overcome these problems, Mobile Edge Computing 
(MEC) [6] is proposed and regarded as a promising technology 
by developing servers at the edge of networks. The proximity 
of the MEC to the user allows the user to access and use 
resources with lower response latency. Cloudlets are small 
cloud at the edge of network and typically deployed in a 
distributed manner to provide storage and computing resource 
to MD. 

Compared to existing cloud computing, MEC still suffers 
from constrained resources. A Cloudlet service Provider (CLP) 
has to deploy more and more proprietary edge devices to meet 
the needs of its users, resulting in increasing costs to deploy and 
manage edge devices. Therefore, [7] proposes the edge 

federation architecture, which improves the flexibility of 
resource utilization and reduces the deployment and 
management costs by seamlessly integrating the edge resources 
of each CLP. When cloudlets act as edge devices, a cloudlet 
federation architecture is formed. 

Since MD is not uniformly distributed in edge computing 
systems, some clouds are heavily loaded while others are lightly 
loaded. Task migration is the principal method used to resolve 
load imbalance between cloudlets [8-11]. Although many 
studies have been conducted on cloudlet-based load migration 
strategies, they have one or more shortcomings: they do not 
take into account the heterogeneity of resource prices, 
authentication delays between cloudlet resources of different 
CLPs, or the impact of service delays on task quotes. 

This paper focuses on the task migration problem in the 
cloudlet federation scenario. Two types of user requests are 
considered: delay-sensitive and delay-tolerant, and their 
quotation delay curves are designed respectively. Considering 
the heterogeneity of resource prices among CLPs, a delay-
aware and profit-maximizing task migration strategy is 
proposed. Our main contributions are as follows: 

• For delay-sensitive and delay-tolerant tasks, a delay 
model and a price model are constructed by taking into 
account the differences in resource prices of different 
CLPs. 

• A distributed Delay-aware and Profit-maximizing Task 
Migration (DPTM) algorithm is designed to schedule 
tasks, which tries to minimize latency and maximize 
profit. 

• A series of experiments are conducted to verify the 
necessity of considering the cloudlet federation and the 
advantages of our method in terms of revenue and 
response delay. 

The rest of this article is organized as follows. Section II 
demonstrates the related work on the task migration in different 
scenarios. Section III introduces the system model. In Section 
IV, a task scheduling algorithm considering both profit and 
delay is proposed. In Section V, we conduct the extensive 
experiments to evaluate the proposed method and gives the 
discussion. Finally, Section VI concludes this paper and gives 
the future works. 

*Corresponding Author. 
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II. RELATED WORK 

We review the related works about task migration and 
schedule in the multi-cloudlet scenario and the edge federation 
scenario respectively. 

A. Task Migration in Multi-cloudlets Scenario 

The existing works about task migration in the multi-
cloudlets scenarios focus on minimizing delay and energy 
consumption. The authors in [12] propose an application-aware 
cloudlet adaption and VM selection framework has been 
devised for balancing the load in a multi-cloudlet environment. 
The authors in [13] propose a novel Multi-layer Latency Aware 
Workload Assignment Strategy (MLAWAS) to allocate the 
workload of E-Transport applications into optimal computing 
nodes. In [14] user mobility and task deadline are taken into 
account when task migration is optimized. Three variants of this 
problem are analyzed, and a group migration algorithm with 
known user trajectories is designed. In [15], a heuristic Task 
Migration Computing Offloading (TMCO) scheme is proposed 
for the challenges brought by complex network environment 
and end-user mobility, which can dynamically select the 
appropriate location to offload tasks for mobile users within the 
deadline. In [16], for collaborative vehicle edge computing 
group environment, a computational task migration problem is 
defined to balance the load and minimize the migration cost, 
and reinforcement learning algorithm is adopted to solve this 
problem. 

The above researches are based on multi-cloudlet scenarios 
to optimize the delay and energy consumption of task 
migrating. However, the traditional multi-cloudlet scenario has 
the problem of limited resources, and a smaller number of 
resources are available for task migration. Different from the 
multi-cloudlet scenario, in the cloudlet federation, the cloudlet 
resource prices of different CLPs may be different, there are 
more options for task migration, and the delay computation is 
more complex. 

B. Task Migration in Edge Federation Scenario 

Some studies have explored task migration strategies in the 
context of edge federation or cloudlet federation. The authors 
in [17] design a task migration strategy for multiple edge 
servers in mobile networks to minimize the overall service time 
and develop an intelligent task migration scheme using deep 
reinforcement learning and Q-learning technology. In [18], the 
authors propose a latency minimization model to provide higher 
efficient service provisioning in horizontal edge federation and 
propose a two-phase iterative approach, which alternately 
determines optimal task dispatching and computation resource 
allocation. In order to simultaneously meet the SLA 
requirements of IoT (Internet of Thing) devices and edge 
service providers, the authors in [19] design an intelligent 
request service provisioning system based on reinforcement 
learning as part of a smart edge orchestrator in the edge 
federation. Considering the delay and capacity constraints, [20] 
proposes an optimization model to minimize the total energy 
cost and the energy efficient offloading ratio of edge nodes. 

The above studies either ignore the role of the remote cloud, 
or do not consider the heterogeneity of resource prices, or do 
not consider the impact of task delay on user quotation. In our 

work, tasks can be migrated to the CLP's own cloudlet, the 
cloudlet of federate CLP, or the remote cloud. We consider two 
different types of tasks, time-sensitive and time-tolerance, and 
consider that their delays have different effects on user 
quotation. We attempt to optimize the profit and delay of the 
whole federation. 

III. SYSTEM MODEL 

In this section, we keep our focus on the cloudlet federation 
framework, communication and computation models. 

A. Cloudlet Federation Framework 

 Compared with the cloudlet, the cloud usually has 
sufficient resources and is quite far away from the user. For 
simplicity, the cloud platform owned by each CLP is not 
distinguished. Therefore, as shown in Fig. 1, we consider that a 
cloudlet federation contains a cloud and several CLPs. Each 
CLP has its own cloudlet servers, and each has a set of users 
that need to be served. The resource of a cloudlet server is 
provided in the form of a virtual machine (VM) instance. Let's 
assume that a VM instance performs only one task at a time. 

We assume each CLP has a server as the Federated Cloudlet 
Manager (FCLM) to provide service and resource interactions. 
The status of the cloudlet servers is collected by the FCLM, 
such as available capacity, resource utilization, and cost. 
Meanwhile, CLPs can communicate with each other through 
FCLMs and exchange their collected information. When a CLP 
receives a task from a terminal user, it decides where to offload 
the task. This could be its own cloudlet, one of the federated 
cloudlets, or the cloud. 

B. Task Requests from Terminal Users 

Similar to works in mobile cloud computing [21] and 
mobile edge computing [22], the quasi-static scenario is 
considered, where the mobile users remain unchanged during 
migration. To simplify, we use task or request instead of task 
request without causing confusion. 

Two types of task requests are considered: delay tolerance 
(DT) and delay sensitive (DS). For a DS task, CLP should 
minimize its delay while a certain amount of revenue is 
guaranteed. For a DT task, the priority is profit maximization. 
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Fig. 1. Cloudlet Federation Architecture. 
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Regardless of the type of task, we believe that the response 
delay will affect the user's willingness to pay. In general, the 
shorter the delay, the higher the user is willing to pay. 

A seven-tuple A = <d, reqins, 𝛼, tept, tmax, Pmax, Plow> is used 
to describe a task where, d denotes the size of input data, reqins 
denotes the Million Instructions (MIs) required. 𝛼 is a 0-1 
variable that describes the type of tasks. When 𝛼 is 0, the type 
of the task is DT, and when 𝛼 is 1, the type of the task is DS. 
We assume a task has an expected delay tept and a tolerable 
maximum latency tmax. Plow and Pmax represent the minimum and 
maximum price a user is willing to pay for a task, respectively. 

For a DT task, if it can be completed within the expected 
time, marked as tept, the user will be satisfied and willing to pay 
in full, marked as Pmax. If tept is exceeded, but the deadline, 
marked as tmax, is not exceeded, the willing fee of the user will 
gradually decrease, and eventually reach a balance value, 
marked as Plow, between the CLP and the user. Thus, for a DT 
task, the relationship between the delay t and the user's 
quotation Q(t) can be shown in (1). 

𝑄(𝑡) = {

𝑃𝑚𝑎𝑥,                                                 𝑡 < 𝑇𝑒𝑝𝑡

𝑘𝑑𝑡 ∙ (𝑇𝑚𝑎𝑥 − 𝑡) + 𝑃𝑙𝑜𝑤, 𝑇𝑒𝑝𝑡 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥

𝑃𝑙𝑜𝑤 ,                                                   𝑡 > 𝑇𝑚𝑎𝑥

          (1) 

Where, 𝑘𝑑𝑡 is determined by (2). 

𝑘𝑑𝑡 =
𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑒𝑝𝑡               (2) 

For DS tasks, users will be willing to pay in full if they can 
be completed within the expected time. If the delay exceeds the 
user's expectation, the user's willingness to pay will decrease 
sharply. If the delay exceeds the deadline, the user will be 
unwilling to pay, or only willing to pay at a very low price. We 
chose the latter, meaning that when the deadline is exceeded, 
the user will be willing to offer only a very low price, which is 
usually close to or even lower than the CLP cost. We design (3) 
to describe the relationship between the delay t of a DS task and 
the user's quotation Q(t). 

𝑄(𝑡) = {

𝑃𝑚𝑎𝑥,                                                      𝑡 < 𝑇𝑒𝑝𝑡

𝑃𝑚𝑎𝑥((1 − 𝛼(𝑡 − 𝑇𝑒𝑝𝑡))𝛽 , 𝑇𝑒𝑝𝑡 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥

𝑃𝑙𝑜𝑤 ,                                                      𝑡 > 𝑇𝑚𝑎𝑥

       (3) 

Where, 𝛼 and β are adjustable parameters, and their values 
should ensure that the curve described by (3) is continuous on 
the interval [𝑇𝑒𝑝𝑡 , 𝑇𝑚𝑎𝑥]. 𝛼 indicates the delay sensitivity of the 
user. The larger the 𝛼, the higher is the sensitivity. 𝛽 reflects 
the descent gradient of user willingness. The larger the 𝛽, the 
larger is the gradient. 

Fig. 2(a) and Fig. 2(b) depict the curves of delay versus 
quotation for DT and DS tasks, respectively. 

C. Delay Model 

When the FCLM of a CLP receives a task, the FCLM may 
schedule it to the local cloudlet, or to the federated cloudlet, or 
to the cloud. In general, the amount of data output after the task 
execution is much smaller than the amount of data input before 
the task execution. Similar to [23] and [24], the transmission 
time required for the output information of a task to be returned 
to the user is not considered. Meanwhile, the queuing delay is 

negligible when the federated resources are sufficient to handle 
user tasks. 

1) Local cloudlet: When a task is scheduled to the local 

cloudlet, its delay can be divided into two parts. The first part 

includes transmission delay and propagation delay, denoted as 

𝑡𝑐𝑙
1 , which can be determined by (4). 

𝑡𝑐𝑙
1 =

𝑑

𝑅
+

𝐷𝑐𝑙

𝑆𝑝               (4) 

Where d is the amount of data to be transmitted, R is the 
data transmission rate, 𝐷𝑐𝑙 is the distance of the selected local 
cloudlet from the user, and 𝑆𝑃 is the propagation rate. Assume 
that the value of 𝑆𝑃 is the same for all channels and the value 
of R is the same for all devices. 

The second part is the time required for the task execution 
on the selected cloudlet, denoted as 𝑡𝑐𝑙

2 , which is determined by 
(5). 

𝑡𝑐𝑙
2 =

𝑟𝑒𝑞𝑖𝑛𝑠

𝐶𝑃𝑈𝑝𝑟𝑜𝑐∙𝑁𝑐𝑝𝑢
              (5) 

Where 𝑟𝑒𝑞𝑖𝑛𝑠is the MIs required to execute the task, 
𝐶𝑃𝑈𝑝𝑟𝑜𝑐 is the Million Instructions per Second (MIPs) for the 

CPU provided by the selected cloudlet, and 𝑁𝑐𝑝𝑢 is the number 

of CPUs configured by the selected cloudlet. 

Thus, the total delay, denoted as 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙, for a task scheduled 

to a local cloudlet can be calculated by (6). 

              (6) 

2) Remote cloud. When a task is scheduled to the remote 

cloud, its delay calculation is very similar to that when it is 

scheduled to a local cloudlet. However, since the user is usually 

far away from the cloud, the delay of the task will be huge. 

The total delay, denoted as 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙, for a task scheduled to the 

remote cloud can be calculated by (6). 

𝑡𝑐
𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑐

1 + 𝑡𝑐
2 =

𝑑

𝑅
+

𝐷𝑐

𝑆𝑝 +
𝑟𝑒𝑞𝑖𝑛𝑠

𝐶𝑃𝑈𝑝𝑟𝑜𝑐∙𝑁𝑐𝑝𝑢
           (7) 

Where, 𝐷𝑐 is the distance of the cloud from the user, 
𝐶𝑃𝑈𝑝𝑟𝑜𝑐 is the MIPs for the CPU provided by the cloud, and 

𝑁𝑐𝑝𝑢 is the number of CPUs configured by the cloud. 

3) Federated cloudlet. If a task is assigned to the federated 

cloudlet, its delay includes the following parts: authentication 

delay between alliances, task offloading delay from user to 

FCLM, task offloading delay from FCLM to the selected 

cloudlet, and task execution delay. 
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When a task is transferred from the FCLM receiving it to 
the FCLM of a federation, some authentication information 
often needs to be exchanged between FCLMs, so as to 

introduce authentication delay, marked as 𝑡𝑓𝑒𝑑
1 , which is 

considered to be a constant. 

To avoid CLP user information being detected by the 
federated CLP, tasks are delivered first to the FCLM that 
receives them and then to the selected Cloudlet. The delay of 

offloading the task from the user to the FCLM, denoted as 𝑡𝑓𝑒𝑑
2 , 

can be calculated by (8). 

𝑡𝑓𝑒𝑑
2 =

𝑑

𝑅
+

𝐷1

𝑆𝑝              (8) 

Where 𝐷1 represents the distance between the user and the 
FCLM associated with it. 

The delay of offloading tasks from FCLM to the selected 

cloudlet is denoted as 𝑡𝑓𝑒𝑑
3 , which can be calculated by (9). 

𝑡𝑓𝑒𝑑
3 =

𝑑

𝑅
+

𝐷2

𝑆𝑝              (9) 

Here, 𝐷2 represents the distance between the FCLM 
associated with the user and the selected cloudlet. 

The execution delay of the task, denoted as 𝑡𝑓𝑒𝑑
4 , can be 

determined by (10). 

𝑡𝑓𝑒𝑑
4 =

𝑟𝑒𝑞𝑖𝑛𝑠

𝐶𝑃𝑈𝑝𝑟𝑜𝑐∙𝑁𝑐𝑝𝑢𝑡
           (10) 

Where，𝐶𝑃𝑈𝑝𝑟𝑜𝑐 is the MIPs for the CPU provided by the 

selected cloudlet, and 𝑁𝑐𝑝𝑢 is the number of CPUs configured 

by the selected cloudlet. 𝐶𝑃𝑈𝑝𝑟𝑜𝑐 and 𝑁𝑐𝑝𝑢  in (5), (7) and (10) 

are not symbolically distinguished. In fact, they correspond to 
different computing resources and take different values. 

Thus, the total delay, denoted as 𝑡𝑓𝑒𝑑
𝑡𝑜𝑡𝑎𝑙, can be calculated by 

(11). 

𝑡𝑓𝑒𝑑
𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑓𝑒𝑑

1 + 𝑡𝑓𝑒𝑑
2 + 𝑡𝑓𝑒𝑑

3 + 𝑡𝑓𝑒𝑑
4           (11) 

D. CLP Resource Pricing Model 

When a CLP needs to rent the cloudlet resources of another 
CLP, the leasing price of the resources needs to be determined. 
The consistent pricing strategy is adopted, and the leasing price 
of resources is considered to be related to the user's quotation, 
resource cost and resource utilization of CLP. 

Assuming that the user quotation of task A is QuoteA, the 
cost of resources needed to execute A is CostA, and the total 
cloudlet resources and residual resources owned by some CLP 
are TotalCLP and ResCLP respectively, then the cost of CLP 
renting the resources required by task A, denoted as 𝑅𝑒𝑛𝑡𝐴

𝐶𝐿𝑃, 
can be determined by (12). 

𝑅𝑒𝑛𝑡𝐴
𝐶𝐿𝑃 = 𝐶𝑜𝑠𝑡𝐴 +

𝑇𝑜𝑡𝑎𝑙𝐶𝐿𝑃−𝑅𝑒𝑠𝐶𝐿𝑃

𝑇𝑜𝑡𝑎𝑙𝐶𝐿𝑃
(𝑄𝑢𝑜𝑡𝑒𝐴 − 𝐶𝑜𝑠𝑡𝐴)    (12) 

The intuition of (12) is as follows: the rental price of 
resources should be higher than that of the cost. The net profit 
between rental price and cost should be positively correlated 
with the profit of the lease and the resource utilization of the 
lessor accordingly. The willingness of renting resource is 

growth with the user’s quoted price, and as the increasing of the 
resource utilization, the tenant willingness of renting is 
decreasing. 

When a task is executed on the cloud, its profit is the 
difference between the user's quote and the cost of the cloud 
resource. When executed on the local cloudlet, its profit is the 
difference between the user's quote and the local cloudlet 
resource cost. When executed on the federated cloudlet, its 
profit is the difference between the user's quote and the rental 
resource price. 

IV. PROPOSED ALGORITHM 

Based on the distributed processing idea and greedy 
strategy, for each CLP, when its FCLM receives a task, we 
design a Delay-aware and Profit-maximizing Task Migration 
(DPTM) algorithm to schedule the task. DPTM tries to 
maximize the profit of CLP while guaranteeing the user delay 
according to the task type. It first determines the type of tasks. 
For DS tasks, a scheduling algorithm called Task Migration for 
DS (TMDS) is proposed. For the DT task, an algorithm called 
Task Migration for DT (TMDT) is proposed. 

A. TMDS Algorithm 

For DS task, the goal is to minimize delay on the basis of 
ensuring profit. For this purpose, locally arrived DS tasks are 
divided into High Delay Sensitive (HDS) and Low Delay 
Sensitive (LDS) tasks according to their delay requirements. 
For a HDS task, local scheduling is preferred. If it cannot be 
scheduled locally, it is processed as an LDS task. For a LDS 
task, if the cloud has the highest profit and can guarantee the 
delay, the cloud is regarded as the best scheduling. Otherwise, 
on the premise of ensuring profit, the cloudlet with the 
minimum delay should be sought. 

The TMDS algorithm for scheduling DS tasks is shown in 
Algorithm 1. In Algorithm 1, Avgk records the average 𝑡𝑒𝑝𝑡 of 
the last k DS tasks, 𝑡𝑒𝑝𝑡(𝐴) and 𝑡𝑚𝑎𝑥(𝐴) represent the 𝑡𝑒𝑝𝑡 and 

𝑡𝑚𝑎𝑥 of task A respectively, 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) represents the delay of 

A when executed on the VM of a cloudlet,  𝑝𝑐𝑙 (VM) represents 
the profit when A is executed on the VM of a cloudlet, and pc 
(A) represents the profit when A is executed on the cloud. A task 
is identified as HDS when its 𝑡𝑒𝑝𝑡 is less than Avgk. In this case, 
firstly, the VM that can execute A and delay less than 𝑡𝑚𝑎𝑥(𝐴) 
are searched on the local cloudlet. Otherwise, find all VMs that 
can execute A with latency less than 𝑡𝑚𝑎𝑥(𝐴) and schedule A to 
the one with the least latency. If no suitable VM is found after 
the above two steps, A will be treated as an LDS type. 

For a task A identified as a LDS, the latency and profit of A 
when executed on the cloud are calculated, denoted as 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙(𝐴) 

and pc (A), respectively. If 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙(𝐴) is less than 𝑡𝑚𝑎𝑥(𝐴)  and 

pc (A) is greater than 0, the VM with executable A, delay less 
than 𝑡𝑚𝑎𝑥(𝐴), and profit greater than pc (A) is sought on the 
cloudlets of all CLPs. If one or more VMs can be found, the 
VM with the minimum latency is selected for A. Otherwise, A 
is scheduled to the cloud. 

If 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙(𝐴) is not less than 𝑡𝑚𝑎𝑥(𝐴)  or pc (A) is not greater 

than 0, the VM that can execute A and the profit is greater than 
0 is searched on the cloudlets of all CLPs, and the one with 
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minimum delay is the best for A. Otherwise, A will be 
abandoned. 

In Algorithm 1, a maximum of three scheduling attempts is 
required on each VM for a task. If n is used to represent the 
number of VMs, the time complexity of algorithm 1 is O(n), 
that is, algorithm 1 has linear time complexity. 

Algorithm 1  TMDS 

Input：task A with type of DS 

Output：VM is arranged for A 

Calculate Avgk; 

Set VM_T<VM, Time> = ∅; 

If (𝑡𝑒𝑝𝑡(𝐴) < Avgk ){ 

For each VM in local cloudlet { 

 Calculate 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) using (6); 

 If (𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) < 𝑡𝑚𝑎𝑥(𝐴))  

add <VM, 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM)> to VM_T; 

        } 

        if (VM_T is not null) 

 return VM with minimum delay in VM_T; 

} 

Calculate 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙(𝐴) using (7) and pc (A); 

If (𝑡𝑐
𝑡𝑜𝑡𝑎𝑙(𝐴) < 𝑡𝑚𝑎𝑥(𝐴)&& pc (A) > 0){ 

For each VM in all cloudlets { 

Calculate 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) using (6) or (12); 

 If (𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) < 𝑡𝑚𝑎𝑥(𝐴) && 𝑝𝑐𝑙 (VM) > pc (A))  

add <VM, 𝑝𝑐𝑙 (VM)> to VM_T; 

      } 

If (VM_T is not null)  

            return VM with minimum delay in VM_T; 

      else 

            return VM in cloud; 

} 

For each VM in all cloudlets { 

Calculate 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) using (6) or (12); 

If (𝑝𝑐𝑙 (VM) > 0)  

add <VM, 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM)> to VM_T; 

} 

If (VM_T is not null)  

      return VM with minimum delay in VM_T; 

else 

      return null; 

B. TMDT Algorithm 

For the DT task, the goal is to minimize the delay while 
pursuing the maximum profit. Considering that the delay of a 
task executed on the local cloudlet is usually less than that on 
the federated cloudlet or the cloud, in order to save the local 
cloudlet as much as possible for scheduling DS tasks, DT tasks 
can only be scheduled to the federated cloudlets with the lower 
quotation or the cloud. The criterion is profit maximization. 

The TMDT algorithm is used to schedule tasks of type DT, 
as shown in Algorithm 2. For a task A, the profit executed on 
the cloud, denoted as pc (A), is firstly calculated. If pc (A) is 
greater than 0, the VM that can execute A and have higher profit 
than pc (A) is found on all the federated cloudlets, and A is 
scheduled to the one with the maximum profit. If no such VM 
can be found, A is scheduled to the cloud. If pc (A) is not greater 
than 0, the VM that can execute A and have higher profit than 0 
is found on all the federated cloudlets. If such VMs exist, the 

one that can make the maximum profit is the best choice. 
Otherwise, scheduling A is abandoned. 

Algorithm 2 traverses all VMs at most two times, so its 

time complexity is O(n). 

Algorithm 2  TMDT 

Input：task A with type of DT 

Output：VM is arranged for A 

Set VM_P<VM, Profit> = ∅; 

Calculate pc (A); 

If (pc (A) > 0){ 

     For each VM in federated cloudlets  

          If (𝑝𝑐𝑙 (VM) > pc (A)) 

               add <VM, 𝑝𝑐𝑙 (VM)> to VM_P; 

      If (VM_P is not null) 

            Return VM with maximum profit in VM_P; 

      Else 

            Return VM in cloud; 

} 

Else { 

      For each VM in federated cloudlets  

          If (𝑝𝑐𝑙 (VM) > 0) 

               add <VM, 𝑝𝑐𝑙 (VM)> to VM_P; 

       If (VM_P is not null) 

            Return VM with maximum profit in VM_P; 

       Else  

            Return null; 

} 

V. RESULTS AND DISCUSSION 

A. Simulation Parameters Setting 

We considered the cloudlet federation scenario composed 
by three individual CLPs and a remote cloud. Each CLP 
deploys four servers within its managed area as its cloudlet. 
Each cloudlet server has 20-30 VMs, while the cloud has 2000 
VMs. Referring to Amazon, two types of VMs are supported. 
One with four Virtual CPUs (vCPU) and 16GB of memory, 
priced at $0.424, serves DT tasks; the other has two vCPUs and 
8GB of memory, priced at $0.212, serves DS tasks. The 
processing speed of a vCPU is 20000MIPS. The task type is 
randomly selected. The influence of distance between servers 
in a cloudlet is not considered. Other parameters are set as 
shown in Table I. 

B. Comparison with the Baseline Algorithm 

In order to verify the effect of the proposed method in terms 
of time delay and profit, the proposed method is compared and 
analyzed with DATM and CATM proposed in literature [25]. 
DATM is a delay-aware task migration algorithm that migrates 
tasks to the cloudlet that minimizes the latency of task 
execution. And CATM is a cost-aware task migration algorithm 
that migrates tasks to the cloudlet that minimizes the cost of 
task execution. Considering the obvious difference in delay 
expectation between DS and DT tasks, statistics are carried out 
for DS and DT tasks respectively when comparing the delay. 

Fig. 3 and Fig. 4 compare the average delay of DPTM, 
DATM and CATM with the number of tasks. Here, Fig. 3 
counts all DS tasks, while Fig. 4 counts all DT tasks. 
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TABLE I. PARAMETER SETTINGS 

Parameter Definition Value 

𝐷𝑐𝑙 Distance of user to local cloudlet 10-50m 

𝐷𝑐 Distance of user to the cloud 1-10km 

𝐷𝑓𝑐𝑙𝑚 Distance between FCLMs 200-500m 

𝑆𝑝 Propagation speed 3× 108m/s 

R Data transmission rate 3Mbps 

tept 
Expected delay of DS task 50-100ms 

Expected delay of DT task 200-400ms 

reqins 
DS task size 1000-2000MI 

DT task size 500-1000MI] 

Plow  
Minimum quotation for DS task $2 

Minimum quotation for DT task $1 

Pmax 
Maximum quotation for DS task $3 

Maximum quotation for DT task $2 

d Size of input data for task 0 .1-2MB 

𝑘𝑑𝑡 The parameter in (1) 0 .6 

𝛽 The parameters in (3) 3 

Fig. 3 shows that for DS tasks, DPTM achieves better 
average delay than DATM, while DATM outperforms CATM. 
Although DATM is optimized for delay, it does not distinguish 
between DS and DT tasks. DPTM tries to reserve local cloudlet 
resources for DS tasks. Therefore, for DS tasks, DPTM obtains 
a better average delay than DATM. 

For the DT task, the results in Fig. 4 show that DPTM 
achieves better average latency than CATM, but not as good as 
DATM. DPTM gives priority to DS tasks in terms of latency, 
thus, for DT tasks, it is not surprising that its average latency is 
lower than DATM. For CATP, it aims at minimizing task 
migration cost and does not focus on delay. Although DPTM 
mainly optimizes the profit for DT tasks, the profit is negatively 
correlated with the delay, so it optimizes the delay to a certain 
extent. 

Fig. 5 compares the profit with the number of tasks. From 
Fig. 5, it can be observed that DPTM achieves the best profit, 
followed by CATM and DATM. The quotation of the task is 
related to the time delay, while the lease price is related to the 
resource utilization and the quotation. Therefore, the profit of 
the task is related to both the time delay and the resource 
utilization. For CATM, although it aims to minimize the 
migration cost, the profit decreases due to the high average 
delay. For DATM, the latency is relatively small, which can 
increase profits. However, in order to pursue low latency, tasks 
are preferentially scheduled to the local cloudlet, resulting in 
high resource utilization of the cloudlet, which pushes up the 
task quotation and reduces the profit. 

In general, DPTM achieves better profit because it treats DT 
and DS tasks differently and differentiates the relationship 
between the quotation and the delay of these two types of tasks. 
For DS tasks, DPTM also achieves better average delay. 

 

Fig. 3. Average Delay of DS Tasks. 

 

Fig. 4. Average Delay of DT Tasks. 

 

Fig. 5. Average Profit of Tasks. 

C. The Necessity of the Federation 

To verify the necessity of considering federation, the 
federation scenario is compared with the non-federation 
scenario where cloudlet resources cannot be shared between 
different CLPs. 

Fig. 6 compares the average latency of the two scenarios. 
Where, Fed-DPTM-DS and Fed-DPTM-DT represent the 
average delay of all DS and DT tasks in the federated scenario, 
respectively. NonFed-DPTM-DS and NonFed-DPTM-DT 
indicate the average latency of all DS and DT tasks in the non-
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federated scenario, respectively. From Fig. 6, it can be found 
that the average delay of DS and DT tasks are both significantly 
reduced when considering federation. This is because in the 
federation scenario, different CLPs share cloudlet resources, 
which can reduce the impact of the difference in the number of 
tasks and the uneven distribution of cloudlet resources among 
CLPs. For DT tasks, the decrease effect of average delay is 
more obvious, because DPTM preferentially migrates DT tasks 
to the federated cloudlet. However, without considering 
federation, tasks tend to be migrated only to the cloud, resulting 
in higher latency. 

As can be seen from Fig. 7, considering federation can 
improve profits, and the more tasks there are, the more obvious 
the improvement effect will be. On the one hand, DPTH is 
specifically designed for the federation scenario. On the other 
hand, CLP federation supports cloudlet resources sharing, 
which reduces the average delay and reduces the probability of 
tasks being scheduled to the cloud or rejected. 

Fig. 8 compares the ratio of the number of rejected tasks to 
the total number of tasks in the two scenarios. As can be seen 
from Fig. 8, no matter which scenario, with the increase of the 
number of tasks, the situation that the task is rejected for 
scheduling occurs, and the proportion of rejected increases with 
the increase of the number of tasks. However, compared with 
the non-federation scenario, the proportion of tasks rejected for 
scheduling is much lower in the federation scenario. 

 

Fig. 6. Profits for the Two Scenarios. 

 

Fig. 7. Average Profit of Tasks. 

 

Fig. 8. Refuse Probability of Tasks. 

In general, considering the federation scenario, the average 
delay can be reduced, profits can be increased, and the 
probability of task rejection can be reduced. 

D. Impact of Authentication Delay 

During resource sharing, some authentication information 
may need to be exchanged between CLPs, which may lead to 
authentication delay. Fig. 9 and Fig. 10 analyze the influence of 
authentication delay on the average delay of DS and DT tasks, 
respectively. For DS tasks, the results in Fig. 9 show that when 
the number of tasks is small (no more than 100), the 
authentication delay has almost no effect on the average delay, 
because almost all DS tasks are scheduled to the local cloudlet. 
However, when the number of tasks is large, the average delay 
of DS tasks increases with the increase of authentication delay, 
because more and more tasks have to be scheduled to the 
federated cloudlet. 

As shown in Fig. 10, the average delay of DT tasks increases 
with the increase of authentication delay, even if the number of 
tasks is small, because DT tasks are preferentially deployed on 
the federated cloudlet. Different from DS tasks, authentication 
delay is not sensitive to the number of DT tasks. 

 

Fig. 9. Impact of Authentication Delay to DS Tasks’ Delay. 
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Fig. 10. Impact of Authentication Delay to DT Tasks’ Delay. 

Fig. 11 analyzes the impact of authentication delay on 
profit. Fig. 11 shows that the profit decreases as the 
authentication delay increases. And the longer the delay, the 
faster the profit decreases. This is because for a DT task, when 
the delay exceeds the threshold, the quotation is linearly 
reduced. And for DS tasks, the quotation is exponentially 
reduced when the delay exceeds the threshold. 

In a word, the authentication delay can affect the task delay 
and profit, so the authentication delay should be minimized. 

 

Fig. 11. Impact of Authentication Delay to Profit. 

E. Discussion 

CLP can share resources with each other in the form of 
alliances, to solve the problem of resource limitation and the 
high cost of resource expansion and benefit from the 
heterogeneity of resource prices provided by different CLPS in 
alliances. CLP has more options for task migration, resulting in 
higher benefits. As far as we know, most of the existing studies 
consider horizontal edge federation or cloud federation, and 
there are few researches on task migration for the cloudlet 
federation. Meanwhile, few types of research on task migration 
for the cloudlet federation combine the powerful computing 
power of cloud center. For this reason, because of the 
shortcomings of existing research, this paper considers a 
cloudlet federation scenario integrating CLP and cloud center 
computing resources. At the same time, the cost of CLP and 
task processing delay are considered in the process of task 
migration, and the authentication delay is considered in the 
delay calculation. 

As shown in Fig. 5 and Fig. 6, the DPTM algorithm 
proposed in this study balances the needs of users and CLP. The 
algorithm outperforms the baseline approach in terms of latency 
and profits of CLP and helps to satisfy more requests. Initially, 
DPTM divides tasks according to their delay sensitivity. Next, 
DPTM takes the delay minimization as the optimization goal in 
the DS task migration and ensures the task delay requirement 
in the DT task migration. However, the specific calculation 
process of authentication delay between different CLP 
resources during task migration and the factors that may affect 
the authentication delay need to be explored next. At the same 
time, some users may move during task migration, which is 
another factor to be considered. 

VI. CONCLUSIONS AND FUTURE WORK 

Cloudlet federation can effectively reduce the deployment 
and management cost of cloudlet by sharing resources among 
CLPs. However, the differences in the number of users and 
resources among CLPs bring new challenges to task migration. 
When studying the task migration strategy for the cloudlet 
federation, two types of tasks, DS and DT, are considered, and 
the relationship functions between user quotation and delay of 
these two types of tasks are designed. A task migration 
algorithm, called DPTM, which takes into account both delay 
and profit, is proposed. The DPTM algorithm consists of two 
sub-algorithms: TMDS and TMDT. The former is used to 
schedule DS tasks with delay as the main optimization 
objective. The latter is used to schedule DT tasks with profit as 
the primary optimization objective. Simulation results 
demonstrate the effectiveness of the proposed method. 

In the future, we plan to design a centralized task migration 
strategy. In addition, the secure access problem when resources 
are shared between different CLPs is further discussed. 
Meanwhile, we intend to design a more intelligent task 
scheduling algorithm based on Artificial Intelligence (AI). 
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