
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

420 | P a g e

www.ijacsa.thesai.org

Delay-Aware and Profit-Maximizing Task Migration

for the Cloudlet Federation

Hengzhou Ye, Junhao Guo, Xinxiao Li*

Guangxi Key Laboratory of Embedded Technology and Intelligent Systems

Guilin University of Technology, Guilin, China

Abstract—As the result of Open Edge Computing (OEC)

project, cloudlet embodies the middle layer of edge computing

architecture. Due to the close deployment to the user side,

responding to user requests through cloudlet can reduce delay,

improve security, and reduce bandwidth occupancy. In order to

improve the quality of user experience, more and more cloudlets

need to be deployed, which makes the deployment and

management costs of Clouldlet service Providers (CLP)

significantly increased. Therefore, the cloudlet federation appears

as a new paradigm that can reduce the cost of cloudlet deployment

and management by sharing cloudlet resources among CLPs.

Facing the cloudlet federation scenario, more attention still needs

to be paid to the heterogeneity of resource prices, the balance of

benefits among CLPs, and the more complex delay computation

when exploring task migration strategies. For delay-sensitive and

delay-tolerance tasks, a delay-aware and profit-maximizing task

migration strategy is proposed considering the relationship

between the delay and the quotation of different tasks, as well as

the dynamic pricing mechanism when resources are shared among

CLPs. Experimental results show that the proposed algorithm

outperforms the baseline algorithm in terms of revenue and

response delay.

Keywords—Cloudlet federation; task migration; delay-aware;

dynamic pricing; profit-maximizing; edge computing

I. INTRODUCTION

With the development of intelligent Mobile Devices (MD),
a large number of computation-intensive and delay-sensitive
mobile applications keep emerging [1]. To address the resource
constraints of mobile devices, tasks are offloaded to remote
cloud centers in traditional cloud computing [2][3], but it is
followed by the problem of high response delay [4]. This makes
it difficult for requirements of delay-sensitive task to be
satisfied [5].

To overcome these problems, Mobile Edge Computing
(MEC) [6] is proposed and regarded as a promising technology
by developing servers at the edge of networks. The proximity
of the MEC to the user allows the user to access and use
resources with lower response latency. Cloudlets are small
cloud at the edge of network and typically deployed in a
distributed manner to provide storage and computing resource
to MD.

Compared to existing cloud computing, MEC still suffers
from constrained resources. A Cloudlet service Provider (CLP)
has to deploy more and more proprietary edge devices to meet
the needs of its users, resulting in increasing costs to deploy and
manage edge devices. Therefore, [7] proposes the edge

federation architecture, which improves the flexibility of
resource utilization and reduces the deployment and
management costs by seamlessly integrating the edge resources
of each CLP. When cloudlets act as edge devices, a cloudlet
federation architecture is formed.

Since MD is not uniformly distributed in edge computing
systems, some clouds are heavily loaded while others are lightly
loaded. Task migration is the principal method used to resolve
load imbalance between cloudlets [8-11]. Although many
studies have been conducted on cloudlet-based load migration
strategies, they have one or more shortcomings: they do not
take into account the heterogeneity of resource prices,
authentication delays between cloudlet resources of different
CLPs, or the impact of service delays on task quotes.

This paper focuses on the task migration problem in the
cloudlet federation scenario. Two types of user requests are
considered: delay-sensitive and delay-tolerant, and their
quotation delay curves are designed respectively. Considering
the heterogeneity of resource prices among CLPs, a delay-
aware and profit-maximizing task migration strategy is
proposed. Our main contributions are as follows:

• For delay-sensitive and delay-tolerant tasks, a delay
model and a price model are constructed by taking into
account the differences in resource prices of different
CLPs.

• A distributed Delay-aware and Profit-maximizing Task
Migration (DPTM) algorithm is designed to schedule
tasks, which tries to minimize latency and maximize
profit.

• A series of experiments are conducted to verify the
necessity of considering the cloudlet federation and the
advantages of our method in terms of revenue and
response delay.

The rest of this article is organized as follows. Section II
demonstrates the related work on the task migration in different
scenarios. Section III introduces the system model. In Section
IV, a task scheduling algorithm considering both profit and
delay is proposed. In Section V, we conduct the extensive
experiments to evaluate the proposed method and gives the
discussion. Finally, Section VI concludes this paper and gives
the future works.

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

421 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

We review the related works about task migration and
schedule in the multi-cloudlet scenario and the edge federation
scenario respectively.

A. Task Migration in Multi-cloudlets Scenario

The existing works about task migration in the multi-
cloudlets scenarios focus on minimizing delay and energy
consumption. The authors in [12] propose an application-aware
cloudlet adaption and VM selection framework has been
devised for balancing the load in a multi-cloudlet environment.
The authors in [13] propose a novel Multi-layer Latency Aware
Workload Assignment Strategy (MLAWAS) to allocate the
workload of E-Transport applications into optimal computing
nodes. In [14] user mobility and task deadline are taken into
account when task migration is optimized. Three variants of this
problem are analyzed, and a group migration algorithm with
known user trajectories is designed. In [15], a heuristic Task
Migration Computing Offloading (TMCO) scheme is proposed
for the challenges brought by complex network environment
and end-user mobility, which can dynamically select the
appropriate location to offload tasks for mobile users within the
deadline. In [16], for collaborative vehicle edge computing
group environment, a computational task migration problem is
defined to balance the load and minimize the migration cost,
and reinforcement learning algorithm is adopted to solve this
problem.

The above researches are based on multi-cloudlet scenarios
to optimize the delay and energy consumption of task
migrating. However, the traditional multi-cloudlet scenario has
the problem of limited resources, and a smaller number of
resources are available for task migration. Different from the
multi-cloudlet scenario, in the cloudlet federation, the cloudlet
resource prices of different CLPs may be different, there are
more options for task migration, and the delay computation is
more complex.

B. Task Migration in Edge Federation Scenario

Some studies have explored task migration strategies in the
context of edge federation or cloudlet federation. The authors
in [17] design a task migration strategy for multiple edge
servers in mobile networks to minimize the overall service time
and develop an intelligent task migration scheme using deep
reinforcement learning and Q-learning technology. In [18], the
authors propose a latency minimization model to provide higher
efficient service provisioning in horizontal edge federation and
propose a two-phase iterative approach, which alternately
determines optimal task dispatching and computation resource
allocation. In order to simultaneously meet the SLA
requirements of IoT (Internet of Thing) devices and edge
service providers, the authors in [19] design an intelligent
request service provisioning system based on reinforcement
learning as part of a smart edge orchestrator in the edge
federation. Considering the delay and capacity constraints, [20]
proposes an optimization model to minimize the total energy
cost and the energy efficient offloading ratio of edge nodes.

The above studies either ignore the role of the remote cloud,
or do not consider the heterogeneity of resource prices, or do
not consider the impact of task delay on user quotation. In our

work, tasks can be migrated to the CLP's own cloudlet, the
cloudlet of federate CLP, or the remote cloud. We consider two
different types of tasks, time-sensitive and time-tolerance, and
consider that their delays have different effects on user
quotation. We attempt to optimize the profit and delay of the
whole federation.

III. SYSTEM MODEL

In this section, we keep our focus on the cloudlet federation
framework, communication and computation models.

A. Cloudlet Federation Framework

 Compared with the cloudlet, the cloud usually has
sufficient resources and is quite far away from the user. For
simplicity, the cloud platform owned by each CLP is not
distinguished. Therefore, as shown in Fig. 1, we consider that a
cloudlet federation contains a cloud and several CLPs. Each
CLP has its own cloudlet servers, and each has a set of users
that need to be served. The resource of a cloudlet server is
provided in the form of a virtual machine (VM) instance. Let's
assume that a VM instance performs only one task at a time.

We assume each CLP has a server as the Federated Cloudlet
Manager (FCLM) to provide service and resource interactions.
The status of the cloudlet servers is collected by the FCLM,
such as available capacity, resource utilization, and cost.
Meanwhile, CLPs can communicate with each other through
FCLMs and exchange their collected information. When a CLP
receives a task from a terminal user, it decides where to offload
the task. This could be its own cloudlet, one of the federated
cloudlets, or the cloud.

B. Task Requests from Terminal Users

Similar to works in mobile cloud computing [21] and
mobile edge computing [22], the quasi-static scenario is
considered, where the mobile users remain unchanged during
migration. To simplify, we use task or request instead of task
request without causing confusion.

Two types of task requests are considered: delay tolerance
(DT) and delay sensitive (DS). For a DS task, CLP should
minimize its delay while a certain amount of revenue is
guaranteed. For a DT task, the priority is profit maximization.

Cloudlet Federation

Remote Cloud

CLP1

FCLM1

CLP2

FCLM2
CLP3

FCLM3

...

...

...

Users

Users

Users

Tasks
...

tasks offloaded
to cloud

tasks offloaded
to local cloudlet

tasks offloaded to
federated loudlet

cloudlet server

Fig. 1. Cloudlet Federation Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

422 | P a g e

www.ijacsa.thesai.org

Regardless of the type of task, we believe that the response
delay will affect the user's willingness to pay. In general, the
shorter the delay, the higher the user is willing to pay.

A seven-tuple A = <d, reqins, 𝛼, tept, tmax, Pmax, Plow> is used
to describe a task where, d denotes the size of input data, reqins
denotes the Million Instructions (MIs) required. 𝛼 is a 0-1
variable that describes the type of tasks. When 𝛼 is 0, the type
of the task is DT, and when 𝛼 is 1, the type of the task is DS.
We assume a task has an expected delay tept and a tolerable
maximum latency tmax. Plow and Pmax represent the minimum and
maximum price a user is willing to pay for a task, respectively.

For a DT task, if it can be completed within the expected
time, marked as tept, the user will be satisfied and willing to pay
in full, marked as Pmax. If tept is exceeded, but the deadline,
marked as tmax, is not exceeded, the willing fee of the user will
gradually decrease, and eventually reach a balance value,
marked as Plow, between the CLP and the user. Thus, for a DT
task, the relationship between the delay t and the user's
quotation Q(t) can be shown in (1).

𝑄(𝑡) = {

𝑃𝑚𝑎𝑥, 𝑡 < 𝑇𝑒𝑝𝑡

𝑘𝑑𝑡 ∙ (𝑇𝑚𝑎𝑥 − 𝑡) + 𝑃𝑙𝑜𝑤, 𝑇𝑒𝑝𝑡 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥

𝑃𝑙𝑜𝑤 , 𝑡 > 𝑇𝑚𝑎𝑥

 (1)

Where, 𝑘𝑑𝑡 is determined by (2).

𝑘𝑑𝑡 =
𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑒𝑝𝑡 (2)

For DS tasks, users will be willing to pay in full if they can
be completed within the expected time. If the delay exceeds the
user's expectation, the user's willingness to pay will decrease
sharply. If the delay exceeds the deadline, the user will be
unwilling to pay, or only willing to pay at a very low price. We
chose the latter, meaning that when the deadline is exceeded,
the user will be willing to offer only a very low price, which is
usually close to or even lower than the CLP cost. We design (3)
to describe the relationship between the delay t of a DS task and
the user's quotation Q(t).

𝑄(𝑡) = {

𝑃𝑚𝑎𝑥, 𝑡 < 𝑇𝑒𝑝𝑡

𝑃𝑚𝑎𝑥((1 − 𝛼(𝑡 − 𝑇𝑒𝑝𝑡))𝛽 , 𝑇𝑒𝑝𝑡 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥

𝑃𝑙𝑜𝑤 , 𝑡 > 𝑇𝑚𝑎𝑥

 (3)

Where, 𝛼 and β are adjustable parameters, and their values
should ensure that the curve described by (3) is continuous on
the interval [𝑇𝑒𝑝𝑡 , 𝑇𝑚𝑎𝑥]. 𝛼 indicates the delay sensitivity of the
user. The larger the 𝛼, the higher is the sensitivity. 𝛽 reflects
the descent gradient of user willingness. The larger the 𝛽, the
larger is the gradient.

Fig. 2(a) and Fig. 2(b) depict the curves of delay versus
quotation for DT and DS tasks, respectively.

C. Delay Model

When the FCLM of a CLP receives a task, the FCLM may
schedule it to the local cloudlet, or to the federated cloudlet, or
to the cloud. In general, the amount of data output after the task
execution is much smaller than the amount of data input before
the task execution. Similar to [23] and [24], the transmission
time required for the output information of a task to be returned
to the user is not considered. Meanwhile, the queuing delay is

negligible when the federated resources are sufficient to handle
user tasks.

1) Local cloudlet: When a task is scheduled to the local

cloudlet, its delay can be divided into two parts. The first part

includes transmission delay and propagation delay, denoted as

𝑡𝑐𝑙
1 , which can be determined by (4).

𝑡𝑐𝑙
1 =

𝑑

𝑅
+

𝐷𝑐𝑙

𝑆𝑝 (4)

Where d is the amount of data to be transmitted, R is the
data transmission rate, 𝐷𝑐𝑙 is the distance of the selected local
cloudlet from the user, and 𝑆𝑃 is the propagation rate. Assume
that the value of 𝑆𝑃 is the same for all channels and the value
of R is the same for all devices.

The second part is the time required for the task execution
on the selected cloudlet, denoted as 𝑡𝑐𝑙

2 , which is determined by
(5).

𝑡𝑐𝑙
2 =

𝑟𝑒𝑞𝑖𝑛𝑠

𝐶𝑃𝑈𝑝𝑟𝑜𝑐∙𝑁𝑐𝑝𝑢
 (5)

Where 𝑟𝑒𝑞𝑖𝑛𝑠is the MIs required to execute the task,
𝐶𝑃𝑈𝑝𝑟𝑜𝑐 is the Million Instructions per Second (MIPs) for the

CPU provided by the selected cloudlet, and 𝑁𝑐𝑝𝑢 is the number

of CPUs configured by the selected cloudlet.

Thus, the total delay, denoted as 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙, for a task scheduled

to a local cloudlet can be calculated by (6).

 (6)

2) Remote cloud. When a task is scheduled to the remote

cloud, its delay calculation is very similar to that when it is

scheduled to a local cloudlet. However, since the user is usually

far away from the cloud, the delay of the task will be huge.

The total delay, denoted as 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙, for a task scheduled to the

remote cloud can be calculated by (6).

𝑡𝑐
𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑐

1 + 𝑡𝑐
2 =

𝑑

𝑅
+

𝐷𝑐

𝑆𝑝 +
𝑟𝑒𝑞𝑖𝑛𝑠

𝐶𝑃𝑈𝑝𝑟𝑜𝑐∙𝑁𝑐𝑝𝑢
 (7)

Where, 𝐷𝑐 is the distance of the cloud from the user,
𝐶𝑃𝑈𝑝𝑟𝑜𝑐 is the MIPs for the CPU provided by the cloud, and

𝑁𝑐𝑝𝑢 is the number of CPUs configured by the cloud.

3) Federated cloudlet. If a task is assigned to the federated

cloudlet, its delay includes the following parts: authentication

delay between alliances, task offloading delay from user to

FCLM, task offloading delay from FCLM to the selected

cloudlet, and task execution delay.

Tept Tmax0

Plow

P
max

t

Q(t)

Tept Tmax0

Plow

Pmax

t

Q(t)

(a) For DT task . (b) For DS task.

Fig. 2. Curves of Delay Versus Quotation.

1 2total

cl cl clt t t= +

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

423 | P a g e

www.ijacsa.thesai.org

When a task is transferred from the FCLM receiving it to
the FCLM of a federation, some authentication information
often needs to be exchanged between FCLMs, so as to

introduce authentication delay, marked as 𝑡𝑓𝑒𝑑
1 , which is

considered to be a constant.

To avoid CLP user information being detected by the
federated CLP, tasks are delivered first to the FCLM that
receives them and then to the selected Cloudlet. The delay of

offloading the task from the user to the FCLM, denoted as 𝑡𝑓𝑒𝑑
2 ,

can be calculated by (8).

𝑡𝑓𝑒𝑑
2 =

𝑑

𝑅
+

𝐷1

𝑆𝑝 (8)

Where 𝐷1 represents the distance between the user and the
FCLM associated with it.

The delay of offloading tasks from FCLM to the selected

cloudlet is denoted as 𝑡𝑓𝑒𝑑
3 , which can be calculated by (9).

𝑡𝑓𝑒𝑑
3 =

𝑑

𝑅
+

𝐷2

𝑆𝑝 (9)

Here, 𝐷2 represents the distance between the FCLM
associated with the user and the selected cloudlet.

The execution delay of the task, denoted as 𝑡𝑓𝑒𝑑
4 , can be

determined by (10).

𝑡𝑓𝑒𝑑
4 =

𝑟𝑒𝑞𝑖𝑛𝑠

𝐶𝑃𝑈𝑝𝑟𝑜𝑐∙𝑁𝑐𝑝𝑢𝑡
 (10)

Where，𝐶𝑃𝑈𝑝𝑟𝑜𝑐 is the MIPs for the CPU provided by the

selected cloudlet, and 𝑁𝑐𝑝𝑢 is the number of CPUs configured

by the selected cloudlet. 𝐶𝑃𝑈𝑝𝑟𝑜𝑐 and 𝑁𝑐𝑝𝑢 in (5), (7) and (10)

are not symbolically distinguished. In fact, they correspond to
different computing resources and take different values.

Thus, the total delay, denoted as 𝑡𝑓𝑒𝑑
𝑡𝑜𝑡𝑎𝑙, can be calculated by

(11).

𝑡𝑓𝑒𝑑
𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑓𝑒𝑑

1 + 𝑡𝑓𝑒𝑑
2 + 𝑡𝑓𝑒𝑑

3 + 𝑡𝑓𝑒𝑑
4 (11)

D. CLP Resource Pricing Model

When a CLP needs to rent the cloudlet resources of another
CLP, the leasing price of the resources needs to be determined.
The consistent pricing strategy is adopted, and the leasing price
of resources is considered to be related to the user's quotation,
resource cost and resource utilization of CLP.

Assuming that the user quotation of task A is QuoteA, the
cost of resources needed to execute A is CostA, and the total
cloudlet resources and residual resources owned by some CLP
are TotalCLP and ResCLP respectively, then the cost of CLP
renting the resources required by task A, denoted as 𝑅𝑒𝑛𝑡𝐴

𝐶𝐿𝑃,
can be determined by (12).

𝑅𝑒𝑛𝑡𝐴
𝐶𝐿𝑃 = 𝐶𝑜𝑠𝑡𝐴 +

𝑇𝑜𝑡𝑎𝑙𝐶𝐿𝑃−𝑅𝑒𝑠𝐶𝐿𝑃

𝑇𝑜𝑡𝑎𝑙𝐶𝐿𝑃
(𝑄𝑢𝑜𝑡𝑒𝐴 − 𝐶𝑜𝑠𝑡𝐴) (12)

The intuition of (12) is as follows: the rental price of
resources should be higher than that of the cost. The net profit
between rental price and cost should be positively correlated
with the profit of the lease and the resource utilization of the
lessor accordingly. The willingness of renting resource is

growth with the user’s quoted price, and as the increasing of the
resource utilization, the tenant willingness of renting is
decreasing.

When a task is executed on the cloud, its profit is the
difference between the user's quote and the cost of the cloud
resource. When executed on the local cloudlet, its profit is the
difference between the user's quote and the local cloudlet
resource cost. When executed on the federated cloudlet, its
profit is the difference between the user's quote and the rental
resource price.

IV. PROPOSED ALGORITHM

Based on the distributed processing idea and greedy
strategy, for each CLP, when its FCLM receives a task, we
design a Delay-aware and Profit-maximizing Task Migration
(DPTM) algorithm to schedule the task. DPTM tries to
maximize the profit of CLP while guaranteeing the user delay
according to the task type. It first determines the type of tasks.
For DS tasks, a scheduling algorithm called Task Migration for
DS (TMDS) is proposed. For the DT task, an algorithm called
Task Migration for DT (TMDT) is proposed.

A. TMDS Algorithm

For DS task, the goal is to minimize delay on the basis of
ensuring profit. For this purpose, locally arrived DS tasks are
divided into High Delay Sensitive (HDS) and Low Delay
Sensitive (LDS) tasks according to their delay requirements.
For a HDS task, local scheduling is preferred. If it cannot be
scheduled locally, it is processed as an LDS task. For a LDS
task, if the cloud has the highest profit and can guarantee the
delay, the cloud is regarded as the best scheduling. Otherwise,
on the premise of ensuring profit, the cloudlet with the
minimum delay should be sought.

The TMDS algorithm for scheduling DS tasks is shown in
Algorithm 1. In Algorithm 1, Avgk records the average 𝑡𝑒𝑝𝑡 of
the last k DS tasks, 𝑡𝑒𝑝𝑡(𝐴) and 𝑡𝑚𝑎𝑥(𝐴) represent the 𝑡𝑒𝑝𝑡 and

𝑡𝑚𝑎𝑥 of task A respectively, 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) represents the delay of

A when executed on the VM of a cloudlet, 𝑝𝑐𝑙 (VM) represents
the profit when A is executed on the VM of a cloudlet, and pc
(A) represents the profit when A is executed on the cloud. A task
is identified as HDS when its 𝑡𝑒𝑝𝑡 is less than Avgk. In this case,
firstly, the VM that can execute A and delay less than 𝑡𝑚𝑎𝑥(𝐴)
are searched on the local cloudlet. Otherwise, find all VMs that
can execute A with latency less than 𝑡𝑚𝑎𝑥(𝐴) and schedule A to
the one with the least latency. If no suitable VM is found after
the above two steps, A will be treated as an LDS type.

For a task A identified as a LDS, the latency and profit of A
when executed on the cloud are calculated, denoted as 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙(𝐴)

and pc (A), respectively. If 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙(𝐴) is less than 𝑡𝑚𝑎𝑥(𝐴) and

pc (A) is greater than 0, the VM with executable A, delay less
than 𝑡𝑚𝑎𝑥(𝐴), and profit greater than pc (A) is sought on the
cloudlets of all CLPs. If one or more VMs can be found, the
VM with the minimum latency is selected for A. Otherwise, A
is scheduled to the cloud.

If 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙(𝐴) is not less than 𝑡𝑚𝑎𝑥(𝐴) or pc (A) is not greater

than 0, the VM that can execute A and the profit is greater than
0 is searched on the cloudlets of all CLPs, and the one with

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

424 | P a g e

www.ijacsa.thesai.org

minimum delay is the best for A. Otherwise, A will be
abandoned.

In Algorithm 1, a maximum of three scheduling attempts is
required on each VM for a task. If n is used to represent the
number of VMs, the time complexity of algorithm 1 is O(n),
that is, algorithm 1 has linear time complexity.

Algorithm 1 TMDS

Input：task A with type of DS

Output：VM is arranged for A

Calculate Avgk;

Set VM_T<VM, Time> = ∅;

If (𝑡𝑒𝑝𝑡(𝐴) < Avgk){

For each VM in local cloudlet {

 Calculate 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) using (6);

 If (𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) < 𝑡𝑚𝑎𝑥(𝐴))

add <VM, 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM)> to VM_T;

 }

 if (VM_T is not null)

 return VM with minimum delay in VM_T;

}

Calculate 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙(𝐴) using (7) and pc (A);

If (𝑡𝑐
𝑡𝑜𝑡𝑎𝑙(𝐴) < 𝑡𝑚𝑎𝑥(𝐴)&& pc (A) > 0){

For each VM in all cloudlets {

Calculate 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) using (6) or (12);

 If (𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) < 𝑡𝑚𝑎𝑥(𝐴) && 𝑝𝑐𝑙 (VM) > pc (A))

add <VM, 𝑝𝑐𝑙 (VM)> to VM_T;

 }

If (VM_T is not null)

 return VM with minimum delay in VM_T;

 else

 return VM in cloud;

}

For each VM in all cloudlets {

Calculate 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM) using (6) or (12);

If (𝑝𝑐𝑙 (VM) > 0)

add <VM, 𝑡𝑐𝑙
𝑡𝑜𝑡𝑎𝑙 (VM)> to VM_T;

}

If (VM_T is not null)

 return VM with minimum delay in VM_T;

else

 return null;

B. TMDT Algorithm

For the DT task, the goal is to minimize the delay while
pursuing the maximum profit. Considering that the delay of a
task executed on the local cloudlet is usually less than that on
the federated cloudlet or the cloud, in order to save the local
cloudlet as much as possible for scheduling DS tasks, DT tasks
can only be scheduled to the federated cloudlets with the lower
quotation or the cloud. The criterion is profit maximization.

The TMDT algorithm is used to schedule tasks of type DT,
as shown in Algorithm 2. For a task A, the profit executed on
the cloud, denoted as pc (A), is firstly calculated. If pc (A) is
greater than 0, the VM that can execute A and have higher profit
than pc (A) is found on all the federated cloudlets, and A is
scheduled to the one with the maximum profit. If no such VM
can be found, A is scheduled to the cloud. If pc (A) is not greater
than 0, the VM that can execute A and have higher profit than 0
is found on all the federated cloudlets. If such VMs exist, the

one that can make the maximum profit is the best choice.
Otherwise, scheduling A is abandoned.

Algorithm 2 traverses all VMs at most two times, so its

time complexity is O(n).

Algorithm 2 TMDT

Input：task A with type of DT

Output：VM is arranged for A

Set VM_P<VM, Profit> = ∅;

Calculate pc (A);

If (pc (A) > 0){

 For each VM in federated cloudlets

 If (𝑝𝑐𝑙 (VM) > pc (A))

 add <VM, 𝑝𝑐𝑙 (VM)> to VM_P;

 If (VM_P is not null)

 Return VM with maximum profit in VM_P;

 Else

 Return VM in cloud;

}

Else {

 For each VM in federated cloudlets

 If (𝑝𝑐𝑙 (VM) > 0)

 add <VM, 𝑝𝑐𝑙 (VM)> to VM_P;

 If (VM_P is not null)

 Return VM with maximum profit in VM_P;

 Else

 Return null;

}

V. RESULTS AND DISCUSSION

A. Simulation Parameters Setting

We considered the cloudlet federation scenario composed
by three individual CLPs and a remote cloud. Each CLP
deploys four servers within its managed area as its cloudlet.
Each cloudlet server has 20-30 VMs, while the cloud has 2000
VMs. Referring to Amazon, two types of VMs are supported.
One with four Virtual CPUs (vCPU) and 16GB of memory,
priced at $0.424, serves DT tasks; the other has two vCPUs and
8GB of memory, priced at $0.212, serves DS tasks. The
processing speed of a vCPU is 20000MIPS. The task type is
randomly selected. The influence of distance between servers
in a cloudlet is not considered. Other parameters are set as
shown in Table I.

B. Comparison with the Baseline Algorithm

In order to verify the effect of the proposed method in terms
of time delay and profit, the proposed method is compared and
analyzed with DATM and CATM proposed in literature [25].
DATM is a delay-aware task migration algorithm that migrates
tasks to the cloudlet that minimizes the latency of task
execution. And CATM is a cost-aware task migration algorithm
that migrates tasks to the cloudlet that minimizes the cost of
task execution. Considering the obvious difference in delay
expectation between DS and DT tasks, statistics are carried out
for DS and DT tasks respectively when comparing the delay.

Fig. 3 and Fig. 4 compare the average delay of DPTM,
DATM and CATM with the number of tasks. Here, Fig. 3
counts all DS tasks, while Fig. 4 counts all DT tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

425 | P a g e

www.ijacsa.thesai.org

TABLE I. PARAMETER SETTINGS

Parameter Definition Value

𝐷𝑐𝑙 Distance of user to local cloudlet 10-50m

𝐷𝑐 Distance of user to the cloud 1-10km

𝐷𝑓𝑐𝑙𝑚 Distance between FCLMs 200-500m

𝑆𝑝 Propagation speed 3× 108m/s

R Data transmission rate 3Mbps

tept
Expected delay of DS task 50-100ms

Expected delay of DT task 200-400ms

reqins
DS task size 1000-2000MI

DT task size 500-1000MI]

Plow
Minimum quotation for DS task $2

Minimum quotation for DT task $1

Pmax
Maximum quotation for DS task $3

Maximum quotation for DT task $2

d Size of input data for task 0 .1-2MB

𝑘𝑑𝑡 The parameter in (1) 0 .6

𝛽 The parameters in (3) 3

Fig. 3 shows that for DS tasks, DPTM achieves better
average delay than DATM, while DATM outperforms CATM.
Although DATM is optimized for delay, it does not distinguish
between DS and DT tasks. DPTM tries to reserve local cloudlet
resources for DS tasks. Therefore, for DS tasks, DPTM obtains
a better average delay than DATM.

For the DT task, the results in Fig. 4 show that DPTM
achieves better average latency than CATM, but not as good as
DATM. DPTM gives priority to DS tasks in terms of latency,
thus, for DT tasks, it is not surprising that its average latency is
lower than DATM. For CATP, it aims at minimizing task
migration cost and does not focus on delay. Although DPTM
mainly optimizes the profit for DT tasks, the profit is negatively
correlated with the delay, so it optimizes the delay to a certain
extent.

Fig. 5 compares the profit with the number of tasks. From
Fig. 5, it can be observed that DPTM achieves the best profit,
followed by CATM and DATM. The quotation of the task is
related to the time delay, while the lease price is related to the
resource utilization and the quotation. Therefore, the profit of
the task is related to both the time delay and the resource
utilization. For CATM, although it aims to minimize the
migration cost, the profit decreases due to the high average
delay. For DATM, the latency is relatively small, which can
increase profits. However, in order to pursue low latency, tasks
are preferentially scheduled to the local cloudlet, resulting in
high resource utilization of the cloudlet, which pushes up the
task quotation and reduces the profit.

In general, DPTM achieves better profit because it treats DT
and DS tasks differently and differentiates the relationship
between the quotation and the delay of these two types of tasks.
For DS tasks, DPTM also achieves better average delay.

Fig. 3. Average Delay of DS Tasks.

Fig. 4. Average Delay of DT Tasks.

Fig. 5. Average Profit of Tasks.

C. The Necessity of the Federation

To verify the necessity of considering federation, the
federation scenario is compared with the non-federation
scenario where cloudlet resources cannot be shared between
different CLPs.

Fig. 6 compares the average latency of the two scenarios.
Where, Fed-DPTM-DS and Fed-DPTM-DT represent the
average delay of all DS and DT tasks in the federated scenario,
respectively. NonFed-DPTM-DS and NonFed-DPTM-DT
indicate the average latency of all DS and DT tasks in the non-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

426 | P a g e

www.ijacsa.thesai.org

federated scenario, respectively. From Fig. 6, it can be found
that the average delay of DS and DT tasks are both significantly
reduced when considering federation. This is because in the
federation scenario, different CLPs share cloudlet resources,
which can reduce the impact of the difference in the number of
tasks and the uneven distribution of cloudlet resources among
CLPs. For DT tasks, the decrease effect of average delay is
more obvious, because DPTM preferentially migrates DT tasks
to the federated cloudlet. However, without considering
federation, tasks tend to be migrated only to the cloud, resulting
in higher latency.

As can be seen from Fig. 7, considering federation can
improve profits, and the more tasks there are, the more obvious
the improvement effect will be. On the one hand, DPTH is
specifically designed for the federation scenario. On the other
hand, CLP federation supports cloudlet resources sharing,
which reduces the average delay and reduces the probability of
tasks being scheduled to the cloud or rejected.

Fig. 8 compares the ratio of the number of rejected tasks to
the total number of tasks in the two scenarios. As can be seen
from Fig. 8, no matter which scenario, with the increase of the
number of tasks, the situation that the task is rejected for
scheduling occurs, and the proportion of rejected increases with
the increase of the number of tasks. However, compared with
the non-federation scenario, the proportion of tasks rejected for
scheduling is much lower in the federation scenario.

Fig. 6. Profits for the Two Scenarios.

Fig. 7. Average Profit of Tasks.

Fig. 8. Refuse Probability of Tasks.

In general, considering the federation scenario, the average
delay can be reduced, profits can be increased, and the
probability of task rejection can be reduced.

D. Impact of Authentication Delay

During resource sharing, some authentication information
may need to be exchanged between CLPs, which may lead to
authentication delay. Fig. 9 and Fig. 10 analyze the influence of
authentication delay on the average delay of DS and DT tasks,
respectively. For DS tasks, the results in Fig. 9 show that when
the number of tasks is small (no more than 100), the
authentication delay has almost no effect on the average delay,
because almost all DS tasks are scheduled to the local cloudlet.
However, when the number of tasks is large, the average delay
of DS tasks increases with the increase of authentication delay,
because more and more tasks have to be scheduled to the
federated cloudlet.

As shown in Fig. 10, the average delay of DT tasks increases
with the increase of authentication delay, even if the number of
tasks is small, because DT tasks are preferentially deployed on
the federated cloudlet. Different from DS tasks, authentication
delay is not sensitive to the number of DT tasks.

Fig. 9. Impact of Authentication Delay to DS Tasks’ Delay.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

427 | P a g e

www.ijacsa.thesai.org

Fig. 10. Impact of Authentication Delay to DT Tasks’ Delay.

Fig. 11 analyzes the impact of authentication delay on
profit. Fig. 11 shows that the profit decreases as the
authentication delay increases. And the longer the delay, the
faster the profit decreases. This is because for a DT task, when
the delay exceeds the threshold, the quotation is linearly
reduced. And for DS tasks, the quotation is exponentially
reduced when the delay exceeds the threshold.

In a word, the authentication delay can affect the task delay
and profit, so the authentication delay should be minimized.

Fig. 11. Impact of Authentication Delay to Profit.

E. Discussion

CLP can share resources with each other in the form of
alliances, to solve the problem of resource limitation and the
high cost of resource expansion and benefit from the
heterogeneity of resource prices provided by different CLPS in
alliances. CLP has more options for task migration, resulting in
higher benefits. As far as we know, most of the existing studies
consider horizontal edge federation or cloud federation, and
there are few researches on task migration for the cloudlet
federation. Meanwhile, few types of research on task migration
for the cloudlet federation combine the powerful computing
power of cloud center. For this reason, because of the
shortcomings of existing research, this paper considers a
cloudlet federation scenario integrating CLP and cloud center
computing resources. At the same time, the cost of CLP and
task processing delay are considered in the process of task
migration, and the authentication delay is considered in the
delay calculation.

As shown in Fig. 5 and Fig. 6, the DPTM algorithm
proposed in this study balances the needs of users and CLP. The
algorithm outperforms the baseline approach in terms of latency
and profits of CLP and helps to satisfy more requests. Initially,
DPTM divides tasks according to their delay sensitivity. Next,
DPTM takes the delay minimization as the optimization goal in
the DS task migration and ensures the task delay requirement
in the DT task migration. However, the specific calculation
process of authentication delay between different CLP
resources during task migration and the factors that may affect
the authentication delay need to be explored next. At the same
time, some users may move during task migration, which is
another factor to be considered.

VI. CONCLUSIONS AND FUTURE WORK

Cloudlet federation can effectively reduce the deployment
and management cost of cloudlet by sharing resources among
CLPs. However, the differences in the number of users and
resources among CLPs bring new challenges to task migration.
When studying the task migration strategy for the cloudlet
federation, two types of tasks, DS and DT, are considered, and
the relationship functions between user quotation and delay of
these two types of tasks are designed. A task migration
algorithm, called DPTM, which takes into account both delay
and profit, is proposed. The DPTM algorithm consists of two
sub-algorithms: TMDS and TMDT. The former is used to
schedule DS tasks with delay as the main optimization
objective. The latter is used to schedule DT tasks with profit as
the primary optimization objective. Simulation results
demonstrate the effectiveness of the proposed method.

In the future, we plan to design a centralized task migration
strategy. In addition, the secure access problem when resources
are shared between different CLPs is further discussed.
Meanwhile, we intend to design a more intelligent task
scheduling algorithm based on Artificial Intelligence (AI).

ACKNOWLEDGMENTS

This research was supported by the National Natural
Science Foundation of China [grant number 62262011], and the
Foundation of Guilin University of Technology [grant number
GUTQDJJ2002018].

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
August 2017.

[2] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Transactions on Mobile Computing, vol. 18, no. 3, pp.
319–333, April 2018.

[3] T. H.Noor, S. Zeadally, A. Alfazi, Z. Quan, “Mobile cloud computing:
Challenges and future research directions,” Journal of Network and
Computer Applications, vol. 115, no. 1, pp. 70–85, August 2018.

[4] M. Chen and V. C. M. Leung, “Reprint of: From cloud-based
communications to cognition-based communications: A computing
perspective,” Computer Communications, vol. 131, pp. 77-82, October
2018.

[5] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, et al., “All one
needs to know about fog computing and related edge computing
paradigms: A complete survey,” Journal of Systems Architecture, vol. 98,
pp. 289-330, September 2020.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7755

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

428 | P a g e

www.ijacsa.thesai.org

[6] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing,”
Journal of Network and Computer Applications, vol. 59, pp. 46–54,
January 2016.

[7] X. Cao, G. tang, D. Guo, Y. Li, and W. Zhang, “Edge federation: towards
an integrated service provisioning model,” IEEE/ACM Transactions on
Networking, vol. 28, no. 3, pp. 1116-1129, March 2020.

[8] R. A. Khan, T. L, and A. Khan, “Cloud Migration: Standards and
Regulatory Issues with Their Possible Solutions,” Int. J. Advanced
Networking and Applications, vol. 10, no. 6, pp. 4113-4119, April 2019.

[9] S. Chen, J. Chen and C. Zhao, “Deep reinforcement learning based cloud-
edge collaborative computation offloading mechanism,” Acta Electronica
Sinica, vol. 49, no. 1, pp. 157-166, 2021.

[10] I. Labriji, F. Meneghello, D. Cecchinato, S. Sesio, E. Perraud, et al.,
“Mobility aware and dynamic migration of MEC services for the internet
of vehicles,” IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 570-584, January 2021.

[11] H. Yuan, J. Bi, W. Tian, M. Zhou, B. H. Li, and J. Li, “TTSA: An effective
scheduling approach for delay bounded tasks in hybrid clouds,” IEEE
Transactions on Cybernetics, vol. 47, no. 11, pp. 3658-3668, July 2016.

[12] R. Soluma, R. Sasikala, S. Kshira Sager, K. R. Lakshmana, P. Quoc-viet
and Dao. Nhu-Ngoc, “CAVMS: Application-Aware Cloudlet Adaption
and VM Selection Framework for Multi-cloudlet Environment,” IEEE
Systems Journal, vol. 15, no. 4, pp. 5098-5106, 2021.

[13] A. Lakhan, M. A. Dootio, T. M. Groenli, A. H. Sodhro and M. S.
Khokhar, “Multi-Layer Latency Aware Workload Assignment of E-
Transport IoT Applications in Mobile Sensors Cloudlet Cloud Networks,”
Electronics, vol. 10, no. 14, pp. 1719, 2021.

[14] S. Moon and Y. Lim, “Task migration with partitioning for load balancing
in collaborative edge computing,” Appled Sciences-Basel, vol. 12, no. 3,
pp. 1168, 2022.

[15] B. Qiao, C. Liu, J. Liu, Y. Hu, K. L. Li, and K. Q. Li, “Task migration
computation offloading with low delay for mobile edge computing in
vehicular networks,” Concurrency and Computation: Practice and
Experience, vol. 34, no. 1, July 2022.

[16] S. Moon and J. Park, Y. Lim, “Task migration based on reinforcement
learning in vehicular edge computing,” Wireless Communications and
Mobile Computing, 2021.

[17] S. Huang, K. Lin, and C. Hu, “Intelligent task migration with deep
Qlearning in multi-access edge computing,” Iet Communications, vol. 16,
no. 11, July 2022.

[18] C. Liu, F. Tang, Y. Hu, K. L. Li, Z. Tang, and K. Q. Li, “Distributed task
migration optimization in MEC by extending multi-agent deep
reinforcement learning approach,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 7, pp. 1603-1614, July 2021.

[19] M. Z. Nayyer, I. Raza, and S. A. Hussain, “CFRO: Cloudlet federation for
resource optimization,” IEEE Access, vol. 8, pp. 106234-106246, June
2020.

[20] H. Baghban, C. Huang, and C. H. Hsu, “Resource provisioning towards
OPEX optimization in horizontal edge federation,” Computer
Communications, vol. 158, pp. 39-50, May 2020.

[21] L. Cui, C. X, S. Y, Z. H, X. W and Z. M, “Joint Optimization of Energy
Consumption and Latency in Mobile Edge Computing for Internet of
Things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4791-4803,
June 2019.

[22] I. A. Elgendy, W. Zhang, Y. Tian, and K. Li, “Resource allocation and
computation offloading with data security for mobile edge computing,”
Future Generation Computer Systems, vol. 100, pp. 531-541, November
2019.

[23] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge
computing: Partial computation offloading using dynamic voltage
scaling,” IEEE Transactions on Communications, vol. 64, no. 10, pp.
4268-4282, October 2016.

[24] X. Chen, Y. Cai, L. Li, M. Zhao, and B. Champagne, “Energy-efficient
resource allocation for latency-sensitive mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 2, pp. 2246-2262,
February 2020.

[25] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin and X. Shen, “cost-Efficient
Resource Provisioning for Dynamic Requests in Cloud Assisted Mobile
Edge Computing,” IEEE Transactions on Cloud Computing, vol. 9, no. 3,
pp. 968-980, March 2019.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71

