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Abstract—The manual technique that might use for shrinking 

vessels blood in the retinal fundus images has significant 

limitations, such as the high rate of time consumption and the 

possibility of human error, precisely appear with the 

sophisticated structure of the blood receptacle and a hung 

amount of the retinal fundus photograph that needs to be 

anatomic. Moreover, the automatic proposed algorithm that will 

utilize shrinking and explore helpful clinical characteristics from 

retinal fundus photographs in order to lead the eye caregiver to 

early diagnosis for various retinal disorders and therapy 

evaluations. A precise, quick, and fully-automatic algorithm for 

shrinking blood receptacles and clinical characteristics 

measuring technique for internal retinal pictures is suggested in 

order to increase the diagnostic accuracy and reduce the 

ophthalmologist's burden. The proposed algorithm's main 

pipeline consists of two fundamental stages: picture shrinkage 

and medical feature elicitation. Many exhaustive practices were 

conducted to evaluate the efficacy of the sophisticated fully-

automated shrinkage system in figuring out retinal blood 

receptacles using the DRIVE and HRF datasets of exceedingly 

demanding fundus images. Initially, the accuracy of the created 

algorithm was tested based on its ability to accurately recognize 

the retinal structure of blood receptacles. In these attempts, 

several quantitative performance measures precisely five were 

computed to validate the efficacy of the exact algorithm, 

including accuracy (Acc.), sensitivity (Sen.), specificity (Spe.), 

positive prediction value (PPV), and negative prediction value 

(NPV). When contrast with modern receptacles shrinking 

approaches on the DRIVE dataset, the produced results have 

enormously improved by obtaining accuracy, sensitivity, 

specificity, positive predictive value, and negative predictive 

value of 98.78%, 98.32%, 97.23%, and 90. Based on five 

quantitative performance indicators, the HRF dataset led to the 

following results: 98.76%, 98.87%, 99.17%, 96.88%, and 100%. 
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I. INTRODUCTION 

Direct ophthalmoscope, or manual examination of the 
internal photograph by a professional, is being replaced by a 
computer-attribution diagnosis of retinal internal images. 
Furthermore, the computer-attribution diagnosis of retinal 
internal pictures is as accurate as a direct ophthalmoscope and 

requires less processing and analysis time. Retinal fundus 
pictures are commonly used to diagnose many eye-related 
illnesses that lead to vision loss, for instance, diabetic 
retinopathy in addition to macular degeneration [1]. The 
extraction of retinal blood vessels from fundus pictures is one 
of the essential processes in detecting diabetic retinopathy. 
Even though numerous segmentation approaches have been 
proposed, segmentation of the retinal vascular network and 
picture quality remains difficult. Noise (typically owing to 
uneven lighting) and narrow vessels are now critical obstacles 
in retinal vascular segmentation. Additionally, most of the 
proposed segmentation algorithms optimize the preprocessing 
and blood receptacle seg-mentation subjects for each dataset 
separately. As a result, these algorithms can typically reach a 
high rate of accuracy for the optimized dataset, but their 
accuracy will be lowered when applied to different datasets. 
Although most vessel segmentation methods include 
pretreatment procedures to improve vessel appearance, other 
plans skip the preprocessing steps and jump straight to the 
segmentation stage [2]. 

Blood receptacle segmentation is an essential required step 
to do the quantitative investigation of retinal photographs, 
where a set of critically beneficial clinical features such as the 
tortuosity, length, density, and thickness, of the blood vessel 
can be extracted from the segmented vascular tree. 
Furthermore, the segmented vascular tree has also been used 
in several medical applications, including retinal image 
mosaic structure, temporary and/or multi-modal image 
registration, optic disc identification, biometric identification, 
and fovea localization. Many segmentation approaches 
nowadays use machine learning ideas in conjunction with 
traditional techniques to improve segmentation accuracy by 
providing a statistical analysis of data to enhance 
segmentation algorithms [3]. Based on the usage of labeled 
training data, these machine learning principles can be divided 
into unsupervised and supervised approaches. In a supervised 
technique, a human operator labels and select a class for every 
single pixel in the internal picture, such as vessel and non-
vessel. A classifier is trained using the tags supplied to the 
input. A sequence of characteristics vectors is formed from the 
data being processed (pixel-wise characteristics in picture 
segmentation defects). Similar samples are grouped into 
various classes using predetermined characteristics vectors 
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that are distinguished without any labels in an unsupervised 
technique. This accumulating is dependent on several 
assumptions about the input dataset structure, namely that 
there are two kinds of classes of the input dataset with 
identical characteristics vectors (blood receptacle and not 
blood receptacle). Depending on the situation, this matching 
metric might be sophisticated or specified by a basic metric 
like pixel contrasts [4]. 

The analysis of the blood receptacle tree in internal images 
with precision and accuracy can provide several essential 
aspects for diagnosing various retinal disorders. However, 
when utilized as the first step which is represented by 
preprocessing for higher-level picture detection, retinal blood 
vessel segmentation might significantly impact other 
applications. For instance, reliable blood vessel tree detection 
might be employed in recording time series internal images, 
finding the optical disc or over, recognizing the retinal blood 
receptacle fiber layer, and biometric identification. There is a 
substantial amount of work on this topic due to the 
applications wide range and the fact that shrinkage of retinal 
blood receptacles is one of the critical jobs in retinal picture 
processing [5]. 

To increase diagnosis precision and reduce 
ophthalmologists' burden, an accurate, quick, and totally 
automatic blood receptacle shrinking and clinical 
characteristics measuring algorithm for retinal internal 
pictures is presented. The proposed algorithm's main pipeline 
consists of two critical stages: picture segmentation and 
clinical feature extraction. In the segmentation stage, a fully 
automated segmentation method called a morphological 
filtering algorithm addressed by MFA is used to find blood 
receptacles in retinal photographs. 

In the morphological filtering algorithm, an efficient and 
reliable image pre-processing procedure is applied to preserve 
the vessel’s structure and eliminate the noise level using the 
Anisotropic Diffusion (AD) filtering and Gaussian filtering, 
respectively. This is followed by removing all undesired 
objects (e.g., small vessel segments) in the enhanced image by 
applying morphological operations. Finally, all the retinal 
blood vessels are detected by utilizing an efficient edge 
algorithm based on efficient filter which is an improved 
Canny edge detector. Finally, the output segmented images 
produced from the proposed segmentation algorithm is fused 
to produce the final segmented image. In the post-processing 
step, a novel blood vessel linking procedure is proposed to 
correctly join the discontinuous blood vessels produced in the 
segmented picture resulting from the fusing stage. In the 
clinical features extraction stage, several helpful clinical 
characteristics are computed, for instance the tortuosity, 
thickness, density, and length of the blood vessel, which are 
efficiently used in the early diagnosis of several 
cardiovascular and ophthalmologic diseases. In this stage, an 
efficient and accurate algorithm for computing the blood 
vessel thickness is proposed. The main contributions list can 
be summarized as follows: 

• An accurate, quick, and fully-automated blood vessels 
shrinkage and clinical characteristics assessment 

algorithm is suggested to improve diagnosis precision 
and reduce ophthalmologists' burden. 

• Fully-automated segmentation algorithm is proposed 
and named as a morphological filtering algorithm to 
accurately detect the blood vessels in the retinal 
images. 

• A novel blood vessel linking procedure is proposed to 
correctly join the discontinuous blood vessels produced 
in the segmented image resulting from the previous 
step. 

• This research considers as a second stage from our 
main goal by developing a fully automated and real-
time retinal blood vessels hybrid segmentation and 
clinical features extraction model in fundus images and 
for the first stage represented by trainable filter 
algorithm that already completed successfully.[6]. 

• The rest zone of this study is consist of Section II 
which presented a related works on Blood receptacles 
shrinking and medical feature measuring algorithm for 
internal pictures of the retina Section III outlines the 
major processes of the proposed morphological 
filtering algorithm, which consists of three primary 
stages: image preprocessing, morphological operations, 
and vessel recognition. Several comprehensive tests 
were undertaken to evaluate the performance and 
accuracy of the newly created fully-automated 
shrinkage system for analyzing retinal blood 
receptacles through utilizing two difficult internal 
binary photograph datasets, as described in Section IV 
in addition to Section V discusses the outcome results 
and future work as a final topic. 

II. RELATED WORK 

The shrink in the retinal internal image is considered as a 
first stage concerned with identifying the several diseases that 
related to the eyes. In general, blood receptacles look like a 
structure tree. Morphological characteristics includes width, 
length plus to branching of the eye, and others play an 
enormous part in detecting and treating various of eyes 
diseases, according to work published by [5] Classification of 
microaneurysms and non-macro aneurysms is a concern using 
morphological filters algorithm to detect diabetic retinopathy 
in retinal vessels images by utilizing the evaluation matric 
such as accuracy, sensitivity, and specificity. In addition, the 
study did the experiments using the IDRiD dataset with an 
average result of 80.85%. Thus, its notice some limitations in 
their proposed methods summarized by resolution point need 
to be more enhancement. They have used only one dataset in 
the whole of the experiments. According to S. Annand et al. 
[7] they are working on Optic disc analysis in retinal blood 
vessels in the fundus using contourlet sub-bands, 
superimposed edges with morphological filling through 
several kinds of datasets, including DRIVE, STARE, 
MESSIDOR, etc. E-aphtha, Diaretdb1. Moreover, the utilized 
dataset highlights the accuracy channel that registers 97.15% 
output result even though the outcome is high. Still, there are 
some points it needs to be enhance, such as the datasets that 
are used with significant numbers of users lead to have the 
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configuration complexity that might happen between the 
various datasets and the proposed methods. Another work by 
[8], the study proposed the domain of Retinal Vessel 
Segmentation in Diabetic Retinopathy Using a Morphological 
Top Approach in medical Images by implementing two types 
of data: HAGIS and HRF, which succeed by achieving 
95.12%, 94.37%, respectively. Several disorders may be 
impacted by a particular segmentation procedure, resulting in 
limits because there are numerous types of diseases, for 
instance glaucoma, age macular degeneration, hypertension, 
that conceder harmful and significantly affect the patient's 
health. 

In [9], the work on the execution analysis of auto-detection 
of diabetic retinopathy utilizing the proposed operation 
algorithms with the same concept of evaluation matric but 
with a deferent dataset named by DIARETDB1 to achieve a 
98.68% percentage. At some point, the computational timing 
is quite long, based on several observations. Another study by 
[10], its introduced analyses of retinal blood receptacle from 
eyes scope images through utilize morphological method 
implemented through DRIVE, HRF dataset to extract the 
Acc., Sen., and Spe. with the exact result of the accuracy is 
0.9541,0.9478 respectively. Therefore, there are some 
misclassified structures, such as vessels giving poor 
segmentation output. Also, U. Ozkaya et al. [11] presented the 
efficiency of retinal blood receptacle shrink utilizing 
morphological operations using DRIVE dataset to achieve 
95.61% with some limitations of the proposed methods that do 
not diagnose critical diseases such as hypertension and 
diabetic retinopathy. Charu Bhardwaj et al. [12] focusing on 
the execution analysis of retinal characteristics for diabetic 
retinopathy characterization and diagnoses by using DRIVE, 
STARE to extract the evaluation matric category that is 
divided into three types starting by accuracy and end with 
specifically to highlight the accuracy average result 95.50%, 
94.80% respectively. However, it needs to be more accurate to 
positively match the manual segmentation results. In this 
paper, we emphasize the morphological filter algorithm that 
was modified using a very powerful and common dataset, 
DRIVE and HRF, for accurate, quick, and full-automatic 
blood receptacle shrink and clinical characteristics. A 
measurement approach for retinal internal pictures is 
presented to enhance or develop diagnostic quality and reduce 
ophthalmologists' effort. 

III. PROPOSED AUTOMATIC BLOOD VESSELS 

SEGMENTATION AND CLINICAL FEATURE MEASUREMENT 

ALGORITHM 

The quantitative investigation of retinal images is widely 
utilized for rapid detection, observation, and treatment 
assessment of cardiovascular and ophthalmologic diseases, for 
instance, macular degeneration, eyes diabetes, glaucoma, 
hypertension, arterio-sclerosis, vein occlusion, and choroidal 
neovascularization. Among these mentioned diseases, diabetic 
retinopathy and macular degeneration are considered the two 
main reasons for blindness. Blood receptacle shrink is an 
essential stage required for the quantitative investigation of 
retinal photographs, where a set of critically beneficial 
medical characteristics for instance the density, tortuosity, 
length, and thickness, of the blood vessel, can be extracted 

from the segmented vascular tree. Furthermore, the segmented 
vascular tree has also been used in several medical 
applications, including retinal image mosaic structure, 
temporary and/or multi-modal image registration, optic disc 
identification, biometric identification, and fovea localization. 
Accordingly, it is hypothesized that an autonomous method 
for segmenting and extracting valuable clinical information 
from retinal blood vessels will aid ophthalmologists and eye 
specialists in the early diagnosis of various retinal illnesses 
and the evaluation of treatment options. Fig. 1 shows the 
projected blood vessel segmentation and clinical features 
measurement. 

 

Fig. 1. Diagram of the Proposed Blood Receptacles Shrink and Clinical 

Features Measurement Algorithm. 

A. The Morphological Filter Algorithm 

As we presented in Fig. 2 the main steps of the 
morphological filtering algorithm, which is composed of three 
main stages, including the image pre-processing stage, the 
morphological operations stage, and the vessels detection 
stage. In the image pre-processing step, the AD filtering and 
Gaussian filtering are applied on top of the extracted green 
channel of the retinal image to enhance edges’ structures and 
eliminate the noise in the retinal fundus image, respectively. 
Then, a set of morphological operations are applied on top of 
the enhanced image produced from the previous stage to 
discard the background and all the unwanted objects (e.g., 
small vessel segments). Finally, the retinal blood vessels are 
detected by utilizing an efficient edge detection algorithm 
based on edge detector filter addressed by an improved Canny 
edge detector. The main steps of the selected filter are 
explained in detail in the next sub-sections. 

 

Fig. 2. The Fundamental Stages of the Proposed Morphological Filtering 

Algorithm for Detecting the Retinal Blood Vessels. 
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1) Image pre-processing stage: In this stage, the crucial 

aim is to improve the non-uniform illumination, controlling 

the contrast of the retinal picture and de-creasing the 

background noise. The main steps of the proposed image pre-

processing can be summarized as follows: 

a) Extracting the best channel which is the green from 

the colored retinal internal photograph. 

b) Correcting the non-uniform illumination and 

enhancing the visibility of the edges’ tree structures in the 

retinal internal picture by using AD filter. 

c) Applying the 2D Gaussian filter to smooth the retinal 

image and eliminate the background noise. 

Despite of the human observer can efficiently identify the 
blood vessel structures using the full-color image, however, 
processing the three channels of the input image can increase 
the computational complexity of the proposed algorithm 
where a long time will be required to deliver the final 
segmented image. Thus, the proposed morphological filtering 
algorithm starts with extracting the green channel of the input 
picture because it gives a better distinction between the 
background layer and the retinal blood receptacle than other 
channels, as shown in Fig. 3. 

 

Fig. 3. The Three Channels of the Coloured Retinal Image: (a) Main Picture, 

(b) Red Conduit Picture, (c) Green Conduit Picture, and (d) Blue Conduit 

Picture. 

In most cases, the retinal images have some background 
pixels with intensity values similar to the lighter pixels of the 
retinal blood vessels. These pixels can significantly degrade 
the outcome of the proposed segmentation algorithm. 
Therefore, the AD filter [13] was used to the green conduit of 
the retinal picture after rescaling it to the range of [0, 1], to 
correct the non-uniform illumination and enhance edges’ 
structures in the retinal picture, as presented in Fig. 3(b). The 
AD filter can be represented as follows: 

𝑰𝒊,𝒋
𝒕+𝟏 =  𝑰𝒊,𝒋

𝒕 +  𝝀[𝒄𝑵 . 𝜵𝑵 𝑰 + 𝒄𝑺 . 𝜵𝑺 𝑰 + 𝒄𝑬 . 𝜵𝑬 𝑰 +

𝒄𝑾 . 𝜵𝑾 𝑰]𝒊,𝒋
𝒕               (1) 

Here, I refer to the retinal image, 0 ≤ 𝝀 ≤ 1/4, The (c) 
parameter represents the conduction coefficients which is 
updated every iteration as a brightness gradient function, (𝒕) 
represents the iteration index, and (𝜵) refers to the nearest 
neighbour variances in all the directions N, S, E, and W, as 
bellows: 

𝜵𝑵 𝑰𝒊,𝒋 =  𝑰𝒊−𝟏,𝒋 − 𝑰𝒊,𝒋 

𝜵𝑺 𝑰𝒊,𝒋 =  𝑰𝒊+𝟏,𝒋 − 𝑰𝒊,𝒋 

𝜵𝑬 𝑰𝒊,𝒋 =  𝑰𝒊,𝒋+𝟏 − 𝑰𝒊,𝒋 

𝜵𝑾 𝑰𝒊,𝒋 =  𝑰𝒊,𝒋−𝟏 − 𝑰𝒊,𝒋              (2) 

In this work, these values of the 𝜆 and 𝑡 parameters are set 
to 0.20 and 5, respectively. This was followed by applying the 
2D Gaussian filter to assure the smoothness in the retinal 
internal picture in addition to eliminating the background 
noise, as presented in Fig. 3(c). The 2D Gaussian filter is 
distinguished by a non-uniform low-pass filter, whose 2D 
filter coefficients are computed as follows: 

𝑮(𝒙, 𝒚) =
𝟏

𝟐𝝅𝝈𝟐 𝒆
−

𝒙𝟐+𝒚𝟐

𝟐𝝈𝟐                  (3) 

Here, the (x, y) refers to the filter center, and σ refers to 
(SD) Standard Deviation of the Gaussian filter. 

2) Morphological operation stage: Typically, 

morphological operations can be employed to accurately 

extract the image’s components, which are proven to be 

extremely helpful for interpreting and representing the 

different shapes that exist inside the input image rather than 

pixels’ intensities, such as borders, skeletons, and convex 

hulls [14]. The morphological operations are considered 

powerful tools that can be efficiently employed in solving 

several tasks in image processing. Dilation, erosion, opening, 

closing, bottom-hat, and top-hat transformation are the 

fundamental morphological operations that can be utilized to 

segment, manipulate and adjust the objects shown in the input 

image depending on their structure [15]. In general, these 

morphological operations were only applied to the binary 

images, and then they were extended to process the grey-scale 

images as well. The primary aim of this stage is to define the 

vessels' structure precisely by eliminating the defects, such as 

various kinds of noise that can influence the blood vessels' 

structure and produce more visible structures of the blood 

vessels. The main stages in the selected morphological 

operations stage are implemented sequentially as follows: 

a) Applying the opening operation with a disk structure 

element of 3 pixels. 

b) A background subtraction procedure was 

implemented to split the foreground objects from the image’s 

background. 

c) A sigmoid function was employed to decrease the 

effect of the non-uniform illumination of the retinal pictures. 

d) Improving the appearance of the retinal blood 

receptacles by applying the erosion process. 

In this stage, two different morphological operations were 
applied, namely the opening and erosion operations. The 
morphological operations were further employed in other 
steps of the proposed blood vessel segmentation algorithm to 
exclude the unwanted features (e.g., small vessel parts) 
without changing the main structure of the blood vessel. 
Usually, the morphological operations take two different 
parameters, including the picture that needs to be processed. 
The shape in addition to size of the tree structure element 
plays a significant role in detecting a feature representation of 
a given size and shape in the input image. Thus, the size and 
shape of the structuring element are selected according to the 
demand and purpose of the adopted application. The erosion 

http://en.wikipedia.org/wiki/Standard_deviation
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and dilation operations are the essential morphological 
operations utilized to lessen and boost the objects in the 
image, respectively. The erosion and dilation operations are 
defined as follows. 

𝒇 𝜣 𝑩 = 𝒎𝒊𝒏
𝒖,𝒗

(𝒇(𝒙+𝒖,𝒚+𝒗) − 𝑩(𝒖,𝒗))            (4) 

𝒇 ⊕ 𝑩 = 𝒎𝒂𝒙
𝒖,𝒗

(𝒇(𝒙−𝒖,𝒚−𝒗) + 𝑩(𝒖,𝒗))            (5) 

where (𝑓) represents a greyscale image B refers to the 
structuring element. 𝑓 𝛩 𝐵 and 𝑓 ⊕ 𝐵 represent erosion and 
dilation, respectively. Morphological opening operation is 
applied to delete undesired precise structures in the input 
picture by implementing an erosion procedure followed by a 
dilation process. In contrast, a morphological closing 
operation is applied to fill or merge some structures in the 
input picture by implementing the dilation procedure followed 
by the erosion process. The morphological opening and 
closing operations can be defined as follows: 

fοB = (f Θ B) ⊕ B              (6) 

f • B = (f ⊕ B)Θ B              (7) 

In this stage, several kinds of experiments were conducted 
to select the methods of applied in this stage using retinal 
fundus images with various levels of noise and lighting 
conditions. The main aim here is to improve the structure of 
blood vessels without missing essential characteristics in the 
retinal picture. In the current stage, the opening operation was 
applied to the enhanced image produced from the prior stage 
by employing an optic disk element of 3 pixels. Then, a 
subtraction procedure for the background layer was 
implemented to split the foreground objects from the image’s 
background and identify the retinal blood vessels accurately. 
Next, a simple image contrast enhancement process using a 
sigmoid function [16] is implemented as follows: 

g(x, y) =
1

1+e
(c∗(Th−f(x,y)))

              (8) 

Where f and g of (x, y) is the input and the enhanced 
photograph. Herein, the contrast parameter (c), and the 
Threshold parameter (Th), are empirically chosen to be 4 and 
0.5, respectively. The main advantage of this step is to 
decrease the impact of the non-uniform illumination by 
narrowing in addition to extending the values range of the 
bright and dark pixels in the retinal photograph, sequentially.  
Finally, the erosion process was also applied by employing a 
structural element of 2-pixels to improve the appearance of the 
retinal blood vessels, as presented in Fig. 3(d). Undesired 
segments of one-pixel size were excluded. 

3) Vessel’s detection stage: The vessels detection 

procedure was applied to preserve beneficial structural details 

of the blood vessels' borders and to carefully discard the 

unwanted objects. As depicted in Fig. 4, the fundamental steps 

of the selected vessels detection process might be outlined as 

follows: 

a) Eliminating the noise level produced from the 

morphological operations stage by applying the median filter. 

b) An improved Canny edge detector was employed to 

accurately identify the blood vessels. 

c) A refinement vessel's structure procedure based on 

applying a set of morphological operations was implemented 

to maintain the actual thickness of the detected blood vessels 

and to eliminate unwanted objects in the segmented image. 

Initially, the median filter was applied to eliminate the 
noise produced from the morphological operations stage that 
can significantly influence the precision of the blood vessels 
detection in the later steps. The median approach is a non-
linear method that is utilized to eliminate the noise from a 
given image to enhance the outcomes of subsequent 
processing (e.g., the edge detection process in an image). The 
median filter is very widely applied in addressing several 
image processing problems due to its ability in preserving the 
edges and removing noise. In this work, a media filter of size 
(5×5) pixels. 

The blood vessels were then identified by using an 
improved Canny edge detector. First, the Gaussian filter was 
applied to further decrease the noise level in the picture. This 
was followed by calculating the gradient magnitude along 
with its vectors for each pixel of the enhanced image. An 
algorithm of non-maxima suppression was later implemented 
by utilizing the gradient magnitude and direction to be 
recognized and assigned as a border pixel by employing the 
thresholding approach.  The main stimulus for applying the 
improved Canny edges detector is to accomplish some 
beneficial characteristics, including reducing the possibility of 
duplicated responses to a singular edge; reducing the 
likelihood of neglected edges; reducing the distance computed 
between the pixels of the identified edges and the original 
edges. These four characteristics might conceder as a critical 
role in solving the problems of detecting retinal blood 
receptacles precisely. The main steps of applying the 
improved Canny edges detector can be summarized as 
follows: 

1) Smooth Image: Reducing the noise and smoothing the 

retinal image by applying the Gaussian filter. Suppose 𝐺(𝑥, 𝑦) 

represents the Gaussian filter as revealed in Eq. (9) and 𝐼(𝑥, 𝑦) 

represents the retinal image. Then the smoothed image can be 

obtained by convoluting I with 𝐺 𝑜𝑓 (𝑥, 𝑦) as follows: 

𝑆(𝑥, 𝑦) =  𝐺(𝑥, 𝑦) ⊗ 𝐼(𝑥, 𝑦)             (9) 

2) Gradient Magnitude: Computing the gradient 

magnitude of the smoothed image 𝑺(𝒙, 𝒚) is utilized to 

compute the variation value of (𝑮𝑿) and (𝑮𝒀), sequentially, 

same as below: 

𝐺𝑋(𝑥, 𝑦) ≈
 [𝑆(𝑥, 𝑦 + 1) − 𝑆(𝑥, 𝑦) + 𝑆(𝑥 + 1, 𝑦 + 1) − 𝑆(𝑥 + 1, 𝑦)] 2⁄   (10) 

𝐺𝑌(𝑥, 𝑦) ≈
 [𝑆(𝑥, 𝑦) − 𝑆(𝑥 + 1, 𝑦) + 𝑆(𝑥, 𝑦 + 1) − 𝑆(𝑥 + 1, 𝑦 + 1)] 2⁄   (11) 

From Eq. (10) and (11), the gradient magnitude and its 

direction are computed, respectively, as in Eq. (12) and (13): 

𝐺(𝑥, 𝑦) =  √𝐺𝑋
2(𝑥, 𝑦) + 𝐺𝑌

2(𝑥, 𝑦)           (12) 
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𝜃(𝑥, 𝑦) = 𝑡𝑎𝑛−1 (
𝐺𝑌

2(𝑥,𝑦)

𝐺𝑋
2 (𝑥,𝑦)

)            (13) 

3) Non-maxima Suppression Algorithm: The computed 

gradient magnitude usually includes extended ridges nearby 

the local maximum. Thus, the non-maxima suppression 

algorithm was applied to thin these extended ridges. A 

gradient vector (di) composed of four discrete directions (e.g., 

horizontal, vertical, 45° and - 45°) is computed for each pixel 

(x, y) of the normal edge. Then the closest direction to 𝜽(𝒙, 𝒚) 

is defined from these four directions. If the value of gradient 

magnitude 𝑮(𝒙, 𝒚) was lower than the vectors (di), then the 

non-maxima algorithm is equal to zero (suppression); else, N 

(x, y) = 𝑮(𝒙, 𝒚). 

4) Hysteresis Thresholding Algorithm: This algorithm is 

applied to detect and connect the pixels of the actual edges. 

In most cases, thresholding the input image can produce 
several false detected edges. To decrease the rate of false 
detected edges, a thresholding algorithm can be applied using 
two different threshold values, named the low threshold (TL) 
and the high threshold (TH). It defines the non-maxima 
approach NH (x, y) after hysteresis thresholding N (x, y) using 
the high threshold (TH) and defines the non-maxima approach 
NL (x, y) after the method of thresholding using the low 
threshold (TL). Obviously, the NH (x, y) has the stronger edge 
representations compared with the NL (x, y) which contains 
the weaker edge representations. 

After the improved Canny edge detector has applied, a 
refinement vessel's structure procedure was implemented to 
maintain the actual thickness of the detected blood vessels and 
to eliminate some unwanted objects in the segmented image. 
This refinement procedure starts by applying the dilation 
process by employing two line-formed structural elements of 
three pixels with angles between 90º and 0º, sequentially. 
Then, the erosion process was implemented by employing a 
structural element of one pixel to sharpen the edges of the 
defined blood vessels. Finally, all the objects of an overall 
area of fewer than 100 pixels were discarded  from the final 
segmented image, as shown in Fig. 4(e). 

 

Fig. 4. The Proposed Morphological Filtering Algorithm Outputs: (a) 

Normalized Green Conduit, (b) AD Output, (c) Gaussian Filtering Output, (d) 

The Output of the Morphological Operations Stage, (e) The Final Output of 

the Edge Detection Stage, (f) The Overlapped Automated Segmented Image 

with the Original Retinal Image. 

B. Post-Processing Stage 

Once, the segmented retinal image is obtained from the 
morphological, the output is used to produce the final 
segmented image. Then, a novel blood vessel linking 
procedure was proposed to correctly join the discontinuous 
blood vessels produced in the segmented image resulting from 
the previous step. These discontinuous blood vessels are 
presented in the eventual segmented picture due to poor 
visibility of the specific portions of blood vessels or the noise 
presented in the retinal image. The accuracy of the extract 
clinical characteristics, for instance, the thickness, length, 
density, and tortuosity of the blood vessel can significantly be 
affected by the appearance of the discontinuous blood vessels. 
Thus, a new process was selected in this study to correctly join 
the discontinuous blood vessels in the final segmented 
photograph. The proposed blood vessel linking procedure was 
implemented as follows: 

1) Producing the skeleton blood vessels structure of the 

final retinal segmented image, and then identifying the 

vessels’ end-points. 

2) Defining a possible highest distance between the 

endings of each two segments of a disconnected blood vessel. 

Then a circular-shaped structure element of radius = (highest 

distance)/2 was placed at the end of each blood vessel. If the 

ends of the two blood vessels were approaching each other, 

then the placed structural elements were overlapped, as 

displayed in Fig. 5(c). 

3) Finally, the thinning process was applied to the whole 

image. Hence, a line of one pixel wide will be left by the 

thinned structural elements to link the two endings of the 

vessel. While, the separated ends are recovered to their initial 

structure, as displayed in Fig. 5(d). 

 

Fig. 5. The Proposed Blood Vessel Linking Procedure: (a) The Segmented 

Blood Vessel Structures, (b) The Disconnected Blood Vessels Marked in the 

Red Circles, (c) The Binary Circular-shaped Structural Elements are Drawn at 

the Ends of each Blood Vessel Segment, and (d) The Resulting Image with 

Linked Blood Vessels. 

C. Clinical Feature Extraction Stage  

The abnormalities in the retinal blood vessel structures, 
including the morphologic modifications in vessel tortuosity, 
shape, thickness, and length might be connected to the 
existence of cardiovascular and eye diseases. Therefore, the 
automatic quantitative analysis process of abnormalities in 
blood vessel structures can be extremely useful to help 
ophthalmologists and eye specialists in the early diagnosis of 
different retinopathies diseases, describe their severity level, 
and treatment assessments  .One of the main aims of this work 
is to develop an automated morphologic description procedure 
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to analyze the whole blood vessel network in the retinal 
image. The clinical features extraction stage computes a set of 
useful clinical features from the automatically detected retinal 
blood receptacle in an accurate path. In the current stage, a 
number of morphological clinical features associated with the 
healthiness of the retinal blood receptacles are extracted as 
follows: 

1) Vessel’s length: The length of the retinal blood vessel 

was computed for each vessel’s segment by firstly taking the 

vessel’s skeleton structure, and then the distance between 

sequential pixels in the blood vessel segment is summed as in 

Eq. (14). 

𝑉𝑒𝑠𝑠𝑒𝑙 𝐿𝑒𝑛𝑔ℎ = ∑ √(𝑥𝑖−1 − 𝑥𝑖)
2 + (𝑦𝑖−1 − 𝑦𝑖)

2𝑁−1
𝑖=1        (14) 

Here, (N) refers to the number of sequential pixels 
produced from the blood vessel skeleton part, with (xi, yi) 
refers to the pixel’s coordinates in the blood vessel part. 

2) Vessel density: The retinal blood vessels density was 

calculated by dividing the sum of all the pixels in the blood 

receptacles by overall area of the whole retinal image as 

shown in Eq. (15): 

𝑉𝑒𝑠𝑠𝑒𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ 𝑇ℎ𝑒 𝑣𝑒𝑠𝑠𝑒𝑙 𝑝𝑖𝑥𝑒𝑙𝑠

𝐼𝑚𝑎𝑔𝑒𝐴𝑟𝑒𝑎 (𝑚𝑚2)
          (15) 

3) Vessel tortuosity: The tortuosity coefficient of the 

blood vessel is interpreted as a degree of twists presented in 

the blood receptacle course, as shown in Fig. 6. Some studies 

have proved that the vessel tortuosity coefficient can be linked 

with the average fundus blood pressure, however, no 

significant increase was observed until the critical blood 

pressure level is reached [17, 18]. Herein, the mean tortuosity 

coefficient of the whole retinal blood vessel network was 

computed. First, the skeleton structure of the blood vessels 

was produced. This was followed by defining the branch 

points of the blood vessels to divide the length of Blood 

Vessel Segment (BVS) into (b) branches as in Eq. (16): 

𝐵𝑉𝑆 = 𝑠1 + 𝑠2 + ⋯ + 𝑠𝑏           (16) 

Then, the tortuosity coefficient index for the (BVS) was 
then computed as follows: 

𝑇𝐶(𝐵𝑉𝑆) = ∑  
𝑠𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑠𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡
⁄ (𝑛) 𝑏

𝑛=1          (17) 

 

Fig. 6. An Example of Severe Retinal Blood Vessel Tortuosity is a Patient 

with Severe Non-proliferative (NPDR) Disease [19]. 

where 𝒔𝒍𝒆𝒏𝒈𝒕𝒉 refers to the length of the vessel branch, and 

it was estimated by Eq. (14). 𝒔𝒔𝒕𝒓𝒂𝒊𝒈𝒉𝒕 is the straight distance 

between the endings point and was estimated as follows?  

𝑠𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = √(𝑥𝑁 − 𝑥1)2 + (𝑦𝑁 − 𝑦1)2          (18) 

Here, (N) refers to the specific number of essential 
subjects captured from the sub branch of the blood vessels. 
While (x, y) refers to the pixel’s coordinates in each branch of 
the blood vessels. Finally, the mean tortuosity coefficient of 
the entire blood vessels network was acquired by calculating 
the mean tortuosity values obtained of each blood vessel. 

4) Vessel thickness: The blood vessel thickness is referred 

to as the average width of the retinal blood vessels. In this 

PhD thesis, a new procedure for computing the retinal blood 

vessel thickness is developed. Fig. 7 presents the outcome 

results of the enhanced thickness procedure. The primary steps 

of the developed procedure after identifying each blood vessel 

were implemented as below: 

a) Distance transformation was computed from the 

photograph of detected retinal blood vessels, where all 

background pixels in the transformed image become white, 

while the object pixels become black. This transform 

calculates the Euclidean distance for each black pixel in the 

segmented image to the nearest non-zero pixel. In the 

developed procedure, the distance transform was implemented 

on the inverse of the binary image of the detected retinal blood 

vessels. Thus, for each pixel of the detected blood vessel, the 

Euclidean distance of that specific pixel or subject to the 

nearest border pixels of the blood vessel was computed. 

b) After applying the distance transforms, the blood 

vessel pixels that have the greatest distance values in the 

distance transform will be located in the middle of the blood 

vessel segment. The distance values that represent the halfway 

edge in between the blood vessel segment were obtained with 

some leniency of the largest distance values because of the  

floating-point computation. 

c) Eventually, the overall average of accumulated 

distance values defines the half-width of the blood vessel. 

Consequently, the blood vessel thickness (width) was 

measured by multiplying the outcome reached by two. 

 

Fig. 7. The Output of the Developed Thickness Procedure: (a) Coloured 

Labeled Retinal Blood Vessels and (b) Image Map for the Retinal Blood 

Vessels along with their Indexes and Average Thickness Values. 
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IV. EXPERIMENTAL RESULT AND DISCUSSION 

In the current research, the accuracy of the developed 
segmentation approach for recognizing retinal blood vessels 
was tested using two very difficult fundus image datasets, 
DRIVE [20] and High-Resolution Fundus (HRF) [21]. These 
datasets were used to test the method. 

Firstly, the main details of the applied retinal image 
datasets in current experiments are present. Secondly, the 
evaluation procedure of the fully-automated shrinkage 
algorithm is given along with their combination and compared 
their performance among (GT) which represents the ground 
truth pictures. Finally, the execution of the developed 
algorithms is compared with the modern approaches. 

A. Dataset Precise Description 

The execution of the selected blood vessel segmentation 
algorithms has been tested using two established publicly 
available datasets of retinal fundus images (DRIVE and HRF). 
These two datasets have gained special popularity due to they 
provide the associated GT images, in which the blood vessel is 
manually detected by different expert observers. Thus, they 
enable the possibility of comparing the results obtained 
against the provided GT images to check the reliability and 
quality of the selected algorithm. The main aim of these two 
datasets is to establish and encourage comparative studies on 
developing an automated algorithm for retinal blood 
receptacles in the fundus pictures. 

1) DRIVE dataset [20]: The DRIVE is consisting of 40 

colored retinal pictures split into testing and training sets, each 

one consisting of 20 pictures. A Mask picture that represents 

the view field (FOV) of the retina area is supplied for each 

image together with the corresponding GT image. The blood 

receptacle in the retinal pictures of the training set was 

manually segmented by one expert. In this work, the training 

set was used to figure out the elements of the selected 

segmentation algorithms. On the other hand, the blood vessels 

in the testing set images were manually segmented by two 

other experts. The real execution of the proposed receptacle 

algorithm was assessed using the testing category. DRIVE 

database contains retinal images captured from several causes 

of diabetes up to 400 subjects the record starts with age 25 

until 90 years old in the Netherlands. Then, 40 images were 

randomly chosen, 33 images without diabetic retinopathy 

registered causes and 7th of the images marked in early 

diabetic retinopathy. Retinal pictures were captured utilizing a 

Canon machine with a precise model CR5 non-mydriatic 

3CCD camera with an angle of 45° as a field of view. All the 

images were saved in a specific size which is (768 × 584). As 

an instance of retinal internal photographs from DRIVE 

dataset responding manually gold standard images are shown 

in Fig. 8. 

2) HRF dataset [21]: The HRF dataset has 45 pictures 

taken by three different groups, such as healthy people, people 

with diabetic retinopathy, and people with glaucoma. 

3) Each group has 15 pictures utilizing a mydriatic 

fundus camera with precise model CANON CF-60UVi with 

angle 60° as field of view. All the images were saved in JPEG 

format with 24-bits coloured image. Binary field of view mask 

pictures of the provided dataset in order to perform the 

analysis only in the region surrounded by the dark background 

[see Fig. 9(b)]. In this dataset, the tree of blood vessels was 

manually traced by several experts in the domain of retinal 

picture interpretation. For instance, retinal internal pictures 

from HRF dataset images are shown in Fig. 9. 

B. Blood Vessel Segmentation Evaluation 

In the binary classification task, every single pixel in the 
input picture is identified as a blood receptacle by the 
proposed algorithm. In addition to classified as a blood 
receptacle in the GT image is computed as a (TP) true 
positive. Moreover, every single pixel is identified as a blood 
receptacle in the final segmented picture, yet not in the to the 
ground truth picture is computed as a (FP) false positive. In 
the evaluation of the retinal vessel segmentation, the average 
values of five quantitative performance measures were 
computed to experiment the quality of the selected algorithms, 
including the Acc., Sen., Spe., PPV, and NPV. These five 
quantitative measures are computed as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐. ) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
           (19) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛. ) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (20) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝𝑒. ) =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
           (21) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (22) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
         (23) 

 

Fig. 8. Image Example from the DRIVE Dataset: (a) The Main Picture, (b) 

FOV-mask Picture, (c) The Manually Segmented Picture of the First Expert, 

and (d) Manually Segmented Picture of the Second Expert. 

 

Fig. 9. Image Example from the HRF Dataset: (a) The Main Photograph, (b) 

FOV-mask Photograph, and (c) The Manually Segmented Photograph of 

Expert. 
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Here, the FN, FP, TN, and TP are referring to False 
Negatives, False Positives, True Negatives, and True Positives 
sequentially. Acc. measurement is referring to the average of 
the total amount of correctly identified pixels among to the 
number of pixels that located in the field of view mask picture. 
Sen. relates to the selected algorithm’s ability to recognise the 
blood receptacle pixels accurately. Spe. is the capacity of the 
suggested method to recognise non-vessel pixels accurately. 

The positive prediction value is referring to the pixels’ 
average correctly classified as vessel pixels. Finally, the 
negative prediction value is the pixels average to correctly 
identified as non-blood receptacle pixels (e.g., background). 

C. 4.3. Results on Drive Dataset 

Firstly, the execution of the selected algorithm for 
detecting the retinal blood receptacle was checked out based 
on the DRIVE dataset. Using training group pictures, several 
executions were done in field to choose the best value for a 
group of parameters in order to maximize the segmentation 
quality of the proposed algorithms. For instance, using the 
proposed morphological filtering algorithm, the (λ) and (t) 
parameters values are determined to 0.20 and 5, respectively. 
The 2D Gaussian filter size was set to (7×7) pixels, values of 
the low threshold (TL) and the high threshold (TH) were set to 
25 and 40, respectively. Then, the segmentation accuracy was 
computed to select the best value of the parameter (t). So, 121 
tests were done where the parameter (t) was changed each 
time by 0.1. 

As shown in Fig. 10, the best value of the parameter (t) 
was set to 0.5. In the evaluation stage, five performance 
evaluation metrics were computed using the testing images 
along with the two provided human observers as the GT 
images. 

The adopted five evaluation metrics using the proposed 
morphological filtering algorithm are shown in Table IV. 
Using the two provided human observers as the GT images in 
the DRIVE dataset the proposed morphological filtering 
algorithm has managed to achieve an overall average Acc. of 
98.06%, Sen. of 97.995%, Spe. of 97.775%, PPV of 90.07%, 
and NPV of 94.725%. Form Table I, although the proposed 
morphological filtering algorithm has obtained a higher Spe. 
of 98.32% using the 1st human observer compared to Spe. of 
97.23% using the 2nd human observer, better results were 
obtained using the letter in terms of other evaluation metrics. 
Then, the proposed blood vessel linking procedure was 
applied to correctly join the discontinuous blood vessels 
produced in the segmented retinal image resulting from the 
previous step. In this work, to validate the advantage of 
applying the proposed blood vessel linking procedure, the 
adopted five evaluation metrics were computed with and 
without the applying the proposed blood vessel linking 
procedure. An example of the output segmentation results on 
the DRVIE dataset is shown in Fig. 11. 

In this work, On the images that come from DRIVE group 
dataset, the execution of the suggested algorithms was 
compared with modern methods for separating blood vessels. 

 

Fig. 10. The Segmentation Accuracy Obtained during 121 Experiments to 

Fine the Best Value of the Parameter (t) in the using the Proposed 

Morphological Algorithm. 

TABLE I. THE AVERAGE VALUES OF FIVE QUANTITATIVE 

PERFORMANCE MEASURES USING THE PROPOSED MORPHOLOGICAL 

FILTERING ALGORITHM ON DRIVE DATASET 

Measurements 1st Observer 2nd Observer Average  

Acc. 97.34 98.78 98.06 

Sen. 97.67 98.32 97.995 

Spe. 98.32 97.23 97.775 

PPV 89.92 90.22 90.07 

NPV 93.89 95.56 94.725 

 

Fig. 11. The Output Segmentation Results in the DRVIE Dataset: The main 

Picture, The 1st Human Observer Picture, The 2nd Human Observer, and The 

Output Segmented Picture of the Proposed Morphological Algorithm. 
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Herein, the results obtained on the 2nd human observer 
have been considered for comparison purposes. It has been 
noted that most previously published approaches in the 
literature are reporting the values of Acc., Sen., and Spe. Thus, 
the overall average of these three metrics along with the PPV 
and NPV values have been computed with GT images (2nd 
human observer) and listed in Table II. Although, Li and his 
team. [22], Jin. [23], Hassan. [24], Dasgupta and Singh [26], 
Tamim. [30], and Yang. [28] have achieved a higher Spe. and 
NPV value compared with the proposed morphological 
filtering algorithm, they achieved inferior results on the other 
metrics. 

TABLE II. EXECUTION RESULTS OF THE COMPARISON OF THE PROPOSED 

ALGORITHM WITH THE MODERN VESSEL SEGMENTATION APPROACH ON THE 

DRIVE DATASET 

Approaches Acc. Sen. Spe. PPV NPV 

Odstrcilik et al. [21] 94.73 78.07 97.12 - - 

Li et al. [22] 95.27 75.69 98.16 - - 

Jin et al. [23] 96.97 78.94 98.70  85.37  - 

Hassan et al. [24] 96.25 87.99 97.99 - - 

C. Argyrois [25] 94.79 85.06 95.82 - - 

Dasgupta and Singh 

[26] 
95.33 76.91 98.01 84.98 - 

Samuel and Veeramalai 

[27] 
96 82 97 - - 

Yang et al. [28] 95.83 73.93 97.92 77.70 97.53 

Kishorea and 

Ananthamoorthy [29] 
94.1  69.9 95.8 85.5 94.8 

Tamim et al. [30] 96.07 75.42 98.43 86.34 96.53 

Yang et al. [31] 95.22 71.81 97.47 89.23 98.5 

Yang et al. [32] 94.21 75.60 96.96 78.54 96.44 

Keerthiveena et al. [33] 94.71 92.7 95.6 92.49 95.7 

Morphological Filtering 

Algo. 
98.78 98.32 97.23 90.22 95.56 

D. 4.4 Result of HRF Dataset  

The execution of the selected vessels segmentation 
algorithm has been assessed using HRF dataset using the same 
parameters configuration described in Section II.2. Initially, 
the adopted five evaluation metrics have been calculated to the 
selected vessel shrink algorithms utilizing the GT pictures 
provided in the HRF dataset, as shown in Table III. It has been 
noted that a comparable performance has been achieved with 
the proposed morphological filtering where a PPV of 96.88% 
and NPV of 100% have been obtained using the proposed 
morphological filtering algorithm. An example of the output 
segmentation results for the HRF dataset group is presented in 
Fig. 12. 

The execution of the selected blood vessel segmentation 
algorithms has also been compared with the modern 
approaches to the HRF group, as given in Table IV. It has 
been observed that some existing approaches have achieved 
slightly higher segmentation accuracy compared with the 
proposed algorithms. For instance, Kishorea and 
Ananthamoorthy [29] have reached an Acc. of 99.6% 
compared to an Acc. of 98.76% and 98.78 using the proposed 
morphological filtering algorithm. However, the work 
presented in [32] has obtained inferior results in terms of other 

evaluation metrics, for instance, Sensitivity, Specificity, 
positive prediction value, and negative predictive value which 
were compared with the proposed morphological filtering 
algorithm. On the other hand, Chalakkal et al. [35] have 
achieved a slightly better Spe. value of 100% compared with a 
Spe. value of 99.17%, 99.35%, and 99.78%, using the 
morphological filtering algorithm, respectively. However, they 
got inferior results on the other evaluation matric (e.g., Acc. 
and Sen.). Finally, one can see the best Sen. value of 98.87%, 
99.12%, and 99.89% has been obtained using the 
morphological filtering algorithm, respectively, the outcome 
results compared with the modern approaches to HRF dataset. 

TABLE III. EXECUTION COMPARISON OF THE SELECTED ALGORITHMS ON 

THE HRF DATASET 

Measurements Morphological Filtering Algo. 

Acc. 98.76 

Sen. 98.87 

Spe. 99.17 

PPV 96.88 

NPV 100 

 

Fig. 12. The Output Segmentation Outcomes on the HRF Group: The main 

Photograph, The Human Observer Photograph, and The Output Segmented 

Photograph of the Selected Morphological Filtering. 

TABLE IV. EXECUTION COMPARISON OF THE SELECTED ALGORITHMS 

WITH MODERN BLOOD RECEPTACLE SHRINK APPROACHES ON THE HRF 

GROUP 

Approaches Acc. Sen. Spe. PPV NPV 

Vostatek [34] 94.3 58.3 97.8 - - 

Kishorea and 

Ananthamoorthy [29] 
99.6 76.52 98.5 87.9 96 

Yang [32] 95.17 79.15  96.76 70.79 97.90 

Chalakkal [35] 94.4 88.8 100   

Yang [36] 95.49 72.65 97.40 70.03 97.71 

Wang [37] 96.54 78.03 98.43 - - 

Khan [38] 95.9 77.2 97.8 - - 

Upadhyay [39] 95.2 75  97.2 72.7 - 

Guo and Peng [40] 98.56 80.25 98.54 - - 

Morphological 

Filtering Algo. 
98.76 98.87 99.17 96.88 100 
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E.  4.5. Clinical Feature Evaluation 

In this section, a medical valuation process was conducted 
to accurately evaluate the efficiency in addition to the 
reliability of the proposed algorithms in terms of extracting 
helpful medical features. These clinical features include the 
tortuosity, length, density, and thickness of the blood vessel, 
which are efficiently used to detect several ophthalmological 
diseases. In the conducted experiments, the automated 
estimations of the four clinical features were calculated by 
utilizing the definition of the clinical feature on GT pictures in 
the adopted datasets. 

Initially, the automated estimation of the clinical features 
from the DRIVE dataset using the 1st human observer was 
computed by the proposed algorithms and directly compared 
with the reference values generated from the GT images of the 
1st human observer. The overall average (AV.), Standard 
Deviation (STD), Maximum (Max), and Minimum (Min) of 
each clinical feature on manual in addition to automated 
generated pictures. Moreover, (Diff) represents the Difference 
and (Diff %) represents the percentage difference between 
both of them which are presented in Table V. The overall 
average of (Diff%) between the manual shrinkage method and 
automated using the proposed morphological filtering 
algorithm was less than 19%, 16.5%, 10%, and 18% for the 
tortuosity, thickness, length, and density, respectively. 

TABLE V. EXECUTION COMPARISON WAS CONDUCTED BETWEEN THE 

MANUAL SHRINKAGE METHOD AND AUTOMATED ESTIMATIONS OF FOUR 

CLINICAL FEATURES UTILIZING THE 1ST HUMAN OBSERVER OF DRIVE 

DATASET 

 Manual Morphological Filtering 

 TC TC Diff Diff % 

AV. 1.814 1.5015 0.312 18.85 

STD 0.8628 0.7877 0.075 9.095 

Max 3.78 3.68 0.1 2.680 

Min 1.06 1.02 0.04 3.846 

 Thick. Thick. Diff Diff % 

AV. 3.7735 3.2015 0.572 16.401 

STD 0.3722 0.2796 0.092 28.413 

Max 4.32 3.72 0.6 14.925 

Min 2.98 2.75 0.23 8.02 

 NL NL Diff Diff % 

AV. 33.447 36.934 -3.48 9.910 

STD 4.5592 6.8644 -2.30 40.363 

Max 47.48 53.46 -5.98 11.848 

Min 28.83 23.89 4.94 18.740 

 ND ND Diff Diff % 

AV. 0.0129 0.0108 0.002 17.884 

STD 0.0103 0.0092 0.001 10.805 

Max 0.0343 0.0261 0.008 27.152 

Min 0.0025 0.0017 0.0008 38.095 

Using the 1st human observer of DRIVE dataset, Pearson 
correlation plots were also adopted to further confirm the 
clinical reliability and usefulness of the proposed blood vessel 
segmentation algorithms as effective tools to provide a precise 
and automated estimation of the vessel's clinical features. As 
shown in Fig. 13, the proposed morphological filtering 
algorithm has managed to achieve (r) representing Pearson’s 
correlation and (p) representing coefficient of: (r = 0.86, p < 
0.0001) for vessel tortuosity, (r = 0.86, p < 0.0001) for vessel 
thickness, (r = 0.79, p < 0.0001) for vessel length, and (r = 
0.91, p < 0.0001) for vessel density. 

 

Fig. 13. Correlation Plots between Manual using the 1st Human Observer and 

Automated Clinical Estimations for the DRIVE Dataset using the Proposed 

Morphological Filtering Algorithm: (a) Tortuosity, (b) Thickness, (c) Length, 

and (d) Density. The Same Clinical Evaluation was Carried Out to Get the 

Automated Estimation of the Clinical Features from the DRIVE Dataset using 

the 2nd Human Observer. 

Fig. 14 and Table VI presents the selected morphological 
filtering has managed to achieve (R) and (P) with the scale of : 
(r = 0.94, p < 0.0001) for vessel tortuosity, (r = 0.86, p < 
0.0001) for vessel thickness, (r = 0.89, p < 0.0001) for vessel 
length, and (r = 0.76, p < 0.0001) for vessel density. 

TABLE VI. EXECUTION COMPARISON WAS CONDUCTED BETWEEN THE 

MANUAL SHRINKAGE METHOD AND AUTOMATED METHODS OF FOUR 

CLINICAL FEATURES UTILIZING THE 2ND HUMAN OBSERVER OF DRIVE 

DATASET 

 Manual Morphological Filtering 

 TC TC Diff Diff % 

Average 1.708 1.5015 0.206 12.868 

STD 0.903 0.7877 0.116 13.733 

Max 4.48 3.68 0.8 19.607 

Min 1.01 1.02 -0.01 0.985 

 Thick. Thick. Diff Diff % 

Average 3.834 3.2015 0.633 17.993 

STD 0.378 0.2796 0.099 30.123 

Max 4.3 3.72 0.58 14.463 

Min 3.12 2.75 0.37 12.606 

 NL NL Diff Diff % 

Average 33.543 36.934 -3.391 9.622 

STD 5.496 6.8644 -1.368 22.145 

Max 46.94 53.46 -6.52 12.988 

Min 26 23.89 2.11 8.454 

 ND ND Diff Diff % 

Average 0.013 0.0108 0.0024 20.6010 

STD 0.007 0.0092 -0.0017 20.233 

Max 0.0344 0.0261 0.0083 27.430 

Min 0.0013 0.0017 -0.0004 26.666 
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Fig. 14. Correlation Plots between Manual using the 2nd Human Observer 

and Automated Clinical Estimations for the DRIVE Dataset using the 

Proposed Morphological Filtering Algorithm: (a) Tortuosity, (b) Thickness, 

(c) Length, and (d) Density. 

TABLE VII. EXECUTION COMPARISON WAS CONDUCTED BETWEEN THE 

MANUAL SHRINKAGE METHOD AND AUTOMATED METHODS OF FOUR 

CLINICAL FEATURES UTILIZING HRF DATASET 

 Manual Morphological Filtering 

 TC TC Diff Diff % 

Average 1.580 1.5111 0.069 4.485 

STD 0.843 0.906 -0.062 7.196 

Max 5.38 4.3 1.08 22.314 

Min 1.02 1.02 0 0 

 Thick. Thick. Diff Diff % 

Average 3.834 3.380 0.454 12.584 

STD 0.592 0.557 0.034 6.033 

Max 5.79 4.98 0.81 15.041 

Min 2.67 2.44 0.23 9.001 

 NL NL Diff Diff % 

Average 28.983 27.949 1.034 3.632 

STD 3.673 4.302 -0.628 15.750 

Max 38.43 39.73 -1.3 3.326 

Min 23.56 20.17 3.39 15.504 

 ND ND Diff Diff % 

Average 0.0059 0.0054 0.0005 10.087 

STD 0.0035 0.0031 0.0003 10.240 

Max 0.0189 0.0189 0 0 

Min 0.0014 0.0011 0.0002 20.472 

The evaluation process is an important task to validate the 
proposed algorithm and has been used in many studies, such 
as [29-32]. Further evaluation was performed on HRF Dataset 
which contains 40 GT images to assess the performance of the 
selected blood vessel shrinking algorithms. As shown in Table 
VII, the overall Min, AV, Max, and STD of every clinical 
feature for the automated and manual pictures were computed 
along with the Diff and Diff % between them. The average 
Diff% between manual and automated estimations calculated 

using the proposed morphological filtering algorithm was 
4.485% v 2.560%, 12.584% v 12.59%, 3.632% v 2.484%, and 
10.087% v 5.529% for the tortuosity, thickness, length, and 
density, respectively. Correlation plots between manual and 
automated clinical estimations for the HRF dataset using the 
proposed morphological filtering algorithm are presented in 
Fig. 15. 

 

Fig. 15. Correlation Plots between Manual and Automated Clinical 

Estimations for the HRF Dataset using the Proposed Morphological Filtering 

Algorithm: (a) Tortuosity, (b) Thickness, (c) Length, and (d) Density. 

V. CONCLUSION 

In this study, a precise, quick, and fully-automatic blood 
vessel shrinking in addition to the clinical feature measuring 
system for retinal fundus images is presented. The proposed 
morphology has two main steps: separating the blood vessels 
and pulling out the clinical features. In the blood vessels 
segmentation stage, a fully-automated segmentation algorithm 
was proposed and named as a morphological filtering 
algorithm to classify the blood receptacles in the retinal 
internal pictures. The algorithm has its own image 
enhancement procedure which is addressed by pre-processing 
stage in order to figure out the problems of blurring, variation 
levels of the light, and poor contrast of the retinal internal 
picture, plus to promote the early diagnosis of several eye 
pathologies. Several exhaustive experiments were purely 
conducted to evaluate the efficacy of the developed fully-
automated shrinking algorithm in classified retinal blood 
receptacles using the DRIVE and HRF datasets of exceedingly 
demanding fundus images. Initially, the accuracy of the 
created algorithm was tested based on its ability to accurately 
recognize retinal blood receptacles. Five quantitative 
performance measures were computed to validate the efficacy 
of the selected algorithm, including the accuracy, sensitivity, 
specificity, positive predictive value, and negative predictive 
value of 98.78%, 98.32%, 97.23%, 90.22% and 95.56%. 
According to the HRF dataset results are based on five 
quantitative performance measures 98.76%, 98.87%, 99.17%, 
96.88%, and 100% respectively. Then, the efficiency and 
reliability of the proposed algorithm in terms of extracting 
useful and helpful clinical features were also evaluated by 
conducting a set of extensive experiments. Statistically notable 
correlations between the manual and automated estimations of 
the adopted four clinical features have been obtained using the 
proposed algorithm on both datasets (DRIVE and HRF). 
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