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Abstract—Industrial Control System (ICS) can suffer of 

cyber-physical attacks resulting in accident, damage, or financial 

loss. The attacks can be detected in both in physical space or 

cyberspace of the ICS. The detection in physical space can be 

based on physical models of the system. To model the physical 

system this study uses a data-driven modeling approach as an 

alternative of the analytic one. This study models the system 

using the dynamic mode decomposition method with control 

(DMDc) assuming a full state measurement. The attack detector 

used in some researches with predictive physical models is the 

cumulative sum (CUSUM), which only applies to normally 

distribute residual data. To detect any cyber-physical attack, this 

research uses a nonparametric exponentially weighted moving 

average (EWMA) detector. This study uses a data set from a 

testbed of Secure Water Treatment (SWaT). The approach used 

in this study was successful in detecting 8 out of 10 attacks on the 

first SWaT subsystem. This study demonstrates that DMDc used 

in this study results a better goodness of fit and the 

nonparametric EWMA can be used as an alternative as detector 

when residual data do not follow a normal distribution. 
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I. INTRODUCTION 

Industrial Control System (ICS) is automation system used 
to control and monitor industrial functionality. It can be found 
in the industrial sectors and critical infrastructures, such as 
nuclear and thermal plants, water treatment facilities, power 
generation, heavy industries, and distribution systems [1]. 

ICS has four levels to conduct its functionalities [2]. On 
the field level, it has sensors and actuators. On the control 
level, it has a programmable logic controller (PLC). It has a 
human-machine interface (HMI), and on the enterprise level, it 
has an information technology (IT) system. The second and 
third levels with their cyber components conduct computation 
to control physical space. With this trait, ICS is an example of 
cyber-physical systems. 

As a cyber-physical system, ICS carries the risk of 
cyberattacks aimed to disrupt the physical processes. A cyber-
physical attack is an attack via cyberspace that targets the 
physical system of the ICS. Examples of such attacks are 
Stuxnet which attacked Iran's uranium enrichment facilities, 
and Black Energy 3 which struck several power transmission 
substations in Ukraine [3]. These attacks can have some 
adverse effects on factory safety or financial loss. 

To detect cyber-physical attacks on ICS, researchers 
develop intrusion detection systems (IDS). There are three 
IDS categories for ICS [4], protocol analysis-based, traffic 
mining-based, and control process analysis-based. The former 
two categories are conducted in cyberspace. The third 
category is conducted on physical space and includes process 
data analysis-based, control command analysis-based, and 
physical model-based techniques [4]. 

This study is in the field of detection in physical space 
using a physical model, i.e. the third category in [4]. The work 
in [5] identify that most of researches in this field do not use 
input-output approach in modelling physical behavior and 
most use the simulation data. This research proposes to use 
dynamic mode decomposition method with control (DMDc) 
as a system identification with input-output method. It will be 
applied to a real data from a testbed not at simulation data. 

To detect the anomalies, some researches use cumulative 
sum (CUSUM) that has an assumption that the distribution is 
normal. In this research we propose to use nonparametric 
exponentially weighted moving average to cover all 
distribution condition. 

The significant contributions of this work are: 

 We anticipate a full state measurement condition of 
physical systems. To model it, we use DMDc as a kind 
of a system identification approach. 

 We use EWMA detector as an alternative for CUSUM 
detector to cover a non-normal distribution of residual. 

The rest of the paper is organized as follows. In section 2 
related works are presented. It posits our research in the field 
of detection of cyber-physical in physical space of ICS. 
Section 3 presents the research methods of this study. It covers 
the DMDc method and EWMA detector. In section 4 the 
results of the experiment are presented and discussed. 

II. RELATED WORKS 

According to Urbina et al. [5], there are two ways to 
model physical systems. The first is to develop a physical 
equation model that connects all the physical parameters to 
determine the system's dynamics. The second is to create a 
model based on observation through a technique known as 
system identification. Most researchers use the first approach, 
and only a few uses the second. 

Researchers in [16] use input-output model developed 
from physical equation for a water treatment system. Their 
research leverages connectivity of two subsystems to detect 
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any cyber physical attack to upstream with behavior of the 
downstream of the system. Their experiment is launched 
directly to a real system and their procedure was conducted at 
the real time. 

Our study is focused on the use of system identification 
and not model the system using physical equation. There are 
two options in system identification, output only model and 
input-output model. Researchers in [5] used both approaches 
to model a physical system. The system is a simulator of 
frequency control in the power grid. After comparing both 
models, researchers in [5] concludes that the input-output 
model has a potential in detection and motivates future 
researchers to use it to model physical systems. To detect any 
cyber-physical attacks, there is a need to model the physical 
model from measurement data in the form of input-output 
model. 

Researchers in [6] used the system identification method to 
model a physical system with the input-output model. They 
used a method in a group of subspace models. They used 
EPANET, a software that can customize a water distribution 
system simulator as the physical system. 

Other researchers [7] conduct modelling with subspace 
system identification with input-output model with CUSUM 
detector, bad data detector, and noiseprint. To detect the 
anomaly, they used CUSUM detector with false positive target 
around 5%. 

Usually, the system identification approach used in [5,9] 
do not assume that the system being modeled is in full 
measurement. But nowadays, with the affordability of 
measurement cost, the system status can be measured in full. 
Unlike the studies, our study proposes using dynamic mode 
decomposition with control (DMDc) to model the physical 
system, assuming a complete system measurement. 

The author in [5] used simulations as physical systems to 
be modeled. But there is a problem with simulations; although 
the physical model is detailed but the simulation is not in a 
real situation. Unlike theirs, our study uses a data set from 
Secure Water Treatment (SWaT), a physical system testbed 
that mimics a real water treatment system. 

Some researchers use the same data set to propose their 
method to detect cyber-physical attacks. One of them [8] uses 
a graphical model-based approach that will be compared with 
our work. 

Based on the physical model, cyber-physical attacks can 
be detected by monitoring an anomaly in the systems. The 
monitoring systems get inputs from sensors and command 
controls and then identify any anomalies [6]. Some 
researchers use CUSUM detector or bad data detector [5, 6, 7, 
9, 16]. But the use of both as detector applies only to data with 
a normal distribution. Because not all conditions meet the 
normal distribution, our study proposes to use a nonparametric 
exponentially weighted moving average (EWMA) detector 
that does not depend on data distribution. 

III. RESEARCH METHOD 

In this section, we will explain the methods we used in our 
research. It includes details of DMDc, nonparametric EWMA, 
and a brief explanation of steps to apply the methods. 

A. Physical System Modelling 

A discrete state-space model will be used to represent the 
ICS control system. This model is used because it is generally 
more compatible with discrete digital controls. For discrete-
time systems, the time may be referred as an integer index k= 
0, 1, 2, ... In the system, the state as a set of variables from the 
system can be estimated based on the previous state. Given a 
linear system has several states, inputs, and output, 
respectively. The equation of the system can be modeled as 
shown in (1) and (2). 

xk+1=Axk +Buk              (1) 

yk+1=Cxk                 (2) 

In (1) and (2), xk Rn is the state of the system at time k, uk 

Rl is the input, and yk Rq is the output with n, l, and q as 
number of states, inputs, and outputs respectively. Meanwhile, 
A is a dynamic matrix, B is the control matrix, and C is the 
discrete-time sensor matrix. State vector x from the system 
can be estimated from sensor measurement y. There is a 
condition called full state measurement if all components of 
the state vector can be measured. 

The system can be modeled with a system identification 
approach, namely by using measurement data to obtain the 
desired model. In this study, the dynamic mode decomposition 
(DMD) method [10] is used, assuming that measurements are 
made of all states of the system (full-state measurement). 

Initially, DMD was developed for systems that do not have 
input, for example, control input. By taking into account 
control input, DMD method developed to be DMD with 
control (DMDc). Both DMD and DMDc methods initially 
were developed for large dimension systems with a dimension 
reduction. The next exposition will explain DMDc method 
based on [10] but without dimension reduction steps. 

DMDc analyses the relationship between measurement 
vectors at k+1 (xk+1) with the measurement at k (xk) and 
control input at k (xk+1). The three data are assumed to be 
approximately by linear operators A and B relates as shown in 
(3). 

xk+1Axk +Buk                (3) 

where xkRn, ukRl , ARnxn, and BRnxl with n and l are 
number of sensors and actuators respectively. DMDc tries to 
find the solution for operators A and B. 

If there are m measurements for n sensors in vector x we 

can create a matrix X with dimension n x m, XRnxm. We can 
create matrix Y and Z from matrix X, where Y is matrix X 
without its first column, while Z is matrix X without its last 
column. The relationship of matrix Y and Z with matrix A can 
be described with (4). 

Y  AZ               (4) 
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Accordingly, from control vector u, we can create a matrix 

Rlx(m-1) contains the 1st data to m-1th data for l actuators. So 
(4) can be rewritten to be (5). 

Y  AZ+B               (5) 

A concatenation method can be used to assign matrix G = 

[A B] and matrix  = [
Z


] to solve the (5). Thus, (5) changes 

to be (6) as follows. 

Y  G               (6) 

Then Y and   is stated as eigen decomposition of the 
matrix G as shown in (7). 

G  Y †               (7) 

Where † means Moore-Penrose pseudoinverse. The 
accurate and efficient method to find the pseudoinverse is 
singular value decomposition (SVD), as shown in (8). 

=UV*                (8) 

where URnxn, R(nxm)-1 and V*R(nxm)-1. 

Using the SVD of Y, the matrix G can be approximated 
with (9). 

G  G̅ = YV−1U∗               (9) 

where G̅ is an approximation of the matrix G. From the 

matrix G̅, the approximation of matrix A and B can be 
obtained by breaking operator U into two separate components 
given by (10)  

[A, B] ≈ [A̅, B̅] = [YV−1U1
∗, YV−1U2

∗  ]          (10) 

where U1Rnxn, U2Rlxn, and [U∗] = [U1
∗ U2

∗]. From (10), 
the dynamic systems can be constructed to be (11) as follows. 

x𝑘+1 = A̅x𝑘 + B̅u𝑘             (11) 

Equation (11) is the model we use to mimic the behavior 
of the physical system. 

B.  Residual and Non Parametric EWMA 

Cyber-physical attacks on industrial control systems have 
a potential to change sensor readings behavior. Therefore, the 
difference between the estimates obtained from the model and 
the sensor readings can be monitored. The behavior of to the 
difference can be used to indicate if any attack to the system. 
The difference is called the residual r𝑘, namely the difference 
between measurement at k, x𝑘, and the estimation x̂𝑘 as shown 
in (12). 

r𝑘 = x𝑘 − x̂𝑘              (12) 

The value of estimation x̂𝑘 is determined by (11); thus, 
(12) can be expressed as (13) as follows. 

r𝑘 = x𝑘 − (Ax𝑘−1 + Bu𝑘−1)            (13) 

The sensors of the system can be more than one, so with 
i={1,…, n}, 𝑟𝑘,𝑖 is residual of sensor i at measurement k. 

Murguia et al. [9] used individual sensor residual to monitor 
cyber-physical attacks by making them input for CUSUM 

detector and bad data detector. The two detectors implicitly 
assume that the residual follows a normal distribution. 

In this study we use a nonparametric Exponentially 
Weighted Moving Average (EWMA) as the residual does not 
follow a normal distribution. This approach is generally used 
to statistically monitor a product's quality or process [11, 12]. 
The next description will explain the approach as describe in 
[12]. 

Given 𝑋𝑘 is the individual measurement from the 
continuously monitored distribution with median 𝜃, SN as 
statistic sign can be provided by (14). 

SNk = sign (Xk-)             (14) 

where: 

𝑠𝑖𝑔𝑛(𝑥) = {
1 if 𝑥 > 0
0 if 𝑥 = 0

−1 if 𝑥 < 0
              (15) 

The plotting statistic (Zk) of the nonparametric EWMA as 
a sequentially accumulating the sign statistic SN1, SN2, 
SN3,…defined by equation (16). 

Zk = SNk +(1- )Zk-1           (16) 

where  is a weighting that has a value from 0 to 1, and 
Z0=0. 

Two controls can be used for the value of Z, upper control 
limit (UCL) and lower control limit (LCL), that can reach its 
steady-state after a long time. They can be determined by 
using (17). 

𝑈𝐶𝐿 = 𝐿√


2 − 
   

𝐶𝐿 = 0               (17) 

𝐿𝐶𝐿 = −𝐿√


2−
   

In (17) CL is the central line valued as 0. The values can 
be used to determine if the system is under control or not. 

The choosing of parameters L and  is conducted to get the 
targeted average run length (ARL), namely the number of 
average measurements before the detector detects an anomaly 
from a normal condition. Graham [11] has calculated the value 

of pair parameter L and  for nonparametric EWMA with the 
Markov method until ARL=500. 

We need to calculate the alarming rate that gives us the 
number of Zk values calculated by (16) exceed UCL or LCL 
for a while. Then we set Zk=0 if Zk-1≥UCL or Zk-1≤LCL. 

C. Detection Parameter 

We assume there is difference behavior between an attack 
condition with the normal one. In this research we use 
comparison of false alarm rate (FAR) or false positive rate 
(FPR) value between both conditions. 
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Fig. 1. Flow Chart of Detection System Set up. 

The value of FPR is targeted in normal condition and 
considered as alarm rate of the system or components. Using 
the value as the baseline we judge a condition is under attack 
if FPR of a component is significantly more than its normal 
condition. With its procedure, security operator monitoring the 
system can detect any potential attack if the alarm rises 
significantly than the baseline. 

D. Research Steps 

Before using DMDc to model the physical system, we 

calculate L and  values for specified ARL, for example, 
ARL=500 if we expect to get one false alarm per 500 
measurements. The values were then used to calculate the 
value of UCL and LCL. 

Parallel with previous steps; the physical system is 
modeled using DMDc method with the input of the normal 
condition data. Then the acquired model is validated by 
calculating its goodness of fit. If the value is satisfying, we 
calculate residuals as differences between model estimation 

and measurement. Based on the value of the residual, L, , 
UCL, and LCL, we calculate the value of Zk. The alarm rate 
baseline is calculated based on the number of Zk values that 
exceed UCL or LCL. 

The next step is to use the model to detect cyber-physical 
attacks. The following procedure will be applied for every 
attack separately. With the acquired model from the previous 
steps, residuals' value is obtained by applying DMDc method 
on the data set in attack condition. Like previous steps in 
normal conditions, the value of alarm rate can be obtained 
using a parametric EWMA method. 

To judge if the concerned attack is detected, we compare 
the alarm rate baseline's value of the alarming rate. We believe 

that alarm is detected if the alarming rate is ten or more from 
the baseline. Fig. 1 shows the flowchart of the research steps. 

IV. RESULT AND DISCUSSION 

In this section, we will discuss our research results based 
on steps explain in the previous section. 

A. Physical Modelling  

This study uses the data set collected from a testbed that 
simulates Secure Water Treatment (SWaT) [13,14]. SWaT is a 
testbed in a full-scale replica water treatment facility 
consisting of several subsystem stages. A data set containing 
network data and process data is generated [13] recorded 
every second. The data set consists of two parts: 

1) Data set of the system in a normal state without attack, 

2) The data set of the system under attack condition. 

The SWaT system has six subsystems, as described in 
[13], from subsystem P1 to P6. For this research, we use the 
first subsystem, P1 only, namely the subsystem that takes raw 
water and stores it in a reservoir. This subsystem has several 
main components [13], namely an MV-101 valve that drains 
water from the source into the storage tank T.101, whose 
water level is measured by the sensor LIT-101. Meanwhile, a 
flow meter FIT-101 is used to measure the source’s flow rate 
into the tank. A pump P-101 is used to drain water from the 
reservoir to the next subsystem. Also, this subsystem has a 
pump P-102 as a backup for the pump P-101. Fig. 2 [13] 
shows the components and piping of the subsystem P-1. Thus, 
there are two sensors and three actuators in subsystem P1 as 
shown in Table I. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 10, 2022 

493 | P a g e  

www.ijacsa.thesai.org 

T-101

 

MV-101

FIT-101

P-101

P-102

FEED 
WATER

LIT-101

 

Fig. 2. Subsystem P1 of SWaT [13]. 

TABLE I. COMPONENTS OF THE SUBSYSTEM P1 

Component Type Units 

Flow rate FIT-101 Sensor m3/h 

Level meter LIT-101 Sensor mm 

ValveMV-101 Actuator On/off 

Pump P-101 Actuator On/off 

Pump P-102 Actuator On/off 

We use DMDc to model the subsystem P1 in the form of 
the discrete linear model provided by (11). From (11), the 
vector x contains subsystem P1 as a dynamic variable 
following the dynamics of water supply and demand for raw 
water. Thus, the vector x includes the measurement of the 
LIT-101 sensor. Meanwhile, the vector u in (11) contains the 
input into the subsystem. Among these inputs is the water 
supply, whose debit is measured using the FIT-101 sensor. 
Another information model for subsystem P1 is the pump P-
101 pump and its pump P-102 as a backup. 

The two pumps are modeled because the two pumps can 
be turned on alternately. The MV-101 valve is not modeled as 
it is redundant to the FIT-101. When the MV-101 valve is 
turned on, water flows with the discharge measured by the 
FIT-101 sensor. Thus, in (11), subsystem P1 can be modeled 
in its discrete form with (18). 

[LIT − 101𝑘+1] = 𝐀̅ [LIT − 101𝑘] + 

𝐁̅ [

FIT − 101𝑘

P−101𝑘

P − 102𝑘

]             (18) 

In this subsystem modeling, matrix 𝐀̅ and 𝐁 ̅ are matrices 
that will be sought with the DMDc method by using a dataset 
in normal conditions without attack as input. Data set for 
normal conditions without attack contains measurement 
results of sensors and actuator conditions that are monitored 
every second. There are 494999 pieces of datum for each 
sensor and actuator. The first 3.5 hours of data are not used to 
let the system achieves a steady-state condition. The 
remainder is divided into two, 70% data for modeling and 
30% data for testing. 

Start from (5), the matrix Y is obtained as sensor 
measurement data from the 2nd to mth measurement, the matrix 

Z the sensor measurement data from the 1st to m-1th 

measurement, and the matrix  as the actuator data from the 
1st to m-1th measurement. Furthermore, by following the 

procedure as described in (6) to (10), the values of a matrix A̅ 
and B ̅in (18) is obtained as follows. 

𝐀̅ = [1.000] 

𝐁̅ = [0.195 − 0.461 0.392] 

With the values of the matrix A̅ and B̅, the value of the 
inflow of water from the source and the water level at k + 1 
can be estimated based on the measurement value at time k. 
The comparison of the level value of water in the tank 
measured by the LIT-101 sensor with the model's estimation 
results is shown in Fig. 3. 

The estimation results are then compared with the actual 
measurement value to determine the model's level of 
suitability (goodness of fit) with the measurement results. 
Based on calculations using data for testing (30% of the 
overall data), the goodness of fit of the sensor LIT-101 is 
99.7%. The value of goodness of fit is better than result in [6] 
that use another method of system identification. They use 
simulation data from EPANET, software to simulate a water 
system. With their method they achieve goodness of fit of 
70%. 

The value of goodness of fit shows a good agreement 
between model and measurement. Since the data set to test the 
model is independent of the training data set, it can be 
concluded that the model is not overfitted to the training data. 

Meanwhile, Fig. 4 shows the error fluctuation in the form 
of the difference between the measurement results and the 
model estimation results. The error fluctuation is calculated 
with (13) as a residual that will be used to monitor the 
anomalies of subsystem P1. 

B. Nonparametric EWMA 

The residual as the difference between the estimation 
results from the model and the measurement at each time k 
resulted has a non-normal distribution. Therefore, the use of 
the CUSUM detector cannot be legitimized, and thus the 
nonparametric EWMA detector as described previously is 
used in this study. 

The EWMA detector has a parameter  and L as shown in 
(16) and (17). For this study we choose ARL0=500. For this 

ARL value we choose a low value of  (=0.01) to get a 

smooth change of Zk sequences. For this value , Graham [11] 
get value of L = 1.990 as his calculation with Markov method. 

With the value of L and , we calculate the control limits 
for UCL and LCL for a normal condition of their residual 
value of sensor LIT-101 with (17). The acquired values for 
UCL and LCL are 0.141067 and -0.141067 respectively. 

With the acquired value of the parameters, the value of Z 
is sequentially calculated by (14). The value of Zk fluctuates 
between the value of UCL and LCL as shown in Fig. 5. When 
it hits one of them the next value will be set to zero and the 
sequence starts again. 
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Fig. 3. The Dynamics of the Water Level from Measurement and Estimation. 

 

Fig. 4. Error Fluctuation of the Estimation of Water Level. 

 

Fig. 5. The Fluctuation of Value Z with UCL and LCL as the Control. 

The Zk value passes UCL and LCL with a ratio of 1 in 489 
data (alarm rate equals 0.00204). In other words, about 2.2% 
deviations from the ARL calculation theoretically using the 
Markov method of ARL0=500 as the target. From the 
perspective of detection, the ratio is an expected false alarm 
rate in a normal condition. We use the value of the ratio as the 
baseline where the alarm rate of attack conditions will be 
compared, as we will explain in the next subsection. 

The benefit of using nonparametric EWMA than CUSUM 
as in [5, 6, 9] is there is no need to assume the distribution of 
residual r as normal. As shown in the next subsection, this 
approach can be used to detect the cyber-physical attack as 
other detector. 

C. Detection of Cyber-physical Attacks 

 To test the proposed detection design, we also use data set 
in [14] that contains sensors and actuators data from the 
SWAT under attack conditions. The attacks result in the data 
set use attack and attacker models developed by Adepu and 
Mathur [15]. The attacker model relates to the attacker's 
intention with the systems' components, properties, and 
performance. 

The attack model captures the space of potential attacks 
aimed at achieving a specific set of goals. For example, an 
attack has a plan to make a tank overflow. The attack needs to 
consider some points of the system involved, for example, 
pumps or valves. A suitable procedure to launch the attack 
consists of identifying the tag in the programmable logic 
controller (PLC) that should be manipulated and a step to 
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compromise the link between PLC and supervisory control 
and data acquisition (SCADA) a step to conduct the 
manipulation of the tag. 

There were 41 attack scenarios launched to the SWaT 
testbed, but only 36 attacks had physical impacts and were 
recorded in the data set. From the 36 attacks, there were 10 
attacks involving the subsystem P1 in the data set as shown in 
Table II. All of the attack scenarios were launched to 
subsystem P1 only, but scenario 26 launched to subsystem P1 
together with subsystem P3. 

The system model and the nonparametric EWMA detector 
obtained from the previous section are used to detect cyber-
physical attacks based on the data set [12]. The model is used 
to estimate the LIT-101 sensor reading value at time k + 1 
with the time k. The estimation result is compared with the 
sensor reading value, which produces a residual value rk. Then 
the residual value is used to detect an attack with an indication 
if the Zk value exceeds the UCL or LCL values. 

The Zk value is calculated using (16) and (17) for each 
attack as described in Table II. As an illustration, Fig. 6 show 
the behavior of Zk when subsystem P1 is under attack number 
2 condition. Differ from the normal condition as shown in 
Fig. 5 that show a random behavior, the value of Zk in attack 
no 2 as shown in Fig. 6 is systematically pushed to hit its 
lower threshold LCL. The change of behavior is an indication 
that the system is not in normal condition and the cyber-
physical attack is a probable cause. As explained in the 
previous subsection, the baseline of false alarm rate (FAR) or 
False Positive Rate (FPR) for sensor LIT-101 calculated in 
normal conditions based on the normal condition dataset is 
0.0020 (0.2%). To judge if any attacks can be detected, we 
compare the alarming rate in any attack conditions with the 
baseline. 

TABLE II. DESCRIPTION OF ATTACKS SCENARIO 

 No. 
Attack 

Number 
Description of the attack Duration (s) 

1 1 Open MV-101 940 

2 2 Turn on P-102 1407 

3 3 
Increase LIT-101 by 1 mm per 

second 
383 

4 21 
Keep MV-101 on continuously; 

Value of LIT-101 set as 700 mm 
701 

5 26 

P-101 is turned on continuously; 

a set value of LIT-301 as 801 

mm 
1445 

6 30 

Turn P-101 on continuously: 

Turn MV-101 on continuously; 

Set value LIT 101 as 700 mmP-

101 

1171 

7 33 Set LIT-101to above H 444 

8 34 Turn P-101off 101 

9 35 Turn P-101off; keep P-102 off 481 

10 36 Set LIT-101 less than LL 474 

 

Fig. 6. The Fluctuation of Value Zk when System is under Attack no.2 

Condition. 

TABLE III. ALARM RATE FOR ATTACKS INVOLVING SUBSYSTEM P1 

No. 
Attack 

Number 

Alarm rate (compared 

to baseline) 
Judgment 

Detection in 

[8] 

1 1 
0.0021 
(1.40) 

Not 
detected 

Detected 

2 2 
0.0452 

(22.09) 
Detected Detected 

3 3 
0.0470 

(22.99) 
Detected Not detected 

4 21 
0.0585 

(28.62) 
Detected Detected 

5 26 
0.0505 
(24.72) 

Detected Detected 

6 30 
0.0564 

(27.58) 
Detected Detected 

7 33 
0.0495 

(24.24) 
Detected Detected 

8 34 
0.0297 

(14.53) 
Detected Detected 

9 35 
0.0 
(0) 

Not 
detected 

Detected 

10 36 
0.0570 

(27.89) 
Detected Detected 

We choose if the alarm rate is more than 1 order (multiply 
by 10) compared to the baseline rate of 0.0020. The choice is 
based on consideration that person operate and monitor the 
security system can detect the anomaly in 1 order. Based on 
this procedure, 8 from 10 attacks can be detected, as shown in 
Table III. The alarm rates for detected attacks as shown in 
Table III are 14 to 28 times greater than the baseline of 
0.0020. 

The results show that our approach can detect all attacks 
involve sensors as targets (Scenario 3, 21, 26, 30, 33, and 36). 
This success can be understood because our approach 
monitors the value of water level. Thus, the discrepancy 
between sensor reading and model estimation can increase or 
decrease the Z value systematically. 

The other four attacks (scenarios 1, 2, 34, 35) involve 
actuators only. It is just two (scenarios 2 and 34) of the four 
attacks that can be detected. Attack scenario 1 opens valve 
MV-101 when it should be close. The attack cannot be 
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detected because the level sensor will respond normally with 
raw water flow. The other three attacks involve one or both 
pumps. The three attacks cannot be interpreted easily because 
of a long normal condition pump P-102 as a backup was never 
turned on. 

It is to be noted that the attacks duration is vary from 
around 1 to 3 times ARL as shown in Table I, except the 
attack no. 34 is only 100 seconds. Because of the random 
nature of the residual r, it can be understood that the alarm 
rate of attack no. 35 is zero. But for the other attacks that our 
set up can detect them their short durations does not affect the 
detectability. 

As a matter of comparison, Table III contains the research 
results [8] that used the same SWaT data set but with a 
different approach. The research uses a novel graphical 
model-based approach for anomaly detection. From the table, 
it can be concluded that their system is better than ours to 
detect attacks on actuators. But their system cannot detect 
scenario three that ours can detect. The scenario can be under 
the radar of detection because it increases the reading of the 
sensor gradually. Based on the consideration our approach has 
a promising result to be leveraged to detect stealthy attacks. 

V. CONCLUSION 

In this study, the physical modeling is successfully carried 
out using the DMDc method with a goodness of fit of 99.7%. 
It shows that the model has a good agreement with the 
measurement. The high value of goodness of fit gives the 
model a potential to be used to detect any anomaly caused by 
cyber-attack deviating the sensor measurement or actuator 
signal. 

The difference between the model's predictions and the 
actual sensor measurement results is monitored with a 
nonparametric EWMA detector to detect anomalies resulting 
from cyber-physical attacks. From 10 attacks conducted to the 
subsystem, 8 of them can be detected using method used in 
this research. Compared with the baseline in normal condition, 
the alarm rates of detected attacks are 14 to 28 times greater. It 
shows that this method is successful in detecting most attacks, 
especially on sensors. 

As observed in [5] there is a lack of use of input-output 
models in security field. Besides that, most of researches in 
security using physical-model use physical equation and not 
many researches use data-driven method. The other lack is use 
of real data or data drawn from testbeds, and mostly use 
simulation data. Our research fills the lacks by using DMDc as 
input-output model and it is a kind of system identification 
using data to model the physical behavior of system. Our 
research also uses the data collected from a test bed. 

When we start our research, we plan to use CUSUM as the 
detector to detect anomalies as proposed in [5, 6, 9]. But we 
find that in our research the distribution of residual is not 
normal. Then the nonparametric EWMA is used to detect the 
anomalies. This research show that DMDc as a system 
identification combined with EWMA as detector can be used 
to detect cyber-physical attacks. 

In future, this research can be continued by utilizing the 
interrelationships between subsystems. In this case, attacks on 
the upstream subsystems may be detected by the downstream 
subsystems. With the approach the detection probability may 
be increased because of the double detection, in the subsystem 
itself and in its downstream. Differ from [16] we use system 
identification method with DMDc instead of physical 
equation. 
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