
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

45 | P a g e

www.ijacsa.thesai.org

A Review of Automatic Question Generation in

Teaching Programming

Jawad Alshboul, Erika Baksa-Varga

University of Miskolc, Faculty of Mechanical Engineering and Informatics, Miskolc, Hungary

Abstract—Computer programming is a complex field that

requires rigorous practice in programming code writing and

learning skills, which can be one of the critical challenges in

learning and teaching programming. The complicated nature of

computer programming requires an instructor to manage its

learning resources and diligently generate programming-related

questions for students that need conceptual programming and

procedural programming rules. In this regard, automatic question

generation techniques help teachers carefully align their learning

objectives with the question designs in terms of relevancy and

complexity. This also helps in reducing the costs linked with the

manual generation of questions and fulfills the need of supplying

new questions through automatic question techniques. This paper

presents a theoretical review of automatic question generation

(AQG) techniques, particularly related to computer programming

languages from the year 2017 till 2022. A total of 18 papers are

included in this study. one of the goals is to analyze and compare

the state of the field in question generation before COVID-19 and

after the COVID-19 period, and to summarize the challenges and

future directions in the field. In congruence to previous studies,

there is little focus given in the existing literature on generating

questions related to learning programming languages through

different techniques. Our findings show that there is a need to

further enhance experimental studies in implementing automatic

question generation especially in the field of programming. Also,

there is a need to implement an authoring tool that can

demonstrate designing more practical evaluation metrics for

students.

Keywords—Question generation; question generation

techniques; automatic question generation; teaching programming

I. INTRODUCTION

A. Background

In recent years, a number of researchers have been attracted
from different disciplines toward automatic question generation
for educational purposes [1] [2] [3]. The researcher in [4]
defined question generation as “It is an activity of automatically
generating questions for different inputs like raw text through
semantic illustration”. The definition shows that the generated
question type can differ like being a sentence, a semantic map,
or a paragraph. The educational question generation is not a
new concept, but it has a long history and can be traced back to
the use of logic in questions [2], [4], [5]. Cohen is the pioneer
of this research area who initially proposed the content for
generating questions through an open formula and used one or
more unbound variables [1]. Whilst research on generating
questions is carried out for a long time, using techniques for
automatic question generation for teaching computer
programming has raised interest only recently amongst various

research communities, because it requires inclusion of
cognitive science, natural language processing and human
interaction with computers. Intelligent Tutoring System (ITS)
is the recently proposed computer-based teaching context to
help students learn programing languages but to the best of our
knowledge, computer-based applications for teaching
programming are not widely implemented [2]. With rising
novice computer scientists, specific questions are generated
which can address knowledge gaps that were often negligible
in the manual process of articulating questions [6]. In support
of enhancing the metacognitive skills of students, asking
students to generate questions can be a constructive process but
the use of various metacognitive skills can be time-consuming
and needs extended knowledge of various metacognitive
strategies.

B. Problem Statement

The success of a rule-based question generation (QG)
method depends on the quantity and quality of teachers’ domain
knowledge, language knowledge and the amount of time spent
on it. On the other hand, data-driven techniques have recently
emerged such as deep neural network-based methods that are
considered a promising approach for different tasks like
recognizing entities, and sentiment categorization. In particular,
teaching programing skills to students require extensive
motivation which cannot be an easy task from the teachers’
perspective. A key issue is, that students interact with a program
that has limited, syntactic and sematic level knowledge of a
programming language (for example a compiler or interpreter),
while teachers know and therefore can teach also the logic of
programming. This requires teachers’ knowledge of how to
apply the key concepts of computer programming and teach
them to students with appropriate models of Automatic
Question Generation (AQG).

The research in [7] provided a question generation method
considering a generative encoder-decoder model. The
researchers in [5] mentioned that although there are advances
made in the neural models for automatic question generation,
there is still a gap indicating a comprehensive survey on how
different learning paradigms can present improvements in
automatic question generation that broadens the input spectrum
of instructors for teaching programming. This shows that
various studies have been conducted on automatic question
generation process for educational purposes, but to the best of
our knowledge, there are only a few studies reporting on the
state-of-the-art techniques used for automatic question
generation in teaching programming languages, especially for
the previous six years i.e. 2017 till 2022. Thus, the objective of
this study is to review recent studies that provided different

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

46 | P a g e

www.ijacsa.thesai.org

techniques for automatic question generation with reference to
various methods required for teaching programming.

This review extends the systematic review previously
conducted on automatic question generation by Kurdi et al. [8]
that covered literature from 2014 and up to 2019, respectively,
by focusing on the domain of computer programming. The
extensive amount of research that has been published since
Kurdi et al, an extension of these studies is reasonable at this
stage as it helps in understanding recent developments in the
given field. The present article uses the previous article by
Kurdi et al. [8] as a starting point and extending the review in a
number of ways like additional review questions and criteria for
inclusion/exclusion, which is discussed in the methodology
section.

C. Research Questions

The questions that will be addressed in this research comes
as follows:

• What are the recent developments made in the
techniques for automatic question generation in
teaching programming?

• What is the difference in the state of the field focusing
on before COVID-19 and after COVID-19 period?

• What can be the future directions based on identified
gaps in the field of automatic question generation in
teaching programming?

D. Research Objectives

To address research questions the following objectives are
considered for this work:

• To review recent literature on the approaches and
techniques used for automatic question generation in
teaching programming.

• To analyze and compare the state of the field before
COVID-19 and after COVID-19 period.

• To provide summary of the challenges and future
directions in the field of automatic question generation
in teaching programming.

The remaining parts of the paper is structured as follows:
Section II represent a literature review which will address
previous work on the field. Section III describes the
methodology used to conduct this review. Section IV shows the
analysis and findings for the papers considered. Section V
concludes the paper. Finally, Section IV describes future
directions of this work.

II. LITERATURE REVIEW

Manual question creation consumes much time and labor.
The concept of question generation was envisioned back in
1960s [4]. It is generally estimated that learning scientists
believe that the provision of high-quality learning questions
must use the basics of language knowledge and domain
knowledge and so approach the activity using “rule-based”
technique [9]. The given approach used syntactic changes to
transform declarative sentences into questions. For example,
multiple choice questions were generated using rules of term

extraction. Next, questions were sometimes generated using
over-generate-and-rank manner that helped in ranking
questions [7]. The given methods were limited in their wider
applications and rules were also based on a few subjects, like
English language. They were not easily applied to other
domains, since defining rules and procedures needed
considerable efforts from expertise. The given methods are also
very limited and do not offer high quality questions, thereby
limiting the implementation of rule-based generators. However,
entering into digital landscape required wider-scale online
learning; hence, the demand for automatic question generation
is also increased along with massive number of online courses
available to learners. In order to address this need, various
computational techniques like deep neural network-based state-
of-the-art techniques were proposed [7] [6]. Du et al [4] is
pioneered in providing encoder-decoder sequence learning that
was later on used for automatic question generation. The given
model automatically captured question-asking patterns without
taking any help from hand-crafted rules, indicating supreme
performance over previous rule-based methods. However, it
had a major gap identified by scholars that this technique was
helpful in collecting data for machine reading comprehension
tasks. Notably, such datasets included a very limited number of
useful questions for learning, indicating that extended research
is needed to offer question generations for complex learning
documents to facilitate teachers.

Assessing students’ answers manually is also a time-
consuming mission. Depending on the type of the question, this
action can also be automatized more or less. Question types of
quizzes are generally categorized into two groups: objective
questions and subjective questions. Objective means that there
is only one correct answer, which can be checked
automatically. The objective questions request the learners to
select the correct answer from several options or offer a number
of words/short sentences as options or to complete a sentence.
Multiple-choice, matching, true-false, and fill-in-the-blank are
examples of objective questions, and they are considered the
most popular ones, since they provide automatic assessment
methods due to its their unambiguous, quick and trusted
evaluation process. On the other hand, the subjective questions
ask for a written answer composed by the learners and such
answer might be short or long. A short answer could be up to
three sentences while a long answer might be as long as an
essay. The subjective questions should have an increased
attention by the teachers to assess learner’s deep knowledge and
understanding of the topics, similarly to the traditional
education system that have been employed for centuries [10].

Most researchers have focused on generating objective-type
questions, automatically or semi-automatically, while limited
focus has put on subjective question generation because scoring
is a difficult challenge in the case of subjective assessment.
Comparing the level of difficulty to generate questions and in
assessing the learner’s answers, learner's assessment of the
textual question types is very easy for close questions and
multiple-choice questions, easy for open-close questions, and
difficult for subjective questions. Recent advances in deep
learning-based natural language processing (NLP) offer
promising solutions in answer assessment of objective-type
questions [10].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

47 | P a g e

www.ijacsa.thesai.org

A. Automatic Question Generation Process

In recent years, there has been an emerging interest in AQG
from the text, which is explained as an activity to generate a
question from a passage and optionally an answer. According
to [11], AQG helps in curating question-answer datasets and
improves our experience in Artificial Intelligence (AI) systems
and helps in designing educational materials. But for this
purpose, it is equally important for the questions to be
grammatically error-free and answerable. Pertinent approaches
emphasize on encoding the whole passage as the relationship is
shown between them using complicated operations and then
questions are generated in one single passage [12]. However,
empirical studies show that if careful analysis is carried out for
question generation, there are some approaches that probably
miss out one or more of the essential aspects of the questions.
For example, as mentioned in Table I, the question is generated
by the single-pass baseline model that is grammatically correct
but it does not fit to the answer [3].

TABLE I. THE PASSAGES AND THE QUESTIONS GENERATED FROM THEM

USING REFNET [8]

Passage 1: Functioned by Napoleon army in 1800, Warsaw was given the

authority of the newly established Duchy of Warsaw

Questions: Baseline: What was the governor of the newly established

Warsaw?

RefNet: Who gave freedom to Warsaw?

Reward-RefNet: Whose army was given freedom in 1800?

Passage 2: In order to fix the process of carbon dioxide into the sugar

molecules, the enzyme called rubisco is used by chloroplasts.

Questions: Baseline: What is used by chloroplasts?

RefNet: What is used by chloroplasts to fix carbon dioxide?

Reward RefNet: What is used by chloroplasts to fix carbon dioxide into the

sugar molecules?

Table I shows that there is a visible scope of enhancing the
general quality of the question generation process in
contemporary field of teaching [6]. In the literature, scholars
argue that one way is to approach this by constantly re-visiting
the passage and then answer them with the goal to refine the
preliminary draft by producing a better question in the second
stage and then bringing further enhancements in the further
stages [1][8]. This can be done using a comparison between
human process of generating questions and with the computer-
generated models [3]. In the examples above RefNet (Refine
Network) was used as the model to evaluate the initial questions
generated and then carried out a second test to generate revised
questions. The Reward RefNet used explicit reward signals to
attain the refined questions with two attributes: fluency and
answering. This RefNet is a sequence-to-sequence model that
includes two decoders called Initial and Refined decoder.
According to [13], the proposed dual model helped generating
the final question by revisiting the adequate parts of the input
passage and preliminary draft.

B. Automatic Question Generation in Teaching Programming

The Literature exhibited various approaches for automated
generation of questions, based on the extraction of featured
words given on the topic and established variations on the same
question for object-focused programming quizzes. For
example, [13] used programming-by-example for code snippets
that was a test regulated by synthesis. Recently, the research

article [15] provided facts for generating questions for teaching
programming languages. The study reported in [16] found that
students are taught by teachers to produce a program but they
are not fully sure about the use of their own codes as they failed
to grasp basic concepts. But if students are taught using Quality
License Scheme (QLS,) it can prompt them to have a deeper
level of understanding of given concepts. Schulte’s Block
Model of Program is another model used by scholars to attain
better understanding of programming that needs different levels
of knowledge about the program, and its purpose. However,
experts argue that such models need knowledge at different
levels ranging from individual building blocks to the integration
of constructs to complete deficient Research shows that we
cannot evaluate how coding process works as it requires skills
and debugging process and the aptitude of learners to trace code
that helps them write automatically testable code [18]. It is
hypothesized that writing codes in a programming language
requires preceding abilities of learners to write comparable
codes that can be better understood by questions about learner’s
code (QLCs) approach that helps in learning programming
comprehensions. On the other hand, in 2019, scholars of the
George Washington University created a software that
produced program-tracing questions for introducing
programming content to students [12]. But this system also
failed as the majority of questions were not applicable due to
their complex nature. Later, scholars used Turing test as the tool
to determine algorithm-based questions and identify the extent
to which they could be helpful for teachers to generate
questions that analyze students’ learning abilities [14]. But this
Turing test also did not pass as it failed to identify the particular
issue in the algorithm when generating questions. Later and to
extend this work, the researchers in [3] proposed a system
called QuizJET, as another tool for generating questions,
especially for teaching Java. This QuizJET was based on
template-based questions that was linked to different concepts
of Java and was actively used for generating quizzes; however,
the research conducted in [16] did not find any correlation
between the success rates of QuizJET and students’ home
assignment work, because QuizJET was more focused on
understanding programs while home assignments were focused
on writing skills of computer programming learners. Despite all
these, QuizJET was identified as a valuable source in preparing
students for exams.

III. METHODOLOGY

This study uses systematic literature review as the
methodological approach to assess and understand the pertinent
literature linked with research questions. From a number of
approaches available in the literature for systematic review of
studies, this study uses the approach provided by the
researchers in [16] who provided detailed guidelines for
conducting reviews. The methodological review consists of
three key stages which in turn included ten sub activities. The
details are showcased in Fig. 1. In the preliminary stage, the
given questions were addressed; what are the key areas for
which question generation is being designed; what are the
different techniques and tools used for question generation
process in teaching programing; what are the different modes
of delivery for the creation of question generation in teaching
programming; and how authors validated such techniques.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

48 | P a g e

www.ijacsa.thesai.org

Fig. 1. Phases of Review Adopted from [16].

The questions were generated to complete the preliminary
stages and then the sub-activity was carried out by reviewing
protocols for the study. The review included determined time
span for the published papers, and keywords along with the
sources of publications to find most accurate data. The focus of
research articles spanned for the last six years i.e. 2017 till 2022
and the sources were obtained from IEEE Xplorer, science
direct, Google scholar, and SCOPUS. Table II shows the
sources and keywords used to search the materials. Whereas
Table III presents the considered papers in each year.

The search process offered a set of total 100 articles and
they were then screened on the basis of their titles and abstracts.
After filtration, only 18 articles were left that met the inclusion
criteria of this study. In order to strengthen the search linked
with the articles, backward snowballing provided by [19] was
also adopted to identify the most cited articles. This step was
ensured to address questions of the study in an effective manner
so that no question was left unanswered. The inclusion criteria
of this study are based on the research questions of this study
and in the end, this study only included those articles that were
accurately linked to the research questions of this study.

TABLE II. REVIEW TABLE

Year Sources Key words

2017-

2022

IEEE Xplorer, Science

direct, Google Scholar,

SCOPUS

question generation techniques,

teaching programming, automatic

question generation techniques

TABLE III. YEAR WISE SEARCH RESULTS

Year Number of papers

2017 4

2018 2

2019 3

2020 3

2021 5

2022 1

IV. RESEARCH ANALYSIS AND DISCUSSION

This study has reviewed a total of 18 papers for AQG in
teaching programming in the past six years from 2017 to 2022.
Older papers are excluded from the search criteria. Most of
them used automated evaluation tools [4][5] [6] [14] [17] or
they used automated contexts for programming languages [20]
[21] [15]. It was also identified that generating feedback for the
questions produced to teach programming languages are
equally important. Most of the tools were used to grade student
solutions but there were some that offered extended feedback
and could be used to support learning process of students.

The study conducted in [21] described the attributes of the
tools and identified challenges and some future directions.
However, a study by [19] selected some papers and mentioned
qualitative elements at the time of evaluating tools for question
generation. It was also found that the majority of the studies i.e.
12 out of 18 studies lacked comprehensiveness and the scope of
the tools varied immensely. Tools are mostly grouped but there
is no such agreement on the naming of different groups. Eight
papers discussed technical aspects of teaching tools used for
programming languages.

As observed from Table IV, studies [1][3][4][5][14][21]
used web-based solution to generate questions for students on
the online platform. Whereas some of them proposed a
theoretical framework like [7][13] [15][22] and the rest of the
studies proposed it as a computer application [12] [16][19] [23]
[24]. The main observation on the literature is that most of the
applied applications use web-based solution to generate general
questions from existing materials using different techniques
like Artificial Intelligence, Machine Learning, Deep Learning,
and traditional custom-made algorithms.

This review paper is different from other reviews as it
focused on the dimensions of generating questions and the
feedback in teaching programming tools by closely evaluating
the various types of feedback provided on the techniques.

A. Comparison of State-of-the-Field before Covid-19 and

after Covid-19

The findings of the study show that teachers require various
kinds of tools and techniques when they generate new
programming questions. In order to find out the state of the field
before COVID-19 and after COVID-19, a review of the
techniques used for generating questions by programming
teachers shows that varying techniques have been employed to
address certain needs of the instructors. The analysis also
showed that prior to COVID-19, scholars have been involved
in generating questions for teaching programming using
Bayesian Network [5], ITSB tool (Delphi IDE) [2], Artificial
Neural Network (ANN) based technique [13][17] [9], and ANN
combined with Vortex Optimization Algorithm [7]. All these
tools were either based on web-based or experimental or
theoretical framework that does not exhibit strength of one
technique over another technique for generating questions.
Some interesting facts were revealed during the analysis. These
are the following: 1) after COVID-19, the instructors valued
code-writing question generation techniques like Junit that is a
web-based tool and used user feedback as a validating tool. 2)
Next, ITA [12], JAVA software, C programming for generating

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

49 | P a g e

www.ijacsa.thesai.org

questions, CodeTraining [15], dynamic codes [16] and PQG
model [23] were employed by instructors for generating
questions that were identified as the key source of positive
ratings in the assessment of students during exams. 3) The
analysis of articles published after COVID-19, i.e. from 2020
till 2022, valued code-tracing procedures as compared to pre-
COVID-19 that seems a major difference between the two
periods. 4) Before COVID-19 the focus was on supporting
students in learning (finding answers for questions from long
texts). Whereas after COVID-19 the focus has shifted to
supporting teachers in generating online quizzes and assessing
student assignments automatically. This difference also
exhibits that the extensibility of tools used for generating

questions got significantly positive ratings from users as
compared to pre-COVID-19 tools [23]. This finding is
interesting as it identified that the models used after COVID-19
address the needs of particular users and provided only
extensible questions to the instructors to be used after edits in
practice. On the other hand, the analysis also shows that the
automatic question generation process through code-tracing
method is very limited and can generate questions when the
topic is wide and it is difficult for instructor to cover all ideas
when making the questions. One plausible explanation could
be, that instructors now anticipate the questions to be more in
line with the content they teach in the class.

TABLE IV. ANALYSIS OF ARTICLES

Year of

publication

Title of the

study
Domain Aim

Tool for generating

questions
Mode of delivery Validating study

2017 [5] Computer Science
Teaching programming

language
Bayesian Network Web-based Experimental

2017 [2] Computer Science
Teaching programming

language

ITSB tool

(Delphi IDE)
Web-based User feedback

2017 [7] Computer Science
Teaching programming

language

Artificial Neural Network

based

technique & Vortex

Optimization Algorithm

Theoretical

framework
Experimental

2017 [13] Computer Science
Teaching programming

language
Artificial Neural Network

Theoretical

framework
User feedback

2018 [4] Computer Science
Teaching programming

language
Bayesian Network Web-based Student feedback

2018 [18] Computer Science
Teaching programming

language

Automatic Item

Generation (AIG)
test-item templates User feedback

2019 [1] Computer Science
Teaching programming

language
ITA Web-based Teacher feedback

2019 [23] Computer Science
Teaching Programming

Language

SQL question Generation

(DB-Learn)

Computer based

application
User feedback

2021 [19] Computer Science

Teaching programming

language and question

generation

Question Similarity

mechanism.
Application

Teacher feedback

and user response

2019 [21] Computer Science
Teaching programming

language
ITA Web-based Experimental

2020 [3] Computer Science
Teaching programming

language
JUnit Web-based User feedback

2020 [12] Computer Science
Teaching programming

language
ITA

Computer based

application

Student

performance

2020 [22] Computer Science
Teaching programming

language
AA

Theoretical

framework
Teacher feedback

2021 [6] Computer Science
Teaching programming

language
JAVA software Web-based

Student

performance

2021 [14] Computer Science
Teaching programming

language
Java Programming Course Web-based

Student

performance

2021 [15] Computer Science
Teaching programming

language
CodeTraining

Theoretical

framework
User feedback

2021 [16] Computer Science
Teaching programming

language
Dynamic codes

Computer based

application

Student

performance

2022 [24] Computer Science
Teaching programming

language
PQG model

Computer based

application

Student

performance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

50 | P a g e

www.ijacsa.thesai.org

B. Techniques of Automatic Question Generation in Teaching

Programming

Intelligent Tutoring Systems (ITS) are mainly identified as
major systems for teaching programming domain. The analysis
of articles showed that there are some general ITS techniques
such as the tools that use model tracing for analyzing the
process followed by students to solve problems in programming
languages. The authors contrasted production rules and buggy
rules in [16] while other researchers in [19] used constraint-
based modeling techniques that is based on three levels, logical,
empirical and data-based constraints. This model has a major
limitation for how to conduct loop and eliminate the chances of
generating error messages that could affect teachers’ ability to
generate questions. This study identified theoretical and
practical gaps in the literature that could be used as future
direction by scholars.

Dynamic code analysis through automated testing is another
technique used by [13] as the way to teach programing and then
generate questions for analyzing students’ abilities and
knowledge skills. According to [25], this was identified as the
major type of automated testing but it lacked modern
techniques necessary for unit testing and property-based
testing, mostly executed through pertinent test frameworks like
JUnit. In order to address this limitation, the research in [19]
used another technique, called basic static analysis and
identified the misunderstood concepts and the inadequacy of
code structures. However, recently the article [15] also
concluded that Program Transformations are another language
processing tool that reduces the syntactical complications and
help instructors to produce same level of abstraction when
designing questions. Notably, all the tools identified during the
analysis of articles showed that they fall within two major
categories; automated assessment (AA) and intelligent tutoring
system (ITS). Automated assessment focused on the use of
tools that evaluate students’ abilities to solve questions with a
feedback report, but ITS helps students to reach solutions with
novice feedback that is helpful for teachers to generate
questions [17][18].

A recent study conducted by [15] mentioned that previous
meta-analysis methods have been used to recognize the factors
affecting students’ performance but this study is pioneered in
evaluating students’ computer programming skills through
Educational Data mining approaches. The authors stated that
there are various categorizations of algorithms for identifying
student’s performance studying computer programming and the
most effective is to use pooled approach to estimate students’
performance progress in programming as their educational
domain. The authors tried to identify the probable sources of
heterogeneity by using subgroup analysis and sensitivity
analysis; however, a major gap is identified in defining the
sources of variability as authors were unable to establish any in
their cases. It is highly likely that the key reason for this colossal
heterogeneity was linked with some studies that were obtained
from the varying sample sizes; however, it needed further
research that could help in adopting different algorithms for
assessing student performance.

A study by [16] provided important contribution in
generating quizzes for C programming language. The key

contribution of this study is that authors solved the
programming questions and generated questions by following
an entity discovery approach. It was estimated during the
analysis of the question generation process that teachers and
students can use them for solving quizzes and attain concepts
in a better way. However, this study has a major limitation of
practical knowledge related to precision and inclusion of more
features like mining answers from the posts and grouping the
questions into different levels of their difficulty. On the other
hand, an article by [12] generated questions for teaching C
programming through JAVA software application that
illustrated the likelihood to produce automatic quizzes. It is
estimated that if students have acquired knowledge for C
programming language, students are able to learn other
programming languages in a better way. This paper has a key
strength to test the students’ knowledge about how to define the
C language functions; however, knowledge gap is identified
about how students can enhance their aptitude skills for
programming in other languages. This restricts the
generalizability of the study on learning other programming
languages. Although an article by [12] used educational
software for studying JAVA language and then assessed their
skills towards basics of object-focused programming. The
authors provided very important contribution by generating
automatic quizzes for JAVA programming through six different
types of parametrized questions. This particular technique had
major implication in theory as every time the test is conducted
to test comprehensive skills of learners, new questions are
generated. However, this article did not specify how learners
can answer accurate questions based on their programming
knowledge. CodeTraining is a very new approach that used an
authoring tool for Gamified Programming Learning
Environment; however, this particular tool lacks approaches on
how teachers can create questions through the integration of
different resources [25]. It is also suggested that future scholars
can extend knowledge based on Gamification Programming
Learning Environment by conducting experimental studies and
through the use of an authoring tool that demonstrates how to
design questions relevant to the course.

V. CONCLUSION

The objectives of this study are attained by offering a
picture of the existing state of teaching programming and the
tools used for generating questions. We have discussed the gaps
in each article and the limitations of each article that could be
used as future research directions. The article also addressed the
objective related to comparing state of the field situation in the
pre-COVID-19 and during COVID-19 periods. During the
review of the studies, various effective methods were identified
to that can be helpful in generating questions. A total of 18
papers were analyzed from the year 2017 up to 2022 that were
relevant to the given topic of the study. The key techniques
included AA and ITS and in particular, Dynamic code analysis,
JUnit tests, JAVA programming software, CodeTraining,
Program Transformations, PQG model and Educational Data
mining approaches. Some gaps are related to the inefficacy
linked with the models and the techniques adopted by scholars
for generating questions. The inability to properly evaluate
students’ performance and abilities is related to the quality of
the data used for that evaluation. Future studies may seek to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

51 | P a g e

www.ijacsa.thesai.org

focus on the development of techniques based on key
approaches identified in this study to improve the applicability
of techniques on a wider scale and in practical context.
Furthermore, interested researchers can work on the identified
promising research topics in question generation for
educational purposes.

VI. FUTURE RESEARCH DIRECTIONS

Based on the literature, the following points represent
promising research topics for the interested researchers in
question generation for educational purposes:

• Implementing question generation approaches to
generate questions on programming languages topics.

• Enhancing experimental reporting, standardizing
evaluation metrics, and studying and developing more
practical evaluation metrics.

• Extracting informative sentences from existing
sentences need to be improved.

• Generating questions from several sentences and
summarizing sentences based on their relations need to
be explored.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial assistance
from the Institute of Information Science, Faculty of
Mechanical Engineering and Informatics, University of
Miskolc.

REFERENCES

[1] A. A. Soofi and M. Uddin, “A Systematic Review of Domains,
Techniques, Delivery Modes and Validation Methods for Intelligent
Tutoring Systems,” International Journal of Advanced Computer Science
and Applications, vol. 10, no. 3, 2019, doi:
10.14569/IJACSA.2019.0100312.

[2] C.-P. Wu and S.-L. Wu, “Development of a Web-Based Learning System
to Engage Students in Question Generation Activities,” International
Journal of Future Computer and Communication, vol. 6, no. 3, pp. 119–
122, Sep. 2017, doi: 10.18178/ijfcc.2017.6.3.502.

[3] K. Cunningham, R. A. Bejarano, M. Guzdial, and B. Ericson, “‘Im not a
computer’: How identity informs value and expectancy during a
programming activity,” in 14th International Conference of the Learning
Sciences, 2020, pp. 705–708.

[4] A. L. Santos, “Enhancing Visualizations in Pedagogical Debuggers by
Leveraging on Code Analysis,” in Proceedings of the 18th Koli Calling
International Conference on Computing Education Research, Nov. 2018,
pp. 1–9. doi: 10.1145/3279720.3279732.

[5] C. Vieira, A. J. Magana, M. L. Falk, and R. E. Garcia, “Writing In-Code
Comments to Self-Explain in Computational Science and Engineering
Education,” ACM Transactions on Computing Education, vol. 17, no. 4,
pp. 1–21, Sep. 2017, doi: 10.1145/3058751.

[6] D. Moonsamy, N. Naicker, T. T., and R. E., “A Meta-analysis of
Educational Data Mining for Predicting Students Performance in
Programming,” International Journal of Advanced Computer Science and
Applications, vol. 12, no. 2, 2021, doi: 10.14569/IJACSA.2021.0120213.

[7] E. de Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, “Semantics-
based generation of verification conditions via program specialization,”
Sci Comput Program, vol. 147, pp. 78–108, Nov. 2017, doi:
10.1016/j.scico.2016.11.002.

[8] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, “A Systematic
Review of Automatic Question Generation for Educational Purposes,” Int

J Artif Intell Educ, vol. 30, no. 1, pp. 121–204, Mar. 2020, doi:
10.1007/s40593-019-00186-y.

[9] H. Keuning, J. Jeuring, and B. Heeren, “A Systematic Literature Review
of Automated Feedback Generation for Programming Exercises,” ACM
Transactions on Computing Education, vol. 19, no. 1, pp. 1–43, Jan. 2019,
doi: 10.1145/3231711.

[10] B. Das, M. Majumder, S. Phadikar, and A. A. Sekh, “Automatic question
generation and answer assessment: a survey,” Res Pract Technol Enhanc
Learn, vol. 16, no. 1, p. 5, Dec. 2021, doi: 10.1186/s41039-021-00151-1.

[11] J. Laine, T. Lindqvist, T. Korhonen, and K. Hakkarainen, “Systematic
Review of Intelligent Tutoring Systems for Hard Skills Training in Virtual
Reality Environments,” International Journal of Technology in Education
and Science, vol. 6, no. 2, pp. 178–203, May 2022, doi:
10.46328/ijtes.348.

[12] N. A. B. Aziz, “Choosing Appropriate Retrieval based Learning Elements
among Students in Java Programming Course,” International Journal of
Psychosocial Rehabilitation, vol. 24, no. 5, pp. 5448–5455, Apr. 2020,
doi: 10.37200/IJPR/V24I5/PR2020251.

[13] L. Zavala and B. Mendoza, “On the Use of Semantic-Based AIG to
Automatically Generate Programming Exercises,” in Proceedings of the
49th ACM Technical Symposium on Computer Science Education, Feb.
2018, pp. 14–19. doi: 10.1145/3159450.3159608.

[14] R. Garcia, K. Falkner, and R. Vivian, “Instructional Framework for CS1
Question Activities,” in Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education, Jul. 2019,
pp. 189–195. doi: 10.1145/3304221.3319732.

[15] R. Rodriguez-Torrealba, E. Garcia-Lopez, and A. Garcia-Cabot, “End-to-
End generation of Multiple-Choice questions using Text-to-Text transfer
Transformer models,” Expert Syst Appl, vol. 208, p. 118258, Dec. 2022,
doi: 10.1016/j.eswa.2022.118258.

[16] S. G. Aithal, A. B. Rao, and S. Singh, “Automatic question-answer pairs
generation and question similarity mechanism in question answering
system,” Applied Intelligence, vol. 51, no. 11, pp. 8484–8497, Nov. 2021,
doi: 10.1007/s10489-021-02348-9.

[17] R. Layona, B. Yulianto, and Y. Tunardi, “Authoring Tool for Interactive
Video Content for Learning Programming,” Procedia Comput Sci, vol.
116, pp. 37–44, 2017, doi: 10.1016/j.procs.2017.10.006.

[18] M. Divate and A. Salgaonkar, “Automatic Question Generation
Approaches and Evaluation Techniques,” Curr Sci, vol. 113, no. 09, p.
1683, Nov. 2017, doi: 10.18520/cs/v113/i09/1683-1691.

[19] S. S. Alanazi, N. Elfadil, M. Jarajreh, and S. Algarni, “Question
Answering Systems: A Systematic Literature Review,” International
Journal of Advanced Computer Science and Applications, vol. 12, no. 3,
2021, doi: 10.14569/IJACSA.2021.0120359.

[20] J. Salac and D. Franklin, “If They Build It, Will They Understand It?
Exploring the Relationship between Student Code and Performance,” in
Proceedings of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education, Jun. 2020, pp. 473–479. doi:
10.1145/3341525.3387379.

[21] Ms. R. S. M. Sc. MPhil and Ganesh. K, “Automatic Question Paper
Generator System,” International Journal of Trend in Scientific Research
and Development, vol. Volume-3, no. Issue-3, pp. 138–139, Apr. 2019,
doi: 10.31142/ijtsrd21646.

[22] Y. Choi and C. McClenen, “Development of Adaptive Formative
Assessment System Using Computerized Adaptive Testing and Dynamic
Bayesian Networks,” Applied Sciences, vol. 10, no. 22, p. 8196, Nov.
2020, doi: 10.3390/app10228196.

[23] K. Atchariyachanvanich, S. Nalintippayawong, and T. Julavanich,
“Reverse SQL Question Generation Algorithm in the DBLearn Adaptive
E-Learning System,” IEEE Access, vol. 7, pp. 54993–55004, 2019, doi:
10.1109/ACCESS.2019.2912522.

[24] H. Roitman, U. Singer, Y. Eshel, A. Nus, and E. Kiperwasser, “Learning
to Diversify for Product Question Generation,” Jul. 2022.

[25] W. He, J. Shi, T. Su, Z. Lu, L. Hao, and Y. Huang, “Automated test
generation for IEC 61131-3 ST programs via dynamic symbolic
execution,” Sci Comput Program, vol. 206, p. 102608, Jun. 2021, doi:
10.1016/j.scico.2021.102608.

