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Abstract—Compiler designer needs years or sometimes 

months to construct programs using heuristic optimization rules 

for a specified compiler. For every novel processor, the modelers 

require readjusting the heuristics to get the probable 

performances of processor. The most important purpose of the 

developed approach is to build a prediction approach with 

optimization constraints for transforming programs with a lesser 

training overhead. The problem has occurred in the optimization 

and it is needed to address it with novel prediction model with 

derived features & neural network.  Here, a novel Compiler 

Optimization Prediction Model is developed. The features like 

static and dynamic features as well as improved Relief based 

features are derived, which are provided as input to Neural 

Network (NN) scheme, in which the weights are tuned via Honey 

Badger Adopted BES (HBA-BEO) model. Finally, the NN offers 

the final predicted output. The analysis outcomes prove the 

superiority of HBA-BEO model. 
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NOMECLATURE 

Abbreviation  Description  

ALO Ant Lion Optimization  

AOA Arithmetic Optimization Algorithm 

BES Bald Eagle Search 

BWO Black Widow Optimization  

HBA Honey Badger Algorithm 

HBA-BEO Honey Badger Adopted BES  

LP Learning Percentage 

MSDTM Multithreaded SPM Data Transfer Model 

ML Machine Learning 

NN Neural Network  

SSA Shark Smell Optimization  

I. INTRODUCTION 

In response to similar needs in many difficult situations, 
compiler analysts have devised and implemented a significant 
variety of optimization compilation option. In reality, it's 
difficult for the compiler's regular compilation optimization 
step to adapt to the programme requirements that must be 
compiled in complex scenarios [6] [7] [8]. On the one hand, 
compiled programmes have different semantics and compiler 
aims, making it difficult to achieve the best optimization result 
using the typical compilation optimization step [9] [10] [11]. If 
an incorrect optimization pass is utilised, it may have bad 
consequences for programme performance, among other things 
[12] [13] [14]. 

Although these dynamic techniques have been quite 
effective and appear to be naturally ideal for task-parallel 
programmes with high input and output flow, they do have 
significant drawbacks [15] [16]. They can't change settings that 
have to be resolved at compilation time, such as the layout of 
data structures in memory, and dynamic monitoring at the 
library level can't completely rule out future programme 
behaviour, attempting to prevent some kinds of optimization 
techniques, and any type of feedback loop will cause some 
runtime overhead [17] [18]. While the effect can be reduced by 
proper implementation, simply adding a few more hops and 
branches to see if any adjustments are needed has a meaningful 
influence in highly fine-grained circumstances [19] [20] [21] 
[22]. To address these issues, we present a set of static analyzes 
that may be used to directly alter a runtime's execution 
parameters by determining aspects of a task parallel programme 
[23] [24].  The main problem is compiler optimization and tried 
to get its solution through A Novel Prediction Model for 
Compiler Optimization with Hybrid Meta-Heuristic 
Optimization Algorithm. 

The key objectives of this works are: 

• To Extracts varied features along with improved relief 
features from input data. 

• To Introduces HBA-BEO model for optimal weight 
selection in NN. 

The paper is arranged as: Section II addresses review. 
Section III and IV correspond to feature extraction and HBA-
BEO based NN for prediction. The Section V and VI describe 
the results and conclusion. 

II. LITERATURE REVIEW 

A. Related Works 

Jiang et al. [1] provided a graph-based compilation 
optimization pass modelling approach that learned heuristics 
for programme dependability, as well as a combined 
programme feature extraction approach. The clang compiler 
tool was used in this research.  For optimization pass election 
for programme dependability, the model enhanced accuracy 
rate by 5 percentage points to 11 percentage points. The 
investigations also showed that the suggested paradigm was 
quite adaptable. 
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Nuno et al. [2] presented a new compiler-assisted data 
streaming mechanism to achieve this goal. It was a substitute to 
prefetching schemes to conservative code structure; it 
combined static study and code modification with data stream 
ability. Memory access were encoded and identified with a 
particular depiction by means of static study. Then, using a code 
transformation method, data indexing and addresses 
computation were separated from computation, resulting in 
considerable code minimization. 

Peter et al. [3] offered a series of new static compiler studies 
aimed at identifying programme properties that influenced the 
best settings for a task-parallel runtime environment. The 
parallel configuration of job spawn, the precision of specific 
activities, the memory capacity of closures needed for task 
variables and an estimation of the stack dimension necessary 
each task were all examples of such aspects. A variety of 
runtime system settings were then modified at constructing time 
depending on the outcomes of these investigations. 

Xiaohan et al. [4] presented a compiler-directed MSDTM to 
improve data transmission in a heterogeneous many-core 
system. Further, compile-time analysis was employed for 
classification. The recommended MSDTM model reduced 
appliance implementation time by 5.49 and saves energy by 
5.16 based upon test resultants. 

Matthew et al. [5] believed that compilers should handle 
data transfer management, decreasing programmer workload 
and improving programmes speed and efficiency by lowering 
the amount of bytes exchanged. We showed that with entire 
transmit scheduling on accelerated data transfer might eradicate 
around 99 percent of bytes transferred from accelerator than all 
data during kernel implementation for all collected data. 

III. PROPOSED MODEL WITH IMPROVED FEATURES 

A novel compiler prediction model is developed, where 
features like static and dynamic features and improved Relief 
features are derived. The derived features are provided as input 
to NN, in which the weights are tuned via HBA-BEO model. 
The NN offers the final predicted outcome. Fig. 1 illustrates the 
picture of deployed scheme. 

 

Fig. 1. Developed Compiler Prediction Model. 

A. Static Features 

The static features [23] extracted in this work are listed in 
Table I. 

TABLE I. STATIC FEATURES 

29fe  “Number of basic blocks with phi nodes in the interval [0, 3] 

28fe  Number of basic blocks with no phi nodes 

27fe  Average of arguments for a phi-node 

26fe  
Average of number of phi-nodes at the beginning of a basic 

block 

25fe  Average of number of instructions in basic blocks 

24fe  Number of instructions in the method 

23fe  Number of binary floating point operations in the method 

22fe  Number of binary integer operations in the method 

21fe  Number of assignment instructions in the method 

20fe  Number of conditional branches in the method 

19fe  Number of direct calls in the method 

18fe  Number of abnormal edges in the control flow graph 

17fe  Number of critical edges in the control flow graph 

16fe  Number of edges in the control flow graph 

15fe  
Number of basic blocks with number of instructions greater then 

500 

14fe  
Number of basic blocks with number of instructions in the 

interval [15, 500] 

13fe  Number of basic blocks with number of instructions less than 15 

12fe  
Number of basic blocks with more than two successors and more 

than two predecessors 

11fe  
Number of basic blocks with two successors and two 

predecessors 

10fe  
Number of basic blocks with a two predecessors and one 

successor 

09fe  
Number of basic blocks with a single predecessor and two 

successors 

08fe  
Number of basic blocks with a single predecessor and a single 

successor 

07fe  Number of basic blocks with more than two predecessors 

06fe  Number of basic blocks with two predecessors 

05fe  Number of basic blocks with a single predecessor 

04fe  Number of basic blocks with more than two successors 

03fe  Number of basic blocks with two successors 

02fe  Number of basic blocks with a single successor 

01fe  Number of basic blocks in the method” 

B. Dynamic Features 

The dynamic features [23] extracted in this work are listed 
in Table II. 
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TABLE II. DYNAMIC FEATURES 

“Cache line 
access 

CA-CLN, CA-ITV, CA-SHR 

Level 1 cache 
L1-DCA, L1-DCH, L1-DCM, L1-ICA, L1-ICH,L1-
ICM, L1-LDM, L1-STM, L1- TCA, L1-TCM 

Level 2 and 3 
cache 

L2-DCA, L2-DCM, L2-DCR, L2-DCW, L2-ICA, 
L2-ICH, L2-ICM, L2-LDM, L2-STM, L2-TCH, L2-
TCR, L2-TCW, L2/L3-TCA, L2/L3-TCM 

Branch related 
BR-CN, BR-INS, BR-MSP, BR-NTK, BR-PRC, 
BR-TKN, BR-UCN 

Floating point 
DP/FP/ SP-OPS 

FDV/FML/FP-INS 

Interrupt/stall HW-INT, RES-STL 

TLB TLB-DM, TLB-IM, TLB-SD, TLB-TL 

Total cycle/insts. TOT-CYC, TOT-IIS, TOT-INS 

Load/store insts. LD-INS, SR-INS 

SIMD insts. VEC-DP, VEC-INS, VEC-SP” 

C. Improved Relief Features 

The Relief feature aids in estimating the superiority of 
attributes based on how fine their values differentiate among 
instances, which are nearer to one another. Initially, relief 
chooses the instances arbitrarily [24]. The arbitrary elected 
instances are iRS . The Relief search for its two nearer 

neighbours: “one from the same class, called nearest hit ( )NH , 

and the other from the different class, called nearest miss ( )NM

”. 

The steps of improved relief are: 

Algorithm 1 

for 1=i to run count m  

Automatically evaluate k  

Arbitrarily choose iRS  features 

Compute hit ( )NH  and nearest miss ( )NM  

for 1=i to n  do 

     ( ) ( ) mNMRSidifmNHRSidifiwewe ii
22

,,,,1 +−=  

end 

As per improved concept, weight  iwe  can be computed 

using tent map. The average of  iwe signifies the harmonic 

mean. 

The extracted features are implied by fe . 

IV. HBA-BEO BASED NN FOR PREDICTION 

A. Optimized NN 

It [16] considers features ( )fe  as input, as in Eq. (1), 

wherein nu  symbolizes entire feature count. 

 nufffefe ,......, 21=
             (1) 

The NN [16] included “output, hidden and input layers”. 

The hidden layer ( )Hz and network outputs oQ ˆ
ˆ  are exposed in 

Eq. (2) and (3). Here, “ AF → activation functions, i


and j
 
→ 

neurons of input & hidden layers, ( )
( )H

iB
We   → bias weight to

thi


hidden neuron, in
→ count of input neurons and ( )

( )H

ij
We   

→weight from 
thj input neuron to 

thi


hidden neuron, ô  

→output neurons, 
hn →hidden neuron count, ( )

( )P
oB

We ˆ
 
→output 

bias weight to 
thô  output layer, and ( )

( )P

oi
We

ˆ
  →weight from

thi


 

hidden layer to
thô  output layer”. The error is approximated in 

Eq. (4), in which, Gn → count of output neuron,
 oPˆ

ˆ and oPˆ  

→predicted & actual output. Here, the weights We  are 

optimally chosen via HBA-BEO model. The minimization of 
Eq. (4) is set as objective in this work. 
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The output from NN offers final classified output. 

B. Proposed HBA-BEO Algorithm 

The developed HBA-BEO is the hybrid conceptual of BES 
[17] and HBA [18]. It was established that the grouping of two 
typical optimizations will progress the convergence speed [19] 
[20] [21] [22]. 

Selecting stage: This stage decided the optimum region as 
per the food quantity. As per HBA-BEO, this behaviour is 

modelled as per HBA update as in Eq. (5), in which iDis

signifies distance information, flag→ flag to alter searching 

direction, ra  refers to random constraint, preyY → best 

position”. As per HBA-BEO, density factor   is computed as 

in Eq. (6). 

ipreynew DisraflagYY **7* +=
            (5) 

( )

max

max 15.1

it

itit +−
=              (6) 

Searching stage: This stage is computed in Eq. (7). In Eq. 

(7), “ bestY  refers to elected searching space depending upon 

best position of eagle, meanY  refers to mean distance amid every 

positions of bald eagle (population mean), iY  refers to present 

position of eagle, ran  refers to random constraint produced 

among [0 - 1],  ,   refers to constant constraint among [0.5, 

2], Q  refers to constant constraint among 0.5 to 2, and 1ran

and 2ran  refers to two arbitrary constraints”. Conventionally, 
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( )ir  is computed as in Eq. (11), however, as per HBA-BEO, 

( )ir  is computed as in Eq. (12), wherein, ran  is computed 

using chaotic cubic map. 

( ) ( ) ( ) ( )meaniiiinew YYipYYiZYY −+−+= +1           (7) 

( )
( )
(

( )
( )
(Zr

iZr
iZ

pr

ipr
ip

max
,

max
==

            (8) 

( ) ( ) ( )( ) ( ) ( ) ( )( )iiriZriiripr  sin,cos ==
           (9) 

( ) 1rani = 
           (10) 

( ) ( ) 2ranQiir +=
           (11) 

( ) ( ) ranQiir +=
           (12) 

Swooping stage: This stage is modelled as in Eq. (13). 

( ) ( )
( ) ( )meani

meanibestnew

YitYiZl

YitYiplYrandY

−+

−+=

2

13

        (13) 
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(

( )
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iZr
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pr

ipr
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max
,

max
==

          (14) 

( ) ( ) ( )( ) ( ) ( ) ( )( )iiriZriiripr  cosh,sinh ==
        (15) 

( ) ( ) ( )iirrani  == ,3
          (16) 

V. RESULTS AND DISCUSSION 

A. Simulation Set Up 

The novel prediction model for compiler optimization using 
NN + HBA-BEO was executed in “Python. Training set: SPEC 
CPU2006 is developed by the standard performance evaluation 
organization for the evaluation of general-purpose CPU 
performance [11]. The input scale of SPEC2006 benchmark can 
be divided into test, train and reference scale, we use the 
reference scale to test”. Here, analysis was done for varied 
metrics like accuracy and varied error metrics like MSE, MSLE 
and so on. Also, NN+HBA-BEO was proven over NN + BES, 
NN + HBA, NN + ALO, NN + BWO, NN + AOA and NN + 
SSA. 

B. Performance Analysis 

The study on diverse metrics is detailed here. Here, the 
analysis was done for LPs of 60, 70, 80 and 90 over NN + BES, 
NN + HBA, NN + ALO, NN + BWO, NN + AOA and NN + 
SSA models. From Fig. 2, the considered metrics like 
specificity, sensitivity, accuracy and precision are examined, 
which were established to be much better over NN + BES, NN 
+ HBA, NN + ALO, NN + BWO, NN + AOA and NN + SSA 
models. The accuracy of NN + HBA-BEO is high at 90th LP, 
while precision is high at 80th LP. However, at all LPs, NN + 
HBA-BEO have established higher outcomes over NN + BES, 
NN + HBA, NN + ALO, NN + BWO, NN + AOA and NN + 
SSA models. Thus, NN + HBA-BEO is proven to be enhanced 
than NN + BES, NN + HBA, NN + ALO, NN + BWO, NN + 
AOA and NN + SSA models. 

  
(a)        (b) 

  
(c)       (d) 

Fig. 2. Analysis on (a) Precision, (b) Specificity, (c) Sensitivity and (d) Accuracy for NN + HBA-BEO over others. 
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C. Analysis on Error Measures 

The performance of adopted NN + HBA-BEO for diverse 
error (MSE, MSLE, MAE and MAPE) is calculated over 
conservative NN + BES, NN + HBA, NN + ALO, NN + BWO, 
NN + AOA and NN + SSA schemes in Fig. 3. The NN + HBA-
BEO method is scrutinized for numerous LPs from 60, 70, 80 
and 90 over NN + BES, NN + HBA, NN + ALO, NN + BWO, 
NN + AOA and NN + SSA models. “In statistics, MAE is a 
measure of errors between paired observations expressing the 
same phenomenon”. The MAE needs to be less for improved 
prediction accuracy. As required, the MAE obtained by NN + 
HBA-BEO is lesser for every LP. The MSLE using NN + HBA-
BEO over NN + BES, NN + HBA, NN + ALO, NN + BWO, 
NN + AOA and NN + SSA is signified in Fig. 3(b). “MSLE can 
be interpreted as a measure of the ratio between the true and 
predicted values”. For every LP, the MSLE gained by NN + 
HBA-BEO is lesser. The assessment of NN + HBA-BEO for 
MAPE and MSE over MSE, MSLE, MAPE and MAE is 
signified in Fig. 3(c) and Fig. 3(d). “The MAPE, also known as 
MAPD, is defined as a measure of prediction accuracy of a 
forecasting method in statistics”. “In statistics, the MSE or 
MSD of an estimator measures the average of the squares of the 
errors, that is, the average squared difference between the 
estimated values and the actual value”. The MSE and MAPE 
have to be less for better prediction, which is found to be 

accomplished by NN + HBA-BEO for all LPs over NN + BES, 
NN + HBA, NN + ALO, NN + BWO, NN + AOA and NN + 
SSA schemes. 

D. Study on RMSE 

The RMSE values with parameters for each benchmarks in 
the dataset is exposed in Table III. 

TABLE III. RMSE FOR VERIFIED BENCHMARK IN DATATSET 

Parameters RMSE 

400.perlbench 0.75 

401.bzip2 0.661438 

403.gcc 0.75 

429.mcf 0.75 

445.gobmk 0.829156 

456.hmmer 0.661438 

458.sjeng 0.661438 

462.libquantum 0.829156 

464.h264ref 0.661438 

471.omnetpp 0.707107 

473.astar 0.707107 

483.xalancbmk 0.661438 

 

  
(a)        (b) 

  
(c)       (d) 

Fig. 3. Attacks Analysis (a) MAE (b) MSLE (c) MAPE and (d) MSE for NN + HBA-BEO Scheme Over Others. 
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VI. CONCLUSION 

This work developed a novel Compiler Optimization 
Prediction Model. In this research, optimization [25] is the key 
factor considered and it is achieved through derived features 
and neural network. The features like static and dynamic 
features as well as improved Relief based features were 
extracted. The derived features were given to NN scheme, in 
which the weights were tuned via NN + HBA-BEO. Finally, the 
NN offered the final predicted output [26]. Here, the considered 
metrics like specificity, sensitivity, accuracy and precision were 
examined, which were established to be much better over BES, 
HBA, ALO, BWO, AOA and SSA models. The accuracy of NN 
+ HBA-BEO was high at 90th LP, while precision was high at 
80th LP. However, at all LPs, NN+HBA-BEO has established 
higher outcomes over NN + BES, NN + HBA, NN + ALO, NN 
+ BWO, NN + AOA and NN + SSA models. 
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