
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

583 | P a g e

www.ijacsa.thesai.org

A Novel Prediction Model for Compiler Optimization

with Hybrid Meta-Heuristic Optimization Algorithm

Sandeep U. Kadam1, Sagar B. Shinde2, Yogesh B. Gurav3, Sunil B Dambhare4, Chaitali R Shewale5

Anantrao Pawar College of Engineering and Research, Pune1

PCET – NMVPM Nutan College of Engineering & Research, Pune2

Zeal College of Engineeirng & Research, Pune3

D. Y. Patil Institute of Engineering, Management & Research, Pune4, 5

Abstract—Compiler designer needs years or sometimes

months to construct programs using heuristic optimization rules

for a specified compiler. For every novel processor, the modelers

require readjusting the heuristics to get the probable

performances of processor. The most important purpose of the

developed approach is to build a prediction approach with

optimization constraints for transforming programs with a lesser

training overhead. The problem has occurred in the optimization

and it is needed to address it with novel prediction model with

derived features & neural network. Here, a novel Compiler

Optimization Prediction Model is developed. The features like

static and dynamic features as well as improved Relief based

features are derived, which are provided as input to Neural

Network (NN) scheme, in which the weights are tuned via Honey

Badger Adopted BES (HBA-BEO) model. Finally, the NN offers

the final predicted output. The analysis outcomes prove the

superiority of HBA-BEO model.

Keywords—Compiler; prediction; improved relief; HBA-BEO

model; neural network

NOMECLATURE

Abbreviation Description

ALO Ant Lion Optimization

AOA Arithmetic Optimization Algorithm

BES Bald Eagle Search

BWO Black Widow Optimization

HBA Honey Badger Algorithm

HBA-BEO Honey Badger Adopted BES

LP Learning Percentage

MSDTM Multithreaded SPM Data Transfer Model

ML Machine Learning

NN Neural Network

SSA Shark Smell Optimization

I. INTRODUCTION

In response to similar needs in many difficult situations,
compiler analysts have devised and implemented a significant
variety of optimization compilation option. In reality, it's
difficult for the compiler's regular compilation optimization
step to adapt to the programme requirements that must be
compiled in complex scenarios [6] [7] [8]. On the one hand,
compiled programmes have different semantics and compiler
aims, making it difficult to achieve the best optimization result
using the typical compilation optimization step [9] [10] [11]. If
an incorrect optimization pass is utilised, it may have bad
consequences for programme performance, among other things
[12] [13] [14].

Although these dynamic techniques have been quite
effective and appear to be naturally ideal for task-parallel
programmes with high input and output flow, they do have
significant drawbacks [15] [16]. They can't change settings that
have to be resolved at compilation time, such as the layout of
data structures in memory, and dynamic monitoring at the
library level can't completely rule out future programme
behaviour, attempting to prevent some kinds of optimization
techniques, and any type of feedback loop will cause some
runtime overhead [17] [18]. While the effect can be reduced by
proper implementation, simply adding a few more hops and
branches to see if any adjustments are needed has a meaningful
influence in highly fine-grained circumstances [19] [20] [21]
[22]. To address these issues, we present a set of static analyzes
that may be used to directly alter a runtime's execution
parameters by determining aspects of a task parallel programme
[23] [24]. The main problem is compiler optimization and tried
to get its solution through A Novel Prediction Model for
Compiler Optimization with Hybrid Meta-Heuristic
Optimization Algorithm.

The key objectives of this works are:

• To Extracts varied features along with improved relief
features from input data.

• To Introduces HBA-BEO model for optimal weight
selection in NN.

The paper is arranged as: Section II addresses review.
Section III and IV correspond to feature extraction and HBA-
BEO based NN for prediction. The Section V and VI describe
the results and conclusion.

II. LITERATURE REVIEW

A. Related Works

Jiang et al. [1] provided a graph-based compilation
optimization pass modelling approach that learned heuristics
for programme dependability, as well as a combined
programme feature extraction approach. The clang compiler
tool was used in this research. For optimization pass election
for programme dependability, the model enhanced accuracy
rate by 5 percentage points to 11 percentage points. The
investigations also showed that the suggested paradigm was
quite adaptable.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

584 | P a g e

www.ijacsa.thesai.org

Nuno et al. [2] presented a new compiler-assisted data
streaming mechanism to achieve this goal. It was a substitute to
prefetching schemes to conservative code structure; it
combined static study and code modification with data stream
ability. Memory access were encoded and identified with a
particular depiction by means of static study. Then, using a code
transformation method, data indexing and addresses
computation were separated from computation, resulting in
considerable code minimization.

Peter et al. [3] offered a series of new static compiler studies
aimed at identifying programme properties that influenced the
best settings for a task-parallel runtime environment. The
parallel configuration of job spawn, the precision of specific
activities, the memory capacity of closures needed for task
variables and an estimation of the stack dimension necessary
each task were all examples of such aspects. A variety of
runtime system settings were then modified at constructing time
depending on the outcomes of these investigations.

Xiaohan et al. [4] presented a compiler-directed MSDTM to
improve data transmission in a heterogeneous many-core
system. Further, compile-time analysis was employed for
classification. The recommended MSDTM model reduced
appliance implementation time by 5.49 and saves energy by
5.16 based upon test resultants.

Matthew et al. [5] believed that compilers should handle
data transfer management, decreasing programmer workload
and improving programmes speed and efficiency by lowering
the amount of bytes exchanged. We showed that with entire
transmit scheduling on accelerated data transfer might eradicate
around 99 percent of bytes transferred from accelerator than all
data during kernel implementation for all collected data.

III. PROPOSED MODEL WITH IMPROVED FEATURES

A novel compiler prediction model is developed, where
features like static and dynamic features and improved Relief
features are derived. The derived features are provided as input
to NN, in which the weights are tuned via HBA-BEO model.
The NN offers the final predicted outcome. Fig. 1 illustrates the
picture of deployed scheme.

Fig. 1. Developed Compiler Prediction Model.

A. Static Features

The static features [23] extracted in this work are listed in
Table I.

TABLE I. STATIC FEATURES

29fe “Number of basic blocks with phi nodes in the interval [0, 3]

28fe Number of basic blocks with no phi nodes

27fe Average of arguments for a phi-node

26fe
Average of number of phi-nodes at the beginning of a basic

block

25fe Average of number of instructions in basic blocks

24fe Number of instructions in the method

23fe Number of binary floating point operations in the method

22fe Number of binary integer operations in the method

21fe Number of assignment instructions in the method

20fe Number of conditional branches in the method

19fe Number of direct calls in the method

18fe Number of abnormal edges in the control flow graph

17fe Number of critical edges in the control flow graph

16fe Number of edges in the control flow graph

15fe
Number of basic blocks with number of instructions greater then

500

14fe
Number of basic blocks with number of instructions in the

interval [15, 500]

13fe Number of basic blocks with number of instructions less than 15

12fe
Number of basic blocks with more than two successors and more

than two predecessors

11fe
Number of basic blocks with two successors and two

predecessors

10fe
Number of basic blocks with a two predecessors and one

successor

09fe
Number of basic blocks with a single predecessor and two

successors

08fe
Number of basic blocks with a single predecessor and a single

successor

07fe Number of basic blocks with more than two predecessors

06fe Number of basic blocks with two predecessors

05fe Number of basic blocks with a single predecessor

04fe Number of basic blocks with more than two successors

03fe Number of basic blocks with two successors

02fe Number of basic blocks with a single successor

01fe Number of basic blocks in the method”

B. Dynamic Features

The dynamic features [23] extracted in this work are listed
in Table II.

Feature Extraction

Proposed

relief features

Weight

Optimization

by HBA-BEO

model

NN based Prediction

Input data

Dynamic

features

Static

features

Final output

(Compiler prediction)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

585 | P a g e

www.ijacsa.thesai.org

TABLE II. DYNAMIC FEATURES

“Cache line
access

CA-CLN, CA-ITV, CA-SHR

Level 1 cache
L1-DCA, L1-DCH, L1-DCM, L1-ICA, L1-ICH,L1-
ICM, L1-LDM, L1-STM, L1- TCA, L1-TCM

Level 2 and 3
cache

L2-DCA, L2-DCM, L2-DCR, L2-DCW, L2-ICA,
L2-ICH, L2-ICM, L2-LDM, L2-STM, L2-TCH, L2-
TCR, L2-TCW, L2/L3-TCA, L2/L3-TCM

Branch related
BR-CN, BR-INS, BR-MSP, BR-NTK, BR-PRC,
BR-TKN, BR-UCN

Floating point
DP/FP/ SP-OPS

FDV/FML/FP-INS

Interrupt/stall HW-INT, RES-STL

TLB TLB-DM, TLB-IM, TLB-SD, TLB-TL

Total cycle/insts. TOT-CYC, TOT-IIS, TOT-INS

Load/store insts. LD-INS, SR-INS

SIMD insts. VEC-DP, VEC-INS, VEC-SP”

C. Improved Relief Features

The Relief feature aids in estimating the superiority of
attributes based on how fine their values differentiate among
instances, which are nearer to one another. Initially, relief
chooses the instances arbitrarily [24]. The arbitrary elected
instances are iRS . The Relief search for its two nearer

neighbours: “one from the same class, called nearest hit ()NH ,

and the other from the different class, called nearest miss ()NM

”.

The steps of improved relief are:

Algorithm 1

for 1=i to run count m

Automatically evaluate k

Arbitrarily choose iRS features

Compute hit ()NH and nearest miss ()NM

for 1=i to n do

     () () mNMRSidifmNHRSidifiwewe ii
22

,,,,1 +−=

end

As per improved concept, weight  iwe can be computed

using tent map. The average of  iwe signifies the harmonic

mean.

The extracted features are implied by fe .

IV. HBA-BEO BASED NN FOR PREDICTION

A. Optimized NN

It [16] considers features ()fe as input, as in Eq. (1),

wherein nu symbolizes entire feature count.

 nufffefe ,......, 21=
 (1)

The NN [16] included “output, hidden and input layers”.

The hidden layer ()Hz and network outputs oQ ˆ
ˆ are exposed in

Eq. (2) and (3). Here, “ AF → activation functions, i


and j

→

neurons of input & hidden layers, ()
()H

iB
We  → bias weight to

thi


hidden neuron, in
→ count of input neurons and ()

()H

ij
We 

→weight from
thj input neuron to

thi


hidden neuron, ô

→output neurons,
hn →hidden neuron count, ()

()P
oB

We ˆ

→output

bias weight to
thô output layer, and ()

()P

oi
We

ˆ
 →weight from

thi


hidden layer to
thô output layer”. The error is approximated in

Eq. (4), in which, Gn → count of output neuron,
 oPˆ

ˆ and oPˆ

→predicted & actual output. Here, the weights We are

optimally chosen via HBA-BEO model. The minimization of
Eq. (4) is set as objective in this work.

()
()
()

()
()














+=
=

in

j

H

ij

H

iB

H feWeWeAFz
1



 (2)

()
()

()
() ()














+=
=

hn

i

HP

oi

P
oBo zWeWeAFP

1
ˆˆˆ

ˆ


 (3)

()
()

()
()

()
()

()
()

 −=
=









 G

P

oi

P
oB

H

ij

H

iB

n

oo

WeWeWeWe

PPer
1

ˆˆ

,,,

ˆminarg

ˆˆ


 (4)

The output from NN offers final classified output.

B. Proposed HBA-BEO Algorithm

The developed HBA-BEO is the hybrid conceptual of BES
[17] and HBA [18]. It was established that the grouping of two
typical optimizations will progress the convergence speed [19]
[20] [21] [22].

Selecting stage: This stage decided the optimum region as
per the food quantity. As per HBA-BEO, this behaviour is

modelled as per HBA update as in Eq. (5), in which iDis

signifies distance information, flag→ flag to alter searching

direction, ra refers to random constraint, preyY → best

position”. As per HBA-BEO, density factor  is computed as

in Eq. (6).

ipreynew DisraflagYY **7* +=
 (5)

()

max

max 15.1

it

itit +−
= (6)

Searching stage: This stage is computed in Eq. (7). In Eq.

(7), “ bestY refers to elected searching space depending upon

best position of eagle, meanY refers to mean distance amid every

positions of bald eagle (population mean), iY refers to present

position of eagle, ran refers to random constraint produced

among [0 - 1], ,  refers to constant constraint among [0.5,

2], Q refers to constant constraint among 0.5 to 2, and 1ran

and 2ran refers to two arbitrary constraints”. Conventionally,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

586 | P a g e

www.ijacsa.thesai.org

()ir is computed as in Eq. (11), however, as per HBA-BEO,

()ir is computed as in Eq. (12), wherein, ran is computed

using chaotic cubic map.

() () () ()meaniiiinew YYipYYiZYY −+−+= +1 (7)

()
()
(

()
()
(Zr

iZr
iZ

pr

ipr
ip

max
,

max
==

 (8)

() () ()() () () ()()iiriZriiripr  sin,cos ==
 (9)

() 1rani = 
 (10)

() () 2ranQiir +=
 (11)

() () ranQiir +=
 (12)

Swooping stage: This stage is modelled as in Eq. (13).

() ()
() ()meani

meanibestnew

YitYiZl

YitYiplYrandY

−+

−+=

2

13

 (13)

()
()
(

()
()
(Zr

iZr
iZl

pr

ipr
ipl

max
,

max
==

 (14)

() () ()() () () ()()iiriZriiripr  cosh,sinh ==
 (15)

() () ()iirrani  == ,3
 (16)

V. RESULTS AND DISCUSSION

A. Simulation Set Up

The novel prediction model for compiler optimization using
NN + HBA-BEO was executed in “Python. Training set: SPEC
CPU2006 is developed by the standard performance evaluation
organization for the evaluation of general-purpose CPU
performance [11]. The input scale of SPEC2006 benchmark can
be divided into test, train and reference scale, we use the
reference scale to test”. Here, analysis was done for varied
metrics like accuracy and varied error metrics like MSE, MSLE
and so on. Also, NN+HBA-BEO was proven over NN + BES,
NN + HBA, NN + ALO, NN + BWO, NN + AOA and NN +
SSA.

B. Performance Analysis

The study on diverse metrics is detailed here. Here, the
analysis was done for LPs of 60, 70, 80 and 90 over NN + BES,
NN + HBA, NN + ALO, NN + BWO, NN + AOA and NN +
SSA models. From Fig. 2, the considered metrics like
specificity, sensitivity, accuracy and precision are examined,
which were established to be much better over NN + BES, NN
+ HBA, NN + ALO, NN + BWO, NN + AOA and NN + SSA
models. The accuracy of NN + HBA-BEO is high at 90th LP,
while precision is high at 80th LP. However, at all LPs, NN +
HBA-BEO have established higher outcomes over NN + BES,
NN + HBA, NN + ALO, NN + BWO, NN + AOA and NN +
SSA models. Thus, NN + HBA-BEO is proven to be enhanced
than NN + BES, NN + HBA, NN + ALO, NN + BWO, NN +
AOA and NN + SSA models.

(a) (b)

(c) (d)

Fig. 2. Analysis on (a) Precision, (b) Specificity, (c) Sensitivity and (d) Accuracy for NN + HBA-BEO over others.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

587 | P a g e

www.ijacsa.thesai.org

C. Analysis on Error Measures

The performance of adopted NN + HBA-BEO for diverse
error (MSE, MSLE, MAE and MAPE) is calculated over
conservative NN + BES, NN + HBA, NN + ALO, NN + BWO,
NN + AOA and NN + SSA schemes in Fig. 3. The NN + HBA-
BEO method is scrutinized for numerous LPs from 60, 70, 80
and 90 over NN + BES, NN + HBA, NN + ALO, NN + BWO,
NN + AOA and NN + SSA models. “In statistics, MAE is a
measure of errors between paired observations expressing the
same phenomenon”. The MAE needs to be less for improved
prediction accuracy. As required, the MAE obtained by NN +
HBA-BEO is lesser for every LP. The MSLE using NN + HBA-
BEO over NN + BES, NN + HBA, NN + ALO, NN + BWO,
NN + AOA and NN + SSA is signified in Fig. 3(b). “MSLE can
be interpreted as a measure of the ratio between the true and
predicted values”. For every LP, the MSLE gained by NN +
HBA-BEO is lesser. The assessment of NN + HBA-BEO for
MAPE and MSE over MSE, MSLE, MAPE and MAE is
signified in Fig. 3(c) and Fig. 3(d). “The MAPE, also known as
MAPD, is defined as a measure of prediction accuracy of a
forecasting method in statistics”. “In statistics, the MSE or
MSD of an estimator measures the average of the squares of the
errors, that is, the average squared difference between the
estimated values and the actual value”. The MSE and MAPE
have to be less for better prediction, which is found to be

accomplished by NN + HBA-BEO for all LPs over NN + BES,
NN + HBA, NN + ALO, NN + BWO, NN + AOA and NN +
SSA schemes.

D. Study on RMSE

The RMSE values with parameters for each benchmarks in
the dataset is exposed in Table III.

TABLE III. RMSE FOR VERIFIED BENCHMARK IN DATATSET

Parameters RMSE

400.perlbench 0.75

401.bzip2 0.661438

403.gcc 0.75

429.mcf 0.75

445.gobmk 0.829156

456.hmmer 0.661438

458.sjeng 0.661438

462.libquantum 0.829156

464.h264ref 0.661438

471.omnetpp 0.707107

473.astar 0.707107

483.xalancbmk 0.661438

(a) (b)

(c) (d)

Fig. 3. Attacks Analysis (a) MAE (b) MSLE (c) MAPE and (d) MSE for NN + HBA-BEO Scheme Over Others.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

588 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

This work developed a novel Compiler Optimization
Prediction Model. In this research, optimization [25] is the key
factor considered and it is achieved through derived features
and neural network. The features like static and dynamic
features as well as improved Relief based features were
extracted. The derived features were given to NN scheme, in
which the weights were tuned via NN + HBA-BEO. Finally, the
NN offered the final predicted output [26]. Here, the considered
metrics like specificity, sensitivity, accuracy and precision were
examined, which were established to be much better over BES,
HBA, ALO, BWO, AOA and SSA models. The accuracy of NN
+ HBA-BEO was high at 90th LP, while precision was high at
80th LP. However, at all LPs, NN+HBA-BEO has established
higher outcomes over NN + BES, NN + HBA, NN + ALO, NN
+ BWO, NN + AOA and NN + SSA models.

REFERENCES

[1] Wu, J. Xu, X. Meng, H. Zhang, Z. Zhang and L. Li, "Compilation
Optimization Pass Selection Using Gate Graph Attention Neural Network
for Reliability Improvement," in IEEE Access, vol. 8, pp. 150422-
150434, 2020, doi: 10.1109/ACCESS.2020.3016758.

[2] N. Neves, P. Tomás and N. Roma, "Compiler-Assisted Data Streaming
for Regular Code Structures," in IEEE Transactions on Computers, vol.
70, no. 3, pp. 483-494, 1 March 2021, doi: 10.1109/TC.2020.2990302.

[3] Thoman, P., Zangerl, P. & Fahringer, T. Static Compiler Analyses for
Application-specific Optimization of Task-Parallel Runtime Systems. J
Sign Process Syst 91, 303–320 (2019). https://doi.org/10.1007/s11265-
018-1356-9.

[4] Tao, X., Pang, J., Xu, J. et al. Compiler-directed scratchpad memory data
transfer optimization for multithreaded applications on a heterogeneous
many-core architecture. J Supercomput 77, 14502–14524 (2021).
https://doi.org/10.1007/s11227-021-03853-x.

[5] Ashcraft, M.B., Lemon, A., Penry, D.A. et al. Compiler Optimization of
Accelerator Data Transfers. Int J Parallel Prog 47, 39–58 (2019).
https://doi.org/10.1007/s10766-017-0549-3.

[6] Michael C.Brogioli, "Software and Compiler Optimization for
Microcontrollers, Embedded Processors, and DSPs", Software
Engineering for Embedded Systems (Second Edition) ,pp.245-267, 2019.

[7] A. Serrano-Cases, Y. Morilla, P. Martín-Holgado, S. Cuenca-Asensi and
A. Martínez-Álvarez, "Nonintrusive Automatic Compiler-Guided
Reliability Improvement of Embedded Applications Under Proton
Irradiation," in IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp.
1500-1509, July 2019, doi: 10.1109/TNS.2019.2912323.

[8] J. Wu, J. Xu, X. Meng, H. Zhang, Z. Zhang and L. Li, "Compilation
Optimization Pass Selection Using Gate Graph Attention Neural Network
for Reliability Improvement," in IEEE Access, vol. 8, pp. 150422-
150434, 2020, doi: 10.1109/ACCESS.2020.3016758.

[9] Carabaño, J., Westerholm, J. & Sarjakoski, T. A compiler approach to
map algebra: automatic parallelization, locality optimization, and GPU
acceleration of raster spatial analysis. Geoinformatica 22, 211–235
(2018). https://doi.org/10.1007/s10707-017-0312-3.

[10] A. Serrano-Cases, Y. Morilla, P. Martín-Holgado, S. Cuenca-Asensi and
A. Martínez-Álvarez, "Nonintrusive Automatic Compiler-Guided
Reliability Improvement of Embedded Applications Under Proton
Irradiation," in IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp.
1500-1509, July 2019, doi: 10.1109/TNS.2019.2912323.

[11] SPEC CPU2006: SPEC CPU2006 benchmark suite.
http://www.spec.org/cpu/.

[12] Chetverina, O.A. Alternatives of profile-guided code optimizations for
one-stage compilation. Program Comput Soft 42, 34–40 (2016).
https://doi.org/10.1134/S0361768816010035.

[13] Beierle, C., Kutsch, S. & Sauerwald, K. Compilation of static and
evolving conditional knowledge bases for computing induced
nonmonotonic inference relations. Ann Math Artif Intell 87, 5–41 (2019).
https://doi.org/10.1007/s10472-019-09653-7.

[14] Goodrich, T.D., Sullivan, B.D. & Humble, T.S. Optimizing adiabatic
quantum program compilation using a graph-theoretic framework.
Quantum Inf Process 17, 118 (2018). https://doi.org/10.1007/s11128-
018-1863-4.

[15] Zhu, D., Yang, Z., Chen, C. et al. Compilation of program-loading
spectrum for milling of a motorized spindle based on cutting force model.
J Braz. Soc. Mech. Sci. Eng. 41, 187 (2019). https://doi.org/10.1007/s404
30-019-1686-y.

[16] Yogeswaran Mohan, Sia Seng Chee, Donica Kan Pei Xin and Lee Poh
Foong, "Artificial Neural Network for Classification of Depressive and
Normal in EEG", 2016 IEEE EMBS Conference on Biomedical
Engineering and Sciences (IECBES), 2016.

[17] Alsattar, H.A., Zaidan, A.A. & Zaidan, B.B. Novel meta-heuristic bald
eagle search optimisation algorithm. Artif Intell Rev 53, 2237–2264
(2020). https://doi.org/10.1007/s10462-019-09732-5.

[18] Fatma A. Hashim, Essam H. Houssein, Kashif Hussain, Mai S.
Mabrouk,Walid Al-Atabany,"Honey Badger Algorithm: New
metaheuristic algorithm for solving optimization problems",Mathematics
and Computers in Simulation, Vol.192, 2022.

[19] M. Marsaline Beno, Valarmathi I. R, Swamy S. M and B. R. Rajakumar,
“Threshold prediction for segmenting tumour from brain MRI scans”,
International Journal of Imaging Systems and Technology, Vol. 24, No.
2, pp. 129-137, 2014.

[20] Renjith Thomas and MJS. Rangachar, "Hybrid Optimization based DBN
for Face Recognition using Low-Resolution Images", Multimedia
Research, Vol.1,No.1, pp.33-43,2018.

[21] Devagnanam J,Elango N M, "Optimal Resource Allocation of Cluster
using Hybrid Grey Wolf and Cuckoo Search Algorithm in Cloud
Computing", Journal of Networking and Communication Systems,
Vol.3,No.1, pp.31-40,2020.

[22] SK.Mahammad Shareef and Dr.R.Srinivasa Rao, "A Hybrid Learning
Algorithm for Optimal Reactive Power Dispatch under Unbalanced
Conditions", Journal of Computational Mechanics, Power System and
Control, Vol.1,No.1, pp.26-33,2018.

[23] Liu, H., Zhao, R., Wang, Q. et al. ALIC: A Low Overhead Compiler
Optimization Prediction Model. Wireless Pers Commun 103, 809–829
(2018). https://doi.org/10.1007/s11277-018-5479-x. S.Baskar, S. &
Lawrence, Dr. L. Arockiam. (2013). C-LAS Relief-An Improved Feature
Selection Technique in Data Mining. International Journal of Computer
Applications. 83. 33-36. 10.5120/14511-2891.

[24] A. D. Sutar and S. B. Shinde, "ECU diagnostics validator using
CANUSB," 2017 International Conference on Inventive Computing and
Informatics (ICICI), 2017, pp. 856-860, doi:
10.1109/ICICI.2017.8365257.

[25] A. D. Sutar and S. B. Shinde, "ECU Health Monitor Using
CANUSB," 2018 Second International Conference on Inventive
Communication and Computational Technologies (ICICCT), 2018, pp.
415-419,doi:10.1109/ICICCT.2018.8473000.

[26] Sagar Shinde, R. Khanna, R. B. Waghulade, "Identification of
Handwritten Complex Mathematical Equations", International Journal of
Image, Graphics and Signal Processing(IJIGSP), Vol.11, No.6, pp. 45-53,
2019.DOI: 10.5815/ijigsp.2019.06.06.

http://www.spec.org/cpu/
https://doi.org/10.1007/s10462-019-09732-5
https://doi.org/10.1007/s11277-018-5479-x

