
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 10, 2022 

624 | P a g e  

www.ijacsa.thesai.org 

Enhanced Jaya Algorithm for Multi-objective 

Optimisation Problems 

Rahaini Mohd Said1, Roselina Sallehuddin2, Nor Haizan Mohd Radzi3, Wan Fahmn Faiz Wan Ali4 

Faculty of Computing, Universiti Teknologi Malaysia1 

Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka1 

Faculty of Computing, Universiti Teknologi Malaysia2, 3 

Faculty of Mechanical Engineering, Universiti Teknologi Malaysia4 

 

 
Abstract—Evolutionary algorithms are suitable techniques for 

solving complex problems. Many improvements have been made 

on the original structure algorithm in order to obtain more 

desirable solutions. The current study intends to enhance multi-

objective performance with benchmark optimisation problems by 

incorporating the chaotic inertia weight into the current multi-

objective Jaya (MOJaya) algorithm. Essentially, Jaya is a recently 

established population-oriented algorithm. Exploitation proves to 

be more dominant in MOJaya following its propensity to capture 

local optima. This research addressed the aforementioned 

shortcoming by refining the MOJaya algorithm solution to update 

the equation for exploration-exploitation balance, enhancing 

divergence, and deterring premature convergence to retain the 

algorithm fundamentals while simultaneously sustaining its 

parameter-free component. The recommended chaotic inertia 

weight-multi-objective Jaya (MOiJaya) algorithm was assessed 

using well-known ZDT benchmark functions with 30 variables, 

whereas the convergence matrix (CM) and divergence matrix 

(DM) analysed the suggested MOiJaya algorithm performances 

are inspected. As such, this algorithm enhanced the exploration-

exploitation balance and substantially prevented premature 

convergence. Then, the proposed algorithm is compared with a 

few other algorithms. Based on the comparison, the convergence 

metric and diversity metric results show that the recommended 

MOiJaya algorithm potentially resolved multi-objective 

optimisation problems better than the other algorithms. 

Keywords—MOJaya; chaotic inertia weight; ZDT benchmark 

function; convergence metric; diversity metric 

I. INTRODUCTION 

As a mathematical instrument that adequately models and 
solves real-life complexities with multiple objectives and 
simultaneous enhancement, multi-objective optimisation and 
its relevant intricacies have garnered much scholarly attention 
across various disciplines, specifically engineering and 
sciences. Multiple population-oriented metaheuristic 
algorithms were recommended for multi-objective problem 
(MOP) solving. As MOP goals must simultaneously optimise 
the conflicting nature of multiple objectives given the absence 
of one distinct alternative to optimise all collaborative 
counterparts [1], a set of optimal trade-off alternatives (Pareto) 
was employed as a solution. Thus, a single and optimal solution 
is non-existent in this regard. Evolutionary algorithms or EAs 
imply some of the most extensively-utilised algorithms to solve 
MOPs and numerous issues with competing objectives across 
industrial, engineering, and research disciplines [2]. Robust 
optimisation algorithms serve to resolve intricate real-world 

MOPs in one run. Relevant research has demonstrated the 
successful application of multi-objective optimisation, which 
has extended EAs entailing MOPSO [3], [4], MODE [5], 
MOACO [6], and MOGA [7] for improved performance in 
multi-objective optimisation problem solution. 

Recent EA developments in the past few decades have 
rendered the algorithms an efficient means of solving intricate 
multi-objective evolutionary algorithms (MOEAs). Their 
competence in simultaneously examining different regions of 
the Pareto front (PF) and generating a set of Pareto solutions in 
one run facilitates scholars toward multi-objective and real-life 
optimisation problems using distinct domains. Nevertheless, 
the algorithms types rely on algorithm-centric parameter 
refinements with common controlling parameters. Such 
specific parameters entail multiple purposes and impact the 
convergence rates, diversity, efficiency, scalability, 
exploration, and exploitation within the solution. For example, 
MOGA constitutes a mutation and crossover operator to attain 
the exploration and exploitation mechanism. Rao and 
colleagues established the parameter-free Jaya and MOJaya 
algorithms in 2016 to address scholars’ complexities and 
control specific parameters for algorithm simulation. 

The aforementioned algorithms prove adequate in 
engineering areas, which entail i) multiple variables and 
parameters that require observation and ii) control or uncontrol 
parameters that are deemed challenging to manage without 
expertise and experience. Specifically, the Jaya algorithm or 
EA optimisation, which only requires several turning control 
parameters (population size, number of generations, and design 
variables), could only alleviate specific complexities. The EAs 
optimisation has recently solved applications for a single 
objective, whereas MOJaya resolved multi-objective 
optimisation problems. The solution consistently shifts towards 
the most and least optimal solutions that are avoided in 
simulation under the Jaya algorithm concept. The Update phase 
serves to modify the solution from earlier generations compared 
to other algorithms, which require two phases to refine 
solutions involving teaching-learning optimisation (TLBO), 
artificial bee colony (ABC), and differential evolution (DE). 
Intriguingly, the Jaya algorithm optimally manages continuous, 
discrete, and integer variables [8]. 

Hence, in this study, the improved MOJaya algorithm is 
proposed to solve multi-objective optimisation problems, while 
the properties of MOJaya are preserved. The non-dominated 
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sorting (NDS) approach with a reference point is used to find 
dominance relation, where NDS is performed according to the 
Euclidean distances between each possible solution of the front 
and reference point. The solution update equation is modified 
by incorporating the chaotic inertia weight. Finally, the 
recommended algorithm’s performance were tested using ZDT 
benchmark test problems. The convergence metric and 
diversity metric evaluate the performance of the recommended 
algorithms. 

The remaining paper is organized as follows: Section II, 
discusses the improvement Jaya Algorithm and its variations by 
the previous researcher. Then, the recommended algorithm 
methodology is presented in Section III. Next, Section IV 
presents the obtained results and analysis. Finally, the 
conclusion and future research are presented in Section V. 

II. MOJAYA ALGORITHM 

Rao’s [9] Jaya algorithm is a novel, astute, population-
oriented, and parameter-free solution that manages constrained 
and unconstrained optimisation-related problems. Resultantly, 
the number of function assessments required to obtain a 
solution is lesser than that of TLBO. Several limitations have 
been ascertained despite its consistent attempts to omit the least 
optimal solutions and iterate the most optimal solution search 
space. For example, the Jaya algorithm becomes trapped in 
local optimal solutions where exploitation overrides 
exploration [10]. The basic Jaya algorithm is updated to relieve 
researchers (specifically in complex engineering fields) from 
refining algorithm-centric parameters. 

Following past literature, the Jaya algorithm functions to 
solve multiple real-time and standard benchmark functions with 
distinct components and variants. This section elaborates on 
several parameter-free Jaya algorithm variants that were 
published in relevant research. The MOJaya, a posteriori 
version of Jaya, was developed in 2017 to solve multi-objective 
optimisation problems. Although MOJaya algorithm solutions 
are similarly updated to that of Jaya, MO-Jaya incorporates 
non-dominated sorting and the crowding distance computing 
mechanism for successful multi-objective management. 

Past scholars demonstrated inconsistent outcomes in terms 
of multi-objective Jaya algorithm enhancement. Rao and Pawar 
(2020) recommended a novel and upgraded version (Rao’s 
quasi-oppositional approach) under the Jaya algorithm with 
multi-objective and quasi-oppositional-oriented-learning 
techniques to address the diversity in the algorithm searching 
process. Three multi-objective optimisation case studies 
involving real-world and intricate engineering optimisation 
problems were applied with a single-layered microchannel heat 
sink (SL-MCHS), a double-layered microchannel heat sink 
(DL-MCHS), and a plate-fin heat sink (PFHS) to examine the 
recommended algorithm efficiency. The findings derived 
through the recommended algorithms were compared against 
those elicited with advanced optimisation algorithms: GA, 
ABC, DE, PSO, TLBO, MOGA, NSGA-II, real-coded GA 
(RCGA), direction-based GA, and basic and self-adaptive 
multi-population (SAMP) Rao algorithms. Essentially, the 
recommended algorithms proved superior and competitive 
compared to other optimisation counterparts [11]. 

The discrete multi-objective Jaya algorithm potentially 
addresses the flexible job-shop scheduling problem (FJSSP) by 
regarding the minimisation of makespan and total and critical 
machine workload as performance measures. Dynamic 
mutation operator and modified crowding distance measures 
were proposed to improve search process diversity. In-depth 
computational experiments were performed by regarding 203 
FJSSP instances from past research. A comparison between the 
recommended algorithm and the weighted sum version 
demonstrated higher performance than the other approach and 
other MOEAs. Based on the computational outcomes, the 
proposed algorithm efficiently obtained diverse and enhanced 
Pareto-optimal solutions [12]. 

Rao and Hameer (2019) presented an adaptive multi-team 
perturbation with multiple teams to navigate the Jaya algorithm 
and examine its search space. The recommended algorithm was 
investigated with two multi-objective optimisation case studies 
of a solar dish Stirling heat engine system and one counterpart 
of the Stirling heat pump. The suggested algorithm utilised 
various perturbation equations with dominance principles and 
the crowding distance estimation approach for simultaneous 
multiple objective management. As a decision-making 
approach, the ‘technique for order of preference by similarity 
to ideal solution’ was also utilised for optimal solution 
identification. The computational outcomes elicited by the 
suggested algorithm proved superior to those attained by other 
study algorithms [13]. 

Rao and Saroj (2018) recommended a novel and unique 
Jaya algorithm for multi-objective design optimisation problem 
solution. The aforementioned algorithm was applied to resolve 
the heat exchanger design problem where two conflicting 
objectives (optimise heat exchangers’ total annual cost and 
effectiveness) were simultaneously regarded. The least optimal 
Jaya algorithm solutions were substituted with an elitist value 
at the end of each iteration. As such, local trapping was 
prevented by arbitrarily selecting duplicate solution parameters. 
The recommended algorithm also optimally solved the multi-
objective heat exchanger design compared to GA and TLBO 
[14]. 

The drawbacks inherent in the basic Jaya algorithm were 
highlighted in past studies. The exploration-exploitation 
balance implies one of the success criteria for any nature-
oriented algorithm. Exploitation depicted a more significant 
impact than exploration as this algorithm catalyses objective 
function value towards the most optimal solution space. In this 
vein, local minima are trapped with less diverse solutions. The 
Jaya algorithm, which causes premature convergence and 
impacts solution quality, only upgrades the solution with the 
most and least optimal solutions from past iterations. Another 
shortcoming denotes the basic Jaya algorithm weakness 
regarding information exchange among individuals with no 
local minima mechanism in the event of a trapped algorithm. 
Palpably, relevant scholars have strived to integrate multiple 
methods for the optimal performance of balancing exploration 
and exploitation capacities and solving multiple real-time and 
benchmark problems. Exploration-exploitation balance is a 
pivotal mechanism that efficiently assesses the optimisation 
algorithm [15]–[17]. The numerous Jaya algorithm refinements 
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presented in this study primarily emphasised mitigating the 
basic Jaya algorithm limitations. 

However, the results produced inconsistent results while 
comparing the performance with other results. Hence, the 
current research strived to (i) employ and assess the proposed 
techniques for improved MOJaya algorithm performance, (ii) 
solve multi-objective optimisation problems, and (iii) introduce 
a chaotic sequence. Inertia chaotic weight was initially adopted 
in the solution for the updated equation to be elicited from the 
local optimal solution. Regarding MOJaya, the most optimal 
solution was derived from the sorted list through non-dominant 
sorting and a crowding distance mechanism to eliminate the 
least optimal counterparts, thus leading to local region searches, 
premature convergence, and lesser diverse solutions. 

The previous study observed that researchers are working 
to improve the MOJaya algorithm’s performance. Various 
techniques are adopted to improve performance and also focus 
on real-life MOP. The motivation for this paper is as follows. 
First, the recommended study strategies for the algorithm is 
presented to improve the exploration of the existing MOJaya 
algorithm. The recommended algorithm development towards 
high performance while balancing exploration and exploitation 
is adopting inertia chaotic weight in the solution for an updated 
equation provides the best solution for promising and sparse 
search space regions. Then, the recommended algorithm’s 
performance is evaluated using a two-objective ZDT test 
performance. Finally, the exiting MOJaya and MOiJaya 
algorithm with other multi-objective optimization algorithm 
performance are compared using the convergence and diversity 
metrics. 

III. THE MOIJAYA ALGORITHM 

The MOJaya, a posteriori Jaya algorithm version, was 
employed for stochastically updated Multi-objective 
optimization problems (MOOP) solutions. The most optimal 
solution denoted maximum fitness, whereas the worst 
counterpart implied minimum fitness. The MOJaya algorithm 
was incorporated into a non-dominant ranking and crowding 
distance evaluation method to resolve multi-objective 
algorithm. The MOJaya algorithm pseudo-code is depicted in 
Algorithm 1. 

A. Chaotic Random Inertia Weight Mechanism 

The chaos mechanism, a well-established logistic map, was 
integrated with TLBO and the basic Jaya algorithm for single 
optimisation. Meanwhile, the chaotic sequence implied two 
attributes (ergodicity and randomness) that drove the algorithm 
away from the optimal local solution and enhanced solution 
quality [18], [19].The fundamentals of chaotic inertia weight 
aimed to establish the inertia weight coefficient with chaotic 
mapping, which is integrate Logistic mapping, the method used 
in this paper. Inertia weight denotes one of the PSO algorithm 
parameters that substantially affect global and local searches 
and PSO algorithm performance through simultaneous particle 
retention in inertial motion and search space expansion [20]. 
The chaotic random inertia weight generated as (1) and (2) was 
incorporated into this study, given its value in demonstrating 
particle velocity shifts. 

Logistic mapping, 

( )4 1 (1)z z z=   −
 

Chaotic Inertia weight 

( )0.5 0.5 (2)random z =  + 
          (2) 

Algorithm 1 : MOJaya algorithm 1 

Begin  

Step 1 

 

 

 

Step 2 

 

Step 3 

 

Step 4 

 

 

Step 5 

 

 

Step 6 

Step 7 

 

 

End 

 

Initialize the algorithm’s control parameters, such 

as population size (N) and the maximum number 

of iterations (Gmax). Also initialize the problem-

specific parameters such as a number of objectives 

(M).  

Generate the initial solution randomly and evaluate 

it for each individual. Identify the best and worst 

solutions.  

Find the new solution for all the individuals in a 

population using the modified solution update 

equation. 

Evaluate the modified solution using Non-

dominated sorting with a and ranking method 

solution using Non-dominated sorting with ranking 

method.  

Combine the new solution with the old one. Sort 

the combined solution in ascending order. Identify 

the best and worst from the selected solution to 

update the solution in the next iteration. 

Update the global best solution by comparing the 

old global best solution with the new best solution.  

If the number of iterations reaches the maximum, 

stop the procedure and report the global best 

solution; otherwise, repeat the procedure from Step 

3. 

B. Proposed Modification in MOiJaya 

The MOJaya algorithm, which entails a non-dominated 
sorting scheme and crowding distance from the NSGA-II 
counterpart, is developed to solve the multi-objective 
optimisation problem by integrating components from current 
MOEAs. The MOJaya algorithm performs sorting in ascending 
order by integrating the solutions from present and past 
iterations. The best solutions for the first N (population size) 
were selected through the non-dominated ranking scheme from 
the sorted list. Meanwhile, the most and least optimal solutions 
were selected from the N (population size) to update the 
following iteration. The most optimal and random solutions 
were chosen as the next search direction to explore more space 
in the early iteration of the algorithm process. The most optimal 
solution candidate in the algorithm functions to navigate the 
population towards a better region, whereas a random solution 
facilitates search space expansion. Searching local region 
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outcomes results in premature convergence and low diversified 
solutions as this approach disregards the least optimal solution. 

The recommended algorithm and solution update equation 
was refined by integrating the chaotic sequence to alleviate 
MOJaya limitations. The random number employed in the 
MOJaya solution for an updated equation was substituted with 
a chaotic random inertia weight. The chaotic random inertia 
weight attributes entailing ergodicity and randomness enabled 
the algorithm to drive away from the optimal local solution: a 
regulation to balance the stochastic search and local search 
probabilities. Additionally, the recommended algorithms were 
improved in terms of convergence metric and diversity metric. 
The refined solution for an updated equation is expressed in (3) 
below: 

*
( 1, , ) ( , , ) ( , ,1) ( , , ) ( , , )

* (3)
( , ,2) ( , , ) ( , , )

x x x x
i j k i j k i j i j w i j k

x x
i j i j w i j k





= + −
+

− −

 
 

 
   

The pseudocode for MOiJaya is depicted in Algorithm 2. 
Fig. 1 illustrates the flowchart parallel to the previously-
mentioned refinements. 

 

Fig. 1. The Flowchart of MOiJaya Algorithm. 

Algorithm 2: MOiJaya algorithm 

 

Begin 

Input: Population size N, number of objectives, number of 

design variables, number of iterations, constrain, and 

function 

Output: Solution f1 and f2 

1: Initialize population size, initialize the best and worst 

2: Generate initial population randomly 

     For i< var 

 

               Generate initial population for variable and  

                objective 

 

      End 

 Find the best and worst candidates using non-dominated 

sorting and crowding distance 

           While t<iter-max 

                    Generate new solution using modified solution  

                     update equation as equation 3 

                     Evolve  

                     Merge the new and old solution 

                     Perform non-dominated sorting and crowding  

                     distance 

                     Select the first N solution   

                      t+1;  

            End 

End  

IV. COMPUTATIONAL RESULTS AND ANALYSIS 

This section highlights the recommended MOiJaya 
algorithm assessment. The suggested chaotic-oriented MOJaya 
algorithm was incorporated into Matlab2020 and examined 
with ZDT1-ZDT6 for multi-objective benchmark functions 
using two objectives with 30 variables. The outcomes elicited 
by the MOiJaya algorithm were compared against those 
identified in past empirical works with well-known CM and 
DM. The ZDT functions in PF demonstrated diverse attributes 
(separable, multimodal, linear, concave, mixed, and biased) that 
rendered it challenging to solve the problems with MOEAs 
(Deb et al., 2005). Table I presents the ZDT1-ZDT6 objective 
test problems. 

The suggested MOiJaya algorithm extends to a renowned 
basic Jaya algorithm that only requires common controlling 
parameters. The following common controlling parameters are 
utilised to perform experiments: 

Population size  : 100 

Maximum iteration : 10000 

The recommended chaotic-based MOJaya algorithm was 
compared against SPEA2, NSGA-II, and EDATCMO [21] with 
two popular MOEA performance metrics (DM and CM) to 
assess the convergence and diversity solution for Pareto-front. 

A. Perormance Measures 

The common trend in various successful solution 
methodology development, including MOEAs, involves 
performance comparison on multiple test problems. Two goals 
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(discover solutions with close proximity to the Pareto-optimal 
solutions and alternatives that are distinctly diverse in the 
elicited non-dominated front) were identified in multi-objective 
optimisation, unlike the single counterpart. A minimum of two 
performance metrics proves vital towards the actualization of 
both multi-objective optimisation goals to ascertain an effective 
MOEA (Deb, 2001). One performance matrix analyses the 
progress towards the Pareto-optimal front while the other 
assesses the solution spread. Three common metrics were 
employed in this study despite the numerous performance 
metrics highlighted in past literature, two of which would be 
implemented for MDEA analysis: CM and DM. 

The CM was recommended by [22] to assess the distance 
between the obtained non-dominated (NF) front and optimal 
PF. The mathematical equations are expressed as follows (4): 

( ) ( )
min (4)

max min1 1

f i f jM k k
d N

j k f f
k k

−
= 

= = −

 
 
 
   

( )( )
( )

( )
1

(5)

F t
dii

CM P t
F t

 =
= =

 

Specifically, M denotes the number of objectives, 
max min

k kf f−  imply the maximum and minimum function 

values of thk and the objective function in the reference set, 

respectively, and N indicates the reference set size. The 
minimum value of CM, (5) reflects improved multi-objective 
optimisation algorithm performance. 

The DM was suggested by [22] to assess the extent of 
solution spread, not unlike DM where optimal algorithms 
denote lower diversity metrics for evenly-spread solutions on 
PF. The spread was ascertained by computing each solution gap 
in PF with the neighbouring solution. The mathematical 
equation is expressed as follows: 

( )( )

1

1
(6)

1

N
d d d dif l i

DM
d d N d

f l

−
+ + −

=
=

+ + −
 

Based on the Euclidean distance between the consecutive 
solutions within the obtained non-dominated set of solutions, 

d  denotes the average of all distances, ( )1, 2, ...,d i Ni =  

assumes the N solutions in the derived non-dominated set, and 

d
l reflects the Euclidean distance between extreme and 

boundary solutions. The ( )1N − is utilised as the solution 

distance that constitutes two solutions. 

B. Results on Zdt Test Functions 

In this section, five benchmarks are used to test the 
proposed algorithm and analyzed the obtained results. The five 
well-known benchmarks of optimization problems have been 

listed in Table I. The optimal values of all minimization 

objective function given in Table I is zero, which is, ( ) 01f x =  

where 
1x

is the optimal solution. 

The recommended MOiJaya algorithm was performed 30 
times for the chosen test function and corresponding number of 
objectives. In Table II-VI, we compared the proposed algorithm 
with the five others algorithm. The purpose of this test is to 
evaluate the quality of the solutions of purposed algorithm in 
different benchmarks compared to other algorithms. The mean 
and standard deviation (sd) values of DM and CM through 
SPEA2[22] ,NSGAII [23], FastPGA , and EDATCMO [21], 
MOJaya, and suggested MOiJaya algorithms on multi-
objective benchmark functions ZDT1, ZDT2, ZDT3, ZDT4, 
and ZDT6. The MOJaya algorithm employs the solution for an 
updated equation from the basic Jaya counterpart [24]. The 
common controlling parameters remain the same for both 
MOJaya and MOiJaya. 

C. Results on Zdt Test Functions 

In this section, five benchmarks are used to test the 
proposed algorithm and analyzed the obtained results. The five 
well-known benchmarks of optimization problems have been 
listed in Table I. The optimal values of all minimization 

objective function given in Table I is zero, which is, ( ) 01f x =  

where 
1x

is the optimal solution. 

The recommended MOiJaya algorithm was performed 30 
times for the chosen test function and corresponding number of 
objectives. In Table II-VI, we compared the proposed algorithm 
with the five others algorithm. The purposed of this test is to 
evaluate the quality of the solutions of purposed algorithm in 
different benchmarks compared to other algorithms. The mean 
and standard deviation (sd) values of DM and CM through 
SPEA2[22] ,NSGAII [23], FastPGA , and EDATCMO [21], 
MOJaya, and suggested MOiJaya algorithms on multi-
objective benchmark functions ZDT1, ZDT2, ZDT3, ZDT4, 
and ZDT6. The MOJaya algorithm employs the solution for an 
updated equation from the basic Jaya counterpart [24]. The 
common controlling parameters remain the same for both 
MOJaya and MOiJaya. 

In Fig. 2, Pareto optimal for MOiJaya are presented. It is 
found that the generated Pareto optimal front for MOiJaya quite 
close to True Pareto front. The convergence metric and 
divergence metric results for ZDT1 problems in Table II show 
that MOiJaya has lower values in the metric than all the other 
algorithms. This shows that MOiJaya is better in diversity and 
converge than other algorithms. 

Fig. 3 shows the Pareto optimal fronts MOiJaya for test 
problems ZDT2. It is found that from MoiJaya is better in the 
uniform spread. Though MOiJaya pareto optimal slightly close 
to True pareto, MOiJaya is better diversity than MOJaya. Table 
III shows the results of convergence and divergence metric for 
ZDT2 problems. It is found that MOiJaya is better in diversity 
than all the other algorithms. From the results, the MOiJaya is 
worse in convergence metric than SPEA, NSGA-II, FastPGA 
and EDATCMO but better than MOJaya. 
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TABLE I. THE ZDT TEST PROBLEMS [22] 

Problem N 
Variable 

bounds 
Objective Functions 

Optimal 

Solutions 
Comments 

ZDT 1 30 [0,1] 

( )

( ) ( ) ( )

( ) ( )( )

1 1

1 /2 1

1 9 121

f x x

f x g x x g x

n
h f x nii

=

= −

= + −=

 
   

 0,11

01

2, ...,

x

x

i n



=

=

 Convex 

ZDT 2 30 [0,1] 

( )

( ) ( ) ( )( )

( ) ( )( )

1 1

2
1 /12

1 9 121

f x x

f x g x x g x

n
h f x nii

=

= −

= + −=

 
 

 

 0,11

01

2, ...,

x

x

i n



=

=

 nonconvex 

ZDT 3 30 [0,1] 

( )

( ) ( ) ( )
( )

( )

( ) ( )( )

1 1

1
1 / sin 10 12 1

1 9 121

f x x

x
f x g x x g x x

g x

n
h f x nii



=

= − −

= + −=

 
  

 

 0,11

01

2, ...,

x

x

i n



=

=

 
Convex 

Disconnected 

ZDT 4 30 [0,1] 

( )

( ) ( ) ( )

( ) ( ) ( )

1 1

1 /2 1

21 10 1 10 cos 421

f x x

f x g x x g x

nh f n x xiii 

=

= −

= + − + −=

 
 

 

 0,11

01

2, ...,

x

x

i n



=

=

 Convex 

ZDT 6 30 [0,1] 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )

6
1 exp 4 sin 61 1 1

2
1 /12

0.25
1 9 121

f x x x

f x g x x g x

n
h f x nii

= − −

= −

= + −=

 
 

  

 

 0,11

01

2, ...,

x

x

i n



=

=

 

Nonconvex 

Nonuniformly 

spaced 

 

  

F i g .  2 .  The Results of Test Problem ZDT1.  

TABLE II. COMPARISON OF CM AND DM VALUES OBTAINED WITH ALL 

ALGORITHMS FOR ZDT1 PROBLEMS 

Case Algorithm 
Convergence  Diversity 

(mean±sd)  (mean±sd) 

ZDT1 

SPEA 0.09462±0.04511 0.42209±0.01012 

NSGA-II 0.10872±0.00362 0.50827±0.02446 

FastPGA 0.09154±0.00621 0.70009±0.01174 

EDATCMO 0.02363±0.00146 0.21738±0.00368 

MOJAYA 0.23346±0.05597 0.02044±0.04281 

MOiJAYA 0.02226±0.00287 0.00168±0.00232 
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Fig. 3. The Results of Test Problem ZDT2 MOiJaya. 

TABLE III. COMPARISON OF CM AND DM VALUES OBTAINED WITH ALL 

ALGORITHMS ZDT2 PROBLEMS 

Case Algorithm 
Convergence  Diversity 

(mean±sd)  (mean±sd) 

ZDT2 

SPEA 0.08073±0.06101 0.50013±0.01612 

NSGA-II 0.09023±0.00401 0.30163±0.01503 

FastPGA 0.02067±0.00702 0.60034±0.2984 

EDATCMO 0.00821±0.00472 0.20022±0.00863 

MOJAYA 0.26564±0.22560 0.04489±0.02727 

MOiJAYA 0.15267±0.27201 0.03300±0.02923 

From the Fig. 4, it is found that the generated Pareto optimal 
front for MOiJaya quite close to True Pareto front. This is also 
confirmed with the results of convergence and diversity in 
Table IV. Comparison with other algorithms shows that 
MOiJaya outperforms all of them in both metrices. 

  

Fig. 4. The Results of Test Problem MOiJaya. 

TABLE IV. COMPARISON OF CM AND DM VALUES OBTAINED WITH ALL 

ALGORITHMS ZDT3 PROBLEMS 

Case Algorithm 
Convergence  Diversity 

(mean±sd)  (mean±sd) 

ZDT3 

SPEA 0.13996±0.07603 0.74932±0.05006 

NSGA-II 0.04208±0.09104 0.85061±0.09025 

FastPGA 0.07024±0.06541 0.85061±0.06453 

EDATCMO 0.02005±0.01843 0.50064±0.06132 

MOJAYA 0.04657±0.00559 0.06691±0.12251 

MOiJAYA 0.03764±0.05113 0.02896±0.00584 

It is found in Fig. 5 that MOiJaya is far from True Pareto for 
this problem. Table V shows the results of convergence and 
divergence metrics. It is found that MOJaya is better in 
convergence than all the other algorithm but very close to 
MOiJaya. But, from the results of diversity, MOiJaya is better 
than all the other algorithms. 

  

Fig. 5. The Results of Test Problem ZDT4 MOiJaya. 

TABLE V. COMPARISON OF CM AND DM VALUES OBTAINED WITH ALL 

ALGORITHMS ZDT4 PROBLEMS 

Case Algorithm 
Convergence  Diversity 

(mean±sd)  (mean±sd) 

ZDT4 

SPEA 0.62768±0.10676 0.51682±0.07319 

NSGA-II 1.13458±0.90054 0.85454±0.09003 

FastPGA 2.9742±1.94585 0.96856±0.07032 

EDATCMO 0.50547±0.08019 0.96856±0.07032 

MOJAYA 0.21701±0.05162 0.0255±0.06448 

MOiJAYA 0.27136±0.11211 0.01204±0.00448 

Test problems ZDT6 Pareto optimal front is presented in 
Fig. 6, It is found that the generated Pareto optimal front for 
MOiJaya quite close to True Pareto front. Results in Table VI 
shows that MOiJaya outperforms all other algorithms in test 
problem ZDT6 in both metrices. 

  

Fig. 6. The Results of Test Problem ZDT6 MOiJaya. 

TABLE VI. COMPARISON OF CM AND DM VALUES OBTAINED WITH ALL 

ALGORITHMS ZDT6 PROBLEMS 

Case Algorithm 
Convergence  Diversity 

(mean±sd)  (mean±sd) 

ZDT6 

SPEA 0.91036±0.09105 0.74532±0.04093 

NSGA-II 0.49311±0.00874 0.63847±0.08006 

FastPGA 0.72347±0.01106 0.84442±0.04034 

EDATCMO 0.10048±0.01002 0.31618±0.01782 

MOJAYA 0.78092±0.47053 0.07634±0.08416 

MOiJAYA 0.07094±0.11630 0.02013±0.02014 
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In Fig. 2-6, MOiJaya has achieved the two goals of multi-
objective optimization: convergence to the true Pareto-front 
(ZDT 1 and ZDT3) and uniform spread of solution along the 
front (ZDT1-ZDT6). In all the Tables II-VI, MOiJaya 
demonstrated better “optimal” values for CM involving ZDT1, 
ZDT3, and ZDT6 and DM involving all benchmark functions: 
ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. Additionally, the 
results are achieved the following points; in basic MOJaya 
algorithm, the exploitation is dominate, the recommended 
algorithm was modified to balance the exploration and 
exploitation by reducing the dominance of exploitation 
behavior. Other, using the chaotic inertia weight improve the 
converge rate and balance the exploration and exploitation. 
Specifically, t h e  MOiJaya outcomes proved comparable to 
MOJaya. The MOiJaya curves in all the aforementioned figures 
were comparable to that of MOJaya regarding convergence 
and diversity. Conclusively, the performance of MOiJaya in 
solving multi-objective optimisation problems is deemed 
encouraging and comparable to other MOEAs. 

V. CONCLUSION 

The current study introduced an enhanced MOiJaya 
algorithm to solve multi-objective optimisation problems. 
Specifically, the proposed method enhanced the current 
MOJaya algorithm through the chaotic inertia weight-oriented 
logistic chaotic sequence. The chaotic inertia weight was 
incorporated into the solution for an updated equation of the 
current MOJaya to mitigate the dominance of exploitation in 
this algorithm. The recommended modification also enhanced 
the multi-objective Jaya algorithm searchability. Chaotic inertia 
weight was integrated with MOJaya to improve exploration and 
the exploitation-exploration balance. The proposed MOiJaya 
approach efficiency was analysed with a benchmark 
performance ZDT test that was assessed with CM and DM. The 
recommended algorithm outcomes were compared to the most 
established findings following past research. Post-comparison, 
MOiJaya outperformed MOJaya with relatively good 
performance compared to advanced empirical algorithms. 
Nevertheless, there is much room for improvement although the 
suggested MOiJaya algorithm optimised the exploration-
exploitation balance. Further research could assess the 
recommended method with other multi-objective benchmark 
datasets and real-time multi-objective optimisation problems 
from various domains. 
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