
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

643 | P a g e

www.ijacsa.thesai.org

Dynamic Polymorphism without Inheritance:

Implications for Education

Ivaylo Donchev, Emilia Todorova

Department of Information Technologies

St Cyril and St Methodius University of Veliko Tarnovo

Veliko Tarnovo, Bulgaria

Abstract—Polymorphism is a core OO concept. Despite the

rich pedagogical experience in teaching it, there are still

difficulties in its correct and multifaceted perception by students.

In this article, a method about a deeper study of the concept of

polymorphism is offered by extending the learning content of the

CS2 C++ Programming course with an implementation variant of

dynamic polymorphism by type erasure, without using

inheritance. The research is based on an inductive approach with

a gradual expansion of functionalities when introducing new

concepts. The stages of development of such a project and the

details of the implementation of each functionality are traced. The

results of experimental training showed higher scores of the

experimental group in mastering the topics related to

polymorphism. Based on these findings, recommendations for the

construction of the lecture course and the organization of the

laboratory work are suggested.

Keywords—Inheritance; polymorphism; object-oriented; C++;

type erasure; pointers; templates; lambda expressions; teaching

I. INTRODUCTION

The study of the concept of polymorphism is widely used in
programming courses. Students encounter its forms already in
the introductory course and use them successfully, even if they
do not perceive them as such at first. This is where function
overloading and type casting (coercion polymorphism) come
in. Later, parametric polymorphism (templates, generics) is
added. However, when one says polymorphism, without
specifying what kind, one usually means the inherent OOP
inclusion (subtype) polymorphism, implemented through
inheritance, virtual methods and dynamic linking (dynamic
polymorphism). Subtype polymorphism is a cornerstone of
object-oriented programming. By hiding variability in behavior
behind a uniform interface, polymorphism decouples clients
from providers and thus enables genericity, modularity, and
extensibility [1]. This type of polymorphism, together with
parametric, forms the more general universal polymorphism
category of the popular classification of polymorphism types
given in [2], and overloading and coercion form the ad-hoc
category.

Bjarne Stroustrup defines polymorphism as “providing a
single interface to entities of different types” [3] and
distinguishes between dynamic (run-time) polymorphism,
implemented through virtual functions through an interface
provided by a base class, and static (compile-time)
polymorphism through overloaded functions and templates. It
is considered useful to differentiate between the two types. The
focus is on three matters: time when the selection of the specific

method occurs (run-time or compile-time); different behavior,
based on dynamic or static type; means by which it is usually
achieved – inheritance in case of dynamic and overloading and
templates in case of static.

Virtual functions and inheritance are typical means of
achieving dynamic polymorphism, but they have their
drawbacks in terms of performance and flexibility. The authors
believe that in order to build deep understanding of the concept
of dynamic polymorphism, students should have an idea that it
can be achieved by other means, such as type erasure. Such an
implementation with the currently available capabilities of C++
is cumbersome and error-prone, requires the definition of many
types and functions, and provides no distinguishable
advantages over inheritance, but has a beneficial impact on
developing the programming competencies of computer
science students, especially regarding the proper use of
pointers.

In this paper, experience of implementing dynamic
polymorphism without inheritance is shared (with manual
implementation of virtual tables and the implementation of
copy and move semantics) within the elective course
“Programming in C++” for students majoring in Software
Engineering. Their curiosity and previous experience with C#
provoked to try to implement a familiar sample project in a new
way. The project evolves incrementally with the addition of
new functionalities as the relevant concepts are studied. The
audience is later expanded to include Computer Science

students with no .NET experience in the mandatory C++
Programming course. The difficulties which students encounter
are explored and the effect of deeper study of concepts is
tracked.

II. METHODOLOGY

A. Motivation

A classic example of inheritance polymorphism that our
students have covered in the C# course is the hierarchy shown
in Fig. 1. The base class declares a virtual method
Accelerate(), which the two derived classes override. The
classes can be used as follows:

Vehicle vehicle = new Car();

vehicle.Accelerate();

vehicle = new Truck();

vehicle.Accelerate();

List<Vehicle> vehicles = new() {

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

644 | P a g e

www.ijacsa.thesai.org

 new Car(), new Truck(), new Truck(), new Car()

};

foreach (var v in vehicles){

 v.Accelerate();}

Fig. 1. The Hierarchy that will be Implemented.

 With no major changes to the client code, by implementing
an interface IVehicle, declaring the method Accelerate(),
the same functionality without inheritance can be obtained. The
C++ hierarchy implementation is even shorter – an abstract
base class with pure virtual method Accelerate(), which is
inherited and overridden by the classes Car and Truck.
However, the client code requires use of pointers (dynamic
allocation – one of the problems with inheritance), not objects,
because abstract class cannot be instantiated:

 Vehicle *vehicle = new Car{};

 vehicle->Accelerate();

 delete vehicle;

 vehicle = new Truck{};

 vehicle->Accelerate();

 std::vector<Vehicle*> vehicles{

 new Car{},

 new Truck{},

 new Truck{},

 new Car{}

 };

 for (auto&& v : vehicles){

 v->Accelerate();

 }

However, students want to write the code as they are used
to with C#:

 Vehicle v = Car{};

 v.accelerate();

 v = Truck{};

 v.accelerate();

 std::vector<Vehicle> vehicles{

 Car{}, Truck{}, Truck{}, Car{} };

 for (auto&& v : vehicles) {

 v.accelerate();

 }

If a default implementation of the method in the class
Vehicle is added, it is no longer abstract, this code will be

compiled, but there will be not polymorphic behavior – the
same method will always be executed – that of the class
Vehicle. For this code to work correctly, it is needed to
implement manually the virtual functions mechanism, which
will be done in the following sections.

B. Inheritance Problems

To prove why it is necessary to look for inheritance-free
design possibilities, it is needed to look at some of the problems
it raises. In his talk at CppCon 2020, Simon Brand summarizes
and analyzes five issues related to inheritance [4]:

• Often requires dynamic allocation

This problem is encountered when implementing the
hierarchy of Fig. 1. The attempt to store in vector<Vehicle>
objects of the derived classes Car and Truck leads to what's
called “slicing” – just the inherited from Vehicle (base) part of
the object are got, and we slice of the dynamic part of the
derived object. Usually this is not what is needed. The same is
the situation when a function returns an object of the base class
by value. To avoid this problem, it is needed to allocate and
return a pointer dynamically (in the case of the function), or
store a pointer (raw or smart) in a vector:

std::vector<std::unique_ptr<Vehicle>> vehicles;

• Ownership and nullability considerations

When working with pointers their ownership and validity
must always be considered. If unique_ptr is used, then the
ownership is clear. It is not so clear, however, if a function is
returning unique_ptr. Questions arise: can it return null? Is it
necessary to check? If the function accepts a unique_ptr
argument, what happens if null is passed? Is that valid? What's
the behavior? Too many questions to take care of.

• Intrusive: requires modifying child classes

Supporting inheritance requires modifying child classes.

namespace LibOne {

 class Base {

 public:

 virtual void Foo();

 };

}

namespace LibTwo {

 class Other {

 public:

 virtual void Foo();

 };

}

There is a Base class in LibOne and then there is some other
library LibTwo which has an Other class. They both have Foo()
method which returns void and they’re virtual. It is not possible
to allocate an instance of LibTwo::Other and take a pointer to
it through a LibOne::Base.

LibOne::Base* b = new LibTwo::Other{};

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

645 | P a g e

www.ijacsa.thesai.org

This will not work because LibTwo::Other does not say it
inherits from LibTwo::Other. This can be a problem. Maybe
LibTwo::Other cannot be changed like if we could just decorate
it to inherit from Base. For example, the code may not be
available or there may be other restrictions that prevent from
doing so. So, polymorphism with inheritance is intrusive.

• No more value semantics

Again, the question comes to the pointers. If we want value
semantics, then something on top must be built. For example,
virtual Clone() function which uses the correct dynamic type,
dynamically allocate a pointer, and pass it back. That’s a way
of getting a copy behavior but still it is not the usual C++ value
semantics which a lot of code depends on.

• Changes semantics for algorithms and containers

Inheritance changes semantics for algorithms and
containers. If a std::sort() is done, maybe sorting on pointers is
on, and custom comparator object must be supplied. The same
situation is when these things are stored in a std::set. Another
situation that must be thought about is that not usual C++ values
are used, but it is desirable for most of the C++ development to
use value semantics.

C. Implementing Virtual Functions by Hand

The start is with an implementation of the hierarchy of Fig.
1 in the traditional way, by inheritance.

class Vehicle {

public:

 virtual ~Vehicle();

 virtual void Accelerate() const = 0;

};

class Car : public Vehicle {

 virtual void Accelerate() const override;

};

class Truck : public Vehicle {

 virtual void Accelerate() const override;

};

Fig. 2. Situation with an Object of the Car Class.

It is important for students to understand how virtual
functions works internally. In Fig. 2 myCar is an object of the
Car class. Then it is going to have a pointer to a VTable – a
virtual table. This table takes care of how to call virtual
functions in a polymorphic object. VTable in turn has a pointer
to the Accelerate() function for Car. So, there is a couple of
indirections that are gone through when Accelerate() is called.
First, the VTable must be grabbed, then the VTable must be

read through to get the Accelerate() function. That can be a
performance bottleneck.

The interface to be implemented includes a Vehicle class,
which should provide all the necessary functionality for
polymorphic behavior. The other two classes Car and Truck just
need to have accelerate() functions. These two classes should
not inherit Vehicle, but there is a need to support this use case.
It should be possible to create a Vehicle from a Car and call
accelerate(). The aim is ability to create a Vehicle from a Truck
and have it accelerate() and all this should be done without
doing any slicing.

 Vehicle c = Car{};

 v.accelerate();

 Vehicle t = Truck{};

 t.accelerate();

To implement the virtual functions manually several steps
have to be made:

• Declare virtual table for the abstract interface

First, it is declared what the virtual table layout looks like
for Vehicle class.

struct VTable {

 void (*accelerate)(void* ptr);

 void (*destruct)(void* ptr);

};

VTable has two function pointers – one for accelerate and
one for destruct, which will be called by the destructor of the
specific object. And since memory within the object will be
allocated, it's going to reclaim that memory. The arguments of
the two function pointers are void pointers, because in this way
the concrete object will be stored internally. Void pointers will
be passed, and then the concrete objects are going to cast those
pointers internally.

• Define virtual table for a concrete type

template<typename T>

VTable vtable_for {

 [](void* p) {

 static_cast<T*>(p)->accelerate(); },

 [](void* p) {

 delete static_cast<T*>(p);}

};

This is a variable template (available since C++14). There
is an instance of a VTable and it’s templated on the concrete
type T, i.e., Car or Truck. So, a function which is going to call
the correct version of accelerate() is needed, and a function
which deletes the object and calls the destructor. Lambdas can
be used for this purpose. For a given concrete object the first
function pointer is just going to static cast to the concrete type
and then call accelerate(). And then the second function is going
to static cast and then calls delete. This all works because
lambdas which don’t capture can decay to function pointers.

• Capture the virtual table pointers on construction

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

646 | P a g e

www.ijacsa.thesai.org

When a Vehicle class is constructed, it is needed to fill in
the pointer for the concrete object and pointer to the virtual
table. The constructor will be implemented as a template that
accepts any type as an argument. In a real situation, of course,
it would be good to limit the possible types. Memory will be
allocated dynamically for the object received as an argument
and a copy of it in p_obj will be saved, and after that a pointer
to our virtual table will be taken and stored inside vehicle (in
the p_vtable field).

class Vehicle {

public:

 void* p_obj;

 VTable const* p_vtable;

 template<typename T>

 Vehicle(T const& obj) :

p_obj(new T(obj)),

p_vtable(&vtable_for<T>)

{}

 };

It is noted that since there is current access to what type the
obj is (Car or Truck), that information is saved for later by
grabbing the right VTable pointer and by dynamically
allocating a copy of our obj. This technique is called “type
erasure”.

• Forward calls through the virtual table

Finally, it is needed to forward the calls through the virtual
table.

class Vehicle {

 //...

 void accelerate() {

 p_vtable->accelerate(p_obj);

 }

 ~Vehicle() {

 p_vtable->destruct(p_obj);

 }

};

Inside the Vehicle class if accelerate() is called, then we
indirect through p_vtable and pass it the void pointer. And that
is then going to cast inside the function and call the right
version. And then similarly for the structure we call destruct().

So now the students have something which works for that
use case. It remains to define the classes Car and Truck with the
corresponding implementations of the function accelerate().

class Car {

public:

 void accelerate() {

 std::cout << "The car accelerates.\n";

 }

};

class Truck {

public:

 void accelerate() {

 std::cout << "The truck accelerates.\n";

 }

 };

It is possible to construct car; it is possible to construct
vehicle from a car and a truck and make them accelerate and all
it works. The goal set at the beginning of the section has been
achieved.

D. Adding Copy and Move Semantics

So far, some of the inheritance problems discussed in
section B nave been solved. There are no more problems with
ownership and nullability, because now all memory allocations
are handled inside the Vehicle class. There are no pointers
externally. We're just dealing with the values. Intrusivity is
avoided as well, because now Car and Truck don't inherit from
anyone. However, the problem with value semantics remains,
because these objects can't be copied or moved, but the VTable
can be extended with a copy_() and a move_() function pointers
and solve this problem.

struct VTable {

 //...

 void* (*copy_)(void* ptr);

 void* (*move_)(void* ptr);

};

The first function will allocate a copy, and the second will
allocate by moving from the object. This functionality should
be implemented by adding two new lambda functions to the
variable template vtable_for.

template<typename T>

VTable vtable_for {

 //...

 [](void* p) -> void*{

 return new T(*static_cast<T*>(p)); },

 [](void* p) -> void*{

 return new T(std::move(*static_cast<T*>(p)));}

};

Now it is only needed in the copy constructor and move
constructor of Vehicle to call from the virtual table p_vtable the
corresponding functions.

Vehicle(Vehicle const& other) :

 p_obj(other.p_vtable->copy_(other.p_obj)),

 p_vtable(other.p_vtable)

{}

Vehicle(Vehicle&& other) noexcept :

 p_obj(other.p_vtable->move_(other.p_obj)),

 p_vtable(other.p_vtable)

{}

The same is done for copy assignment and move assignment
operators.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

647 | P a g e

www.ijacsa.thesai.org

Vehicle& operator=(Vehicle const& other) {

 p_obj = other.p_vtable->copy_(other.p_obj);

 p_vtable = other.p_vtable;

 return *this;

}

Vehicle& operator=(Vehicle&& other) noexcept {

 p_obj = other.p_vtable->move_(other.p_obj);

 p_vtable = other.p_vtable;

 return *this;

}

Now a much more complete interface is created, and a lot
of actions can be performed – create vehicle from car and
accelerate it; we can reassign it to a truck and make that
accelerate. A new vehicle can be created from an old one. All
works and there is value semantics even though we’re doing
dynamic polymorphism. It’s just all handled under the covers.
Students can even experiment by defining and traversing the
vector of cars and trucks because we defined copying and
moving.

Vehicle v = Car{};

v.accelerate();

v = Truck{}; // move assignment!

v.accelerate();

Vehicle t{ v }; // copy construction

t.accelerate();

std::vector<Vehicle> vehicles {

 Car{}, Truck{}, Truck{}, Car{} };

for (auto&& v : vehicles) {

v.accelerate();

 }

t = std::move(v); // move assignment

Another inheritance problem is solved. There are already
normal copy semantics and container semantics. The problem
is that the code written to implement this functionality is too
much and must be repeated for each class that needs to be
handled dynamically. In addition, it's weird code and it's easy
for something to go wrong.

III. IMPLICATIONS FOR EDUCATION

Teachers and students often consider learning programming
a difficult pursuit [5]. Inheritance and polymorphism are
arguably the most advanced and abstract subjects in object-
oriented programming [6]. Their study involves many
difficulties, which we will not consider here. The study in [7]
identifies as the main cause of most problems the students'
inability to understand what is happening with their program in
memory, since they cannot build a clear mental model of the
program's execution. Therefore, we believe that manually
implementing the virtual tables will help overcome these issues.
Our experience from the last two academic years shows
progress in this direction. Students see that pointers are a very
powerful tool and are motivated to study them. They look for
literature and consult with the assistants, solve tasks

independently. The result is a deeper understanding of memory
management and program execution.

For students who have not studied C++ in the introductory
course, after the topics related to the new-to-them syntax in
terms of program structure, class definition, object
instantiation, and message exchange, one should move on to
learning about working with pointers and dynamic memory
(something everyone else studied in the introductory C++
course). At an early stage, the topics of implementing the
important OOP relations of composition and inheritance, which
students know from the introductory course, should also be
included. After that comes the time for an in-depth study of
polymorphism. For students the goal is to learn to recognize
polymorphism and model with it, not just to know its
implementation in the specific language.

Dynamic binding and virtual functions should be seen as a
mechanism in OOP languages to implement dynamic
polymorphism, but not polymorphism to be considered as a
consequence of using the mechanism. It is recommended to
give a correct classification of the types of polymorphism in
lectures in order to clarify the understanding of the concepts and
distinguish them from the means of implementation.

A common mistake made by novice programmers is always
to try to use the inheritance relationship. Undoubtedly, it is the
most important and defining for the paradigm, but its
application should not be overexposed in the course. After
learning about the disadvantages of inheritance, students
themselves will begin to look for alternative designs using other
relations. In particular, it provoked interest for generic and
functional programming.

Modern programming languages offer concepts from
several programming paradigms. It is impossible to learn OOP
in isolation from generic, functional, and procedural
programming. Therefore, in parallel with OO concepts, other
means like templates, lambdas, containers, and algorithms from
STL should also go.

An important condition for successful training in OOP is the
correct selection of the tasks that are considered in laboratory
classes and given for homework. They should be such that
polymorphism is a natural part of the solution. Suitable
hierarchies to implement (both with and without inheritance)
are as follows:

• base class Animal and derived classes Fish, Frog, Bird
and polymorphic method Move(),

• base class Pet, derived classes Cat and Dog and
polymorphic method MakeNoise(),

• base class Shape, derived Circle, Triangle, Rectangle
and polymorphic methods Area() and Circumference(),

• basic class Publication, derived Magazine, Book and
polymorphic method Print().

Examples can be both from real life and more abstract.
Examples with GUI components can also be used. It is a good
idea to add a new class to an already implemented hierarchy,
for example adding Motorcycle to Car and Truck. This can be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

648 | P a g e

www.ijacsa.thesai.org

done as work to do by themselves within the lab exercise or
given for homework.

Learning about abstract classes provides a good foundation
to demonstrate the full power of polymorphism with perhaps its
most typical application – the creation and manipulation of
heterogeneous data structures. The vector of Car and Truck
objects is such a structure as well. If there is enough time, a
manual implementation of a heterogeneous singly linked list or
binary tree can also be demonstrated in the training course.

Since the complete implementation of the Vehicle, Car,
Truck hierarchy given in this paper covers many topics, it
cannot be covered in a single lecture and practiced in a single
lab session. It is recommended to teach incrementally, starting
with an implementation with inheritance, and going through the
type erasure option after discussing pointers, constructors,
destructors, type conversion, lambda functions, function
templates, variable templates. After the initial version, the
project can be extended with an implementation of copy
semantics only. This requires first familiarity with operator
overloading and copy construction. Move semantics is not
required for the classes to work correctly because it can be
successfully replaced by copy. But since the choice of the C++
language in most cases is related to the increased requirements
for speed and efficiency of code, it is recommended not to
neglect it and to give and comment the described
implementation of move semantics for the sample hierarchy.
When learning the STL library, one can experiment with using
different containers of Car and Truck objects and applying
algorithms to them.

Since enough empirical data is not collected yet, the classic
pedagogical experiment of proving the advantages of extended
polymorphism learning is not completed. However, in Table I
a comparison of the results for the academic year 2021-2022 is
given of the start tests (in the beginning of the course) and the
tests conducted immediately after the completion of the section
devoted to polymorphism. The experimental group includes the
students of the Software Engineering majors, for whom
“Programming in C++” is an elective course in the 4th semester
(12 people) and the Computer Science major, for whom the
course is mandatory, but in the 2nd semester (35 people).

TABLE I. TEST RESULTS

Grade

Bachelor Program

SE CS Informatics

Start

level

End

level

Start

level

End

level

Start

level

End

level

A 25.0% 25.0% 14.3% 20.0% 9.1% 9.1%

B 16.7% 33.3% 22.9% 25.7% 27.3% 27.3%

C 33.3% 25.0% 28.6% 25.7% 18.2% 27.3%

D 16.7% 8.3% 22.9% 22.9% 36.4% 27.3%

F 8.3% 8.3% 11.4% 5.7% 9.1% 9.1%

In order not to distort the results, only data from face-to-
face training is used – after the symbolic end of the pandemic.
The control group consists of the students of the Informatics
major (11 people), who in the 2nd semester are studying a
mandatory course OOP in C++. The fact that the experimental

group is heterogeneous is taken into account – for one major,
the course is CS1, and for the other, CS2, but with an
introductory C# course. Therefore, the first test is slightly
different for the Software Engineering major. Language
dependent questions are minimized as much as possible. The
questions and tasks of the second test are the same for all and
entirely related to the correct use of pointers, dynamic memory,
and implementation of polymorphism, without specifying in
what way.

Another circumstance that prevents accurate interpretation
of the data is the small number of students in the control group.
The Informatics major is currently the least desired of the three,
and it has students ranked second and third preference, which
is a demotivating factor.

Nevertheless, both the results of the control tests (Table I)
and the direct observations of the students' activity in lectures,
laboratory work, project work and homework, indicate that it
makes sense to pay more attention to polymorphism in the OOP
course. The experimental training conducted helps students to
discover the exact relations between objects in the subject area
more easily and correctly choose the operations that need to be
implemented polymorphically. They are more adept at handling
pointers and have a better understanding of the memory model.
They recognize the situations in which they need to implement
move semantics. They have no problem using lambda
expressions in STL algorithms instead of function objects.

At the end of the course, a survey is conducted to determine
students' satisfaction with the experiential learning and to
specify what they found difficult. The answers are of interest.
The question asked to the Software Engineering students was
“Why did you choose C++?” (open question). 1/3 of them made
such a choice, and 2/3 preferred PHP. Among the answers, it
stands out that they read that it is suitable for Video game
development, Embedded systems, Compilers and Enterprise
software. The syntax of the methods implementing copy and
move semantics – copy and move constructors and copy and
move assignment operators – is indicated as the most difficult.
Students find it difficult to navigate what is what just by the
type of parameters. In second place are variable templates, and
in third place – the many details of defining lambda
expressions. When asked if what they learned about alternative
ways of implementing polymorphism was useful, 73%
answered yes.

IV. CONCLUSION

In this paper, the need for a more in-depth study of dynamic
polymorphism is discussed. Problems associated with its
implementation through inheritance and virtual functions are
analyzed and a method of training is presented through a step-
by-step project development with an alternative to inheritance
design based on manual implementation of the functionality
achieved with virtual tables. Specific guidelines for organizing
training involving this topic are suggested.

As a recommendation to lecturers, it is useful to pay
attention to the concept of polymorphism already in the
introductory course. Although it is not dynamic there, it is good
for students to recognize it early.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

649 | P a g e

www.ijacsa.thesai.org

Regarding this implementation of polymorphism with type
erasure, the most serious drawback is considered to be that, with
the means currently available, it requires writing too much code
– a code of high complexity. This is demotivating.
Implementation with inheritance is much shorter and straight
forward, even more so for students who have studied C#, where
alternatives can easily be implemented – implementing
interfaces can make it much easier to avoid inheritance. Such
an implementation, of course, also has its drawbacks. However,
if the proposals made to The C++ Standards Committee to
introduce scalable reflection [8] and metaclasses [9] are
implemented in the future, the code will be much shorter and
clearer, because much of it will be automatically generated and
will remain hidden from the client.

In studying the problem, it was found that not many
researchers emphasize the weaknesses of inheritance as a tool
to achieve polymorphism, and therefore there are not many
proposals to overcome these weaknesses. The details in this
area are mostly discussed at technical conferences rather than
in scientific publications. This, on one hand, limited the
possibilities of the research, and on the other, motivated the
authors to tackle this problem.

Future work includes monitoring of the development of the
language in this direction, although there has been some
stagnation in the last 1-2 years. Also, in the future, it is planned
to expand the experiment with formal statistical processing of
accumulated empirical data.

REFERENCES

[1] Milojković, N., Caracciolo, A., Lungu, M. F., Nierstrasz, O.,
Röthlisberger, D., Robbes, R., Polymorphism in the spotlight: studying its
prevalence in Java and Smalltalk, ICPC '15: Proceedings of the 2015
IEEE 23rd International Conference on Program Comprehension, May
2015, pp. 186–195.

[2] Cardelli, L., Wegner, P., On understanding types, data abstraction, and
polymorphism, ACM Computing Surveys, Volume 17, Issue 4
(December 1985), pp. 471-523.

[3] Stroustrup, Bj., 2012, Bjarne Stroustrup's C++ glossary, accessed 27 July
2022, https://www.stroustrup.com/glossary.html#Gpolymorphism.

[4] Brand, S., Dynamic polymorphism with metaclasses and code injection,
talk at CppCon 2020, September 13-18, online, accessed 29 July 2022,
https://www.youtube.com/watch?v=8c6BAQcYF_E.

[5] Tan, J., Guo, X., Zheng, W., Zhong, Ming., Case-based teaching using the
Laboratory Animal System for learning C/C++ programming, Computers
& Education, Volume 77, 2014, pp 39-49.

[6] Liberman, N., Beeri, C., & Kolikant, Y. B. D. (2011). Difficulties in
learning inheritance and polymorphism. ACM Transactions on
Computing Education, 11(1), pp 1–23, doi:10.1145/1921607.1921611.

[7] Milne, I., Rowe, G., Difficulties in learning and teaching programming –
Views of Students and Tutors. Education and Information Technologies
7, pp. 55–66 (2002). https://doi.org/10.1023/A:1015362608943.

[8] Childers, W., Sutton, A., Vali, F., Vandevoorde, D. (2019), Scalable
Reflection in C++, ISO/IEC C++ Standards Committee Papers,
JTC1/SC22/WG21, Papers 2019, document P1240R1, mailing2019-10,
www.open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1240r1.pdf.

[9] Sutter, H. (2019), Metaclass functions: Generative C++, ISO/IEC C++
Standards Committee Papers, JTC1/SC22/WG21 - Papers 2019,
mailing2019-06, document P0707R4/2019-06-17, https://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2019/p0707r4.pdf.

https://www.stroustrup.com/glossary.html#Gpolymorphism
https://www.youtube.com/watch?v=8c6BAQcYF_E
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1240r1.pdf
https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2019/p0707r4.pdf
https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2019/p0707r4.pdf

