
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Parallel Hough Transform based on Object Dual and
Pymp Library

Abdoulaye SERE
ER-SIC, LAMDI

Université Nazi BONI,
RECIF, https://recifaso.org

Burkina Faso

Moı̈se OUEDRAOGO
ER-SIC, LAMDI

Université Nazi BONI,
RECIF, https://recifaso.org

Burkina Faso

Armand Kodjo ATIAMPO
UREN

Université Virtuelle de Côte d’Ivoire
Côte d’Ivoire

Abstract—Geometric shape detection in an image is a classical
problem that leads to many applications, in cartography to
highlight roads in a noisy image, in medical imaging to localize
disease in a region and in agronomy to fight against weeds with
pesticides. The Hough Transform method contributes effectively
to the recognition of digital objects, as straight lines, circles
and arbitrary objects. This paper deals with the theoretical
comparisons of object dual based on the definition of Standard
Hough Transform. It also focuses on parallelism of Hough
Transform. A generic pseudo-code algorithm, using the Openmp
library for the parallel computing of object dual is proposed in
order to improve the execution time. In simulation, a triangular
mesh superimposed on the image is implemented with the pymp
library in python, in considering threads as inputs to read the
image and to update the accumulator. The parallel computing
presents reduction of the execution time accordingly to the rate
of lit pixels in each virtual object and the number of threads. In
perspectives, it will contribute to strenghen the developement of
a toolkit for the Hough Transform method.

Keywords—Hough transform; parallel computing; pattern
recognition

I. INTRODUCTION

Digital object recognition in an image is a classical problem
that arises many applications in cartography to highlight noisy
roads, in medical imaging for disease detection, in agronomy
for weed detection and in cyber-security, as Facial Recogni-
tion using deep learning through convolutive neural network
application. That supposes the definition of a model for digital
objects and establishement of its adequate recognition method.
In this sense, Bresenham’s line in [18], Reveilles in [9], Andres
in [10] have established several digital models, particularly for
analytical straight lines. Parallel algorithms such as paralleliza-
tion Bresenham Line and circle in [19] have been introduced
to improve the execution time to draw digital object.

The Hough Transform method has been initially introduced
by Paul Hough in [3] in 1962 and applied to the detection of
straight lines in an image : It transforms a point in an image
space to a straight line in a parameter space. It transposes the
problem of straight line detection in the image space to an
intersection of straight lines in the parameter space. But this
method is limited in the detection of vertical straight lines.

Another variant of the Hough transform method named the
standard Hough Transform, associates continuous points in an
image space to sine curves in a parameter space. It allows
to overcome the problems of vertical straight line recognition

that occurs in the case of the classical Hough Transform, which
transforms a continuous point in the image space to a straight
line in the parameter space.

Forward, the Hough Transform method has been extended
to the detection of others shapes such as circles, ellipses.
Duda and others in [4] have also proposed the recognition
of arbitrary shapes in an image.

In 1985, Henri Maı̂tre in [1] has also proposed a survey
on the Hough Transform method with an unified definition of
Hough transform. Several works have studied the application
of Hough Transform, for instance to mouth recognition in [11]
and to action detection in [12].

Moreover, extensions of Hough transform for straight line
recognition have been proposed by scientists. For instance, in
2006 Martine Dexet in [2], [6] introduced a new method based
on the initial definition of Hough Transform, computing the
Hough transform of continous points in a square. Then, the
dual of a square is a set of continuous straight lines in the
parameter space.

By analogy to the works of Dexet in [2], SERE and others
in [5] extends the standard Hough transform, to define the
dual of a square and the dual of a triangle. Others extensions
followed these works in [5] with the dual of a rectangle in [14],
the dual of an hexagon in [16] and the dual of an octagon in
[15]. All these works will lead to build a toolkit for the Hough
Transform methods.

The serial execution of Hough transform consists of the
serial execution of each real pixel or each virtual cell defined
by the mesh generation, layed on an image.

Many works have carried out improvements of Hough
transform to reduce the execution time. Acceleration of Hough
transform has been studied by Jošth and others in [21] to allows
real time line detection.

Parallelization of the Hough Transform method is also an
alternative in order to improve the execution time. For instance,
SERE and others in [7] have demonstrated the application of
Hough Transform with the map-reduce algorithm for straight
line recognition. These works have been extended by Mateus
Coelho and others in [8] to deal with circle recognition.

Through recent innovations precisely in deep learning on
Convolutive Neural Network, scientists have worked to com-
bine the Hough Transform method with Convolutive Neural

www.ijacsa.thesai.org 707 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Network to improve algorithms working in object detection,
as studied by Spratling in [20].

In Traffic Management on roads, various techniques of
Hough Transform have been proposed in Detection of Traffic
Saturation, Traffic Light and Traffic Sign. For instance, SERE
and others in [16] have introduced an application of the Hough
Transform method in Traffic Saturation using GPS.

Our motivation is the study of parallel processing for the
dual of geometry shapes related to squares, triangles, rectan-
gles, hexagons and octagons with pymp library in python, in
considering a set of threads as input parameters to compute
different duals and to update the accumulator data in order to
reduce the execution time.

Here, the parallel execution is outside the framework map-
reduce in [7]. It takes into account previous works in a serial
execution on :

• improvements of standard Hough transform in [13],

• straight line recognition in a rectangular grid in [14],

• straight line recognition in a triangualar grid in [22]

.

But it considers the parallel execution of object dual for
any grid to shorten the execution time.

This paper is organized as follows : the Section II recalls
the definitions of geometric shape duals and analytical straight
lines. The Section III focuses on parallelization of object dual.
Experimental results in Section IV use the pymp library to
implement parallelism in python on real images.

II. PRELIMINARIES

As previously introduced in Section I, Standard Hough
Transform (SHT) associates a point in the image space to
a sine curve in the parameter space, to achieve straight line
recognition, as defined by :

Definition 1: (Standard Hough Transform)

The dual S(x,y) of the point (x,y) in a two dimensional
space where (x, y) ∈ R2, is the Standard Hough Transform
defined by the set of points :

{(θ ,r) ∈ [0,π]× [−
√

l2 +h2,
√

l2 +h2]/ r = xcosθ + ysinθ}
(1)

Duality is described as establishment of the relation be-
tween a digital object in the image space and the set of standard
Hough transform of its internal points in the parameter space.
For instance, let O be a digital object such as O= ∪n

i=1Pi where
Pi ∈ O. Pi could be a discrete point or a set of discrete points.
The dual of O is the union of the dual of each element (Pi
∈ O), accordindly to the standard Hough transform of Pi in
definition 1.

That means formally :

Dual(O) = ∪n
i=1dual(Pi) (2)

The relation 2 has been specialized precisely to obtain the
definitions for the dual of geometric shapes, such as rectangles,

triangles, as defined by SERE and others in [5], [13], [15] as
follows :

Definition 2: (Rectangle dual) the dual of a square (or a
rectangle) is the area localized between the curves correspond-
ing to the duals of its two internal diagonal segments in the
parameter space.

Definition 3: (Triangle dual) the dual of a triangle is the
area localized between the curves corresponding to the duals
of its two adjacent sides in the parameter space.

An octagon is the union of four internal rectangles. While
a hexagon is the union of three internal rectangles. Definition
2 leads to establish hexagon dual and octagon dual as follows
:

Definition 4: (Hexagon dual) the dual of an hexagon is
the area localized between between the curves corresponding
to the duals of its three internal diagonal segments in the
parameter space.

Definition 5: (Octagon dual) the dual of an octagon is the
area localized between the curves corresponding to the duals
of its four internal diagonal segments in the parameter space.

The dual contributes to analytical straight line recognition,
particularly those proposed by Reveilles in [9] related to
standard analytical straight line and extended by Andres in
[10] to have the supercover model.

Definition 6: analytical digital straight line ([9], [10])
with parameters (a,b,µ) and thickness w is defined by the
set of integer points (x,y) verifying : µ ≤ ax + by < µ +
w , (a,b,µ,w) ∈ Z4, pgcd(a,b) = 1.

Thus, Analytical digital straight line is then :

• thin, if w < max(|a|, |b|)

• naive, if w = max(|a|, |b|)

• thick, if w > (|a|+ |b|)

• standard, if w = (|a|+ |b|)

Parallel computing of object dual will be described in
Section III and applied to analytical straight line recognition
in Section IV.

III. METHOD DESCRIPTION

This section is focusing on parallel computing of object
dual, previously defined in Section II. It also proposes pseudo-
algorithms using openmp library to compute object dual in the
parallel context.

As an object dual is defined previously by the relation :

Dual(O) = ∪n
i=1dual(Pi) (3)

Where O is extracted from an image and Pi ∈ O. Then,
parallel computing of Dual (O) consists firstly of splitting an
object to several components and secondly to apply parallel
computing to each elementary components Pi. Threads will
assume easily these elementary tasks. Let n and v be respec-
tively the number of components in an initial object O and

www.ijacsa.thesai.org 708 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

the number of threads. Each thread will compute normally
almost [n

v] elementary components. That means if the number
of threads is superior to the number of elementary components,
some threads will not be launched.

Moreover, instead of parallel computing for the dual of all
the components Pi, a contraint is introduced by the rate of lit
components in O : If an object O has the rate of lit components,
superior to the rate α , the dual of this object will be computed
in the accumulator data.

Let Ol be a subset of O, constituted only of lit components.
Suppose that lc is the number of lit components. We have
lc=card(Ol) and α ≤[lc

n]. Then, the dual(O) will be approxi-
mately the dual(Ol).

Moreover, suppose that α= [m
n]. We constitute the subsets

of Ol that contain exactly m elements of Ol , denoted P(Ol).
There are Cm

lc subsets (as a combinaison) in Ol that verify
the constraint α= [m

n]. As Om ∈ P(Ol). Now, the dual(O) also
becomes approximately the dual(Om).

Finally :

Dual(Om) = ∪n
i=1dual(Pi) (4)

Where Om is extracted from Ol (Ol is a subset of O) and
parallelization will concern with the dual(Pi), where Pi ∈Om.

Let us explain the dual of an object with more details
through different algorithms in the following sections.

A. Therorical Comparisons of Computing Object Dual

Definitions 2, 3, 4, 5 extend Standard Hough Transform in
two ways :

• the first one is to achieve object detection in virtual
grid based on geometry shapes in computing its duals
in the accumulator : digital objects pass through this
virtual grid. Thus, parallel computing is applied to
elementary shapes issued by this virtual grid in order
to improve the execution time.

• the second one is to analyze the internal structure
of points inside these duals in the accumulator data
to highlight properties or characteristics for square,
rectangle, triangle, hexagon, octagon recognition in
the image. The future works will analyzed in details
the internal structure of these dual.

Let us focus on the first case. Computing the dual of an
hexagon and the dual of an octagon, could take more time
than the dual of a square or the dual of a triangle. Because
the number of internal diagonal segments in an hexagon or
an octagon, building the area between different segment dual
is important. For instance, according to SERE and others in
[15], the dual of an hexagon and the dual of an octagon
depend respectively on the dual of four internal segments
and the dual of three internal segments. The dual of internal
segments in objects can be realized through threads computing
simultaneously the dual of each segment.

Our purpose is to use the dual of geometric objects in
the parallel context to improve the execution time of Hough
transform.

Hough Transform uses two spaces, namely an image space
and a parameter space (or accumulator data). Proposed parallel
Hough Transform takes into account these two spaces : that
means the parallel reading of data in the image space and the
parallel updating of the accumulator data

B. Analysis of Parallel Algorithm to Read the Data in the
Image Space

Mesh generation establishes a virtual grid, superimposed
on an image to bring out internal elementary virtual objects.
For instance, An elementary object could be a rectangle, a
triangle, an hexagon or an octagon. Fig. 1 presents an example
of a virtual grid with triangles, created by Ouedraogo and and
others in [22], an extension of the method proposed by Cheick
and others in [14] to generate rectangles, where the triangles
are its components.

y

x

Fig. 1. An Example of the Triangular Mesh, Used by Ouedraogo and Others
in [22] to Compute the Dual of a Triangle

Consider an image with (w x h) pixels. Algorithm 1
presents a generic serial execution. It uses a virtual mesh to
perform an image, where each elementary object is referenced
by the references Image(i, j). For instance, it takes particularly
the dual of rectangles into account, as defined by SERE and
others in [5] (see in preliminaries) where dual(Object x)
corresponds precisely to dual(Rectangle x).

In this way, generalization is done by substitution of an
object by any geometric shape .

Algorithm 1: Computing the Dual of Objects
Result: the dual of objects
image: Matrix ;
ob:Object ;
i, j : Integer ;
Image=pretreated(load(URL)) ;
for (i=1; i ≤ w; i++) do

for (j=1; j ≤ h; j++) do
ob=(Object) extract(Image(i, j));
if light(ob) then

dual(ob);
end

end
end

Let α and β be parameters corresponding to the number
of threads to read data in the initial image. Data parallelism

www.ijacsa.thesai.org 709 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

is introduced in algorithm 1 by OPENMP primitives as ” #
pragma omp parallel for” to define the parallel section as
illustrated precisely in algorithm 2.

Algorithm 2: Data Parallelism with Openmp Primi-
tives in a Pseudo-Code Algorithm

Result: the dual of objects
image: Matrix ;
ob:Object ;
i, j : Integer ;
Image=pretreated(load(URL)) ;
omp set num threads(α) ;
pragma omp parallel for ;
for (i=1; i ≤ w; i++) do

omp set num threads(β) ;
pragma omp parallel for ;
for (j=1; j ≤ h; j++) do

ob=(Object) extract(Image(i, j));
if light(ob)) then

dual(Ob);
end

end
end

In both the algorithm 1 and the algorithm 2, there are
different functions :

• the function load(String URL) loads an image, accord-
ing to its URL;

• the function pretreated (Matrix m) uses operators of
binarization and filtering on the image ;

• the function extract(Matrix m) allows to get an ele-
mentary object generated by the grid superimposed
on the image;

• The function light(Object x) consists of verifying if
or not all the pixels in the object ob respect certain
contraints to make it elligible for computing its dual ;

• the function dual(Object x) executes effectively the
dual of the object ob, in application of the standard
Hough Transform to an object. It udpates the accu-
mulator data, discussed forward in details in section
III-C.

On the other hand, Fig. 2 presents a graph to modelize
threads created by algorithm 2 with α=3 and β=3, following
the Fork/Join model.

Let us study this model of graph in Fig. 2. Suppose
that I={1,2, ...,w− 1,w} and J={1,2, ...,h− 1,h}. We have
obviously i ∈ I and j ∈ J where i, j are the counters of two
loops :

• At the first level of loop with the counter i, the number
of threads being α , each thread tk manages at average
[w

α
] iterations with different value i ∈ I. [w

α
] is an

integer value and k∈ {1,2, ...,α−1,α}.
If α > w, there will be some k∈ {1,2, ...,α − 1,α}-
I, corresponding to the threads tk that will never
created. But thread creation depends on availability of
resources such as microprocessor and memory. That
means even If α ≤ w, threads will be created accord-
ing to availability of resources. The future works will

Fig. 2. Threads Created by Openmp Primitives with α=3 and β=3,
Accordingly to Algorithm 2

study predictions of availability of resources to man-
age threads that could even used in thread management
in operating system and in security to detect malicious
software, using additional resources.

• At the second loop with the counter j ∈ J, each thread
with a new iteration on i ∈ I, creates β threads to
manage some iterations on j ∈ J. For instance, the
thread with the iteration i=1, creates β=3 threads to
manage together all the iterations on j ∈ J. Among
β threads, in the same manner as the first level, each
thread will compute [h

β
] iterations. As a conclusion,

in considering an initial image I with its size height
x width : The number of pixels is then determined
by (height x width), to be submitted and shared for
analysis by all the threads.

image, corresponding to the size width. While the second
loop is associated to the column of the image, corresponding
to the size height . Finally, α x β threads work together on the
same image and each thread will process approximately [w

α
] x

[h
β

] pixels.

The function dual(Object x) updates the accumulator and
is studied in more details in section III-C.

C. Analysis of Parallel Algorithms to Update the Accumulator
Data

This section focuses on data processing in the accumu-
lator : it concerns precisely computation of dual(Object), as
mentioned previously in calling, in algorithm 1. The number
of threads used to update the accumulator is defined by
the parameters γ,θ , as described in details in algorithm 3.
Consider a accumulator with the size (wacc x lacc).

By analogy previously to section III-B related to the
proposed algorithms, in algorithm 3, the number of γ threads
is created, just before beginning the first loop with the counter
m. These threads share iterations on a table that contains the
number of lacc cells.

Algorithms 2 and 3 are generic : they can be specialized
and adapted to any grid with its specific geometric shape,
through computing object dual. For instance, the main spe-
cialized algorithm 6 in appendix is based on a triangular grid,
implemented in Section IV.

www.ijacsa.thesai.org 710 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Algorithm 3: dualObject(m, n : integer)
Result: the accumulator accc
acc: Matrix;
m, n : Integer ;
omp set num threads(γ) ;
pragma omp parallel for ;
for (m=1; m ≤ lacc;m++) do

omp set num threads(θ) ;
pragma omp parallel for ;
for (n=1; n ≤ wacc; n++) do

if verify(m, n) then
acc[m][n]=acc[m][n]+1;

end
end

end
return acc;

IV. SIMULATION AND DISCUSSIONS

Simulation considers the case study of a triangular mesh
superimposed on an image. It follows and extends the initial
works on the Hough Transform method, applied to triangular
shapes in a serial execution, introduced by Ouedraogo and oth-
ers in [22], similar to compute the dual of rectangles proposed
by Traore and others in [14], also in a serial execution.

At the present time, computers have several microproces-
sors as Dual Core, Quad Core, i5, i7, i9 and super calculators
with a shared memory that allows and increases performance
to execute multiple threads.

In both the serial execution and the parallel execution,
simulation uses a computer with the following characteristics
:

• Processor : Intel(R) Core(TM) i5 CPU M
480@2.67GHz 2.67GHz

• Memory usable : 4,00 Go

• operating system : Kali Linux

Different tests have been realized on the initial images in
figures 3 and 4. Illustrations take into account parameters as the
threshold to indicate the number of vote in the accumulator,
the rate of pixels in each triangle represented by the value
α , the height and the base of the triangle and the number of
threads.

The previous generic algorithms 2 and 3 have been detailed
and specialized by the main algorithm 6 calling algorithms
4, 5 and 7, all in appendix for recognition in a triangular
mesh. Implementations of parallelization have been realized
in python, using opencv and pymp available in [17] to bring
openmp-like functionality to python.

.

A. The Case of the Parameters (Threshold =100, the Number
of Threads =2, The Height of the Triangle =4 Pixels, The Base
of the Triangle=4 Pixels)

An analysis of the execution time for the parallel case and
the serial case in varying the value α , has been summarized
in the Tables I and II. It reveals effectively that the parallel

Fig. 3. A Building Image

Fig. 4. A Road Image

computing of object dual is obviously better than the serial
case.

TABLE I. THE EXECUTION TIME (IN SECOND) IN THE SERIAL CASE AND
THE PARALLEL CASE FOR THE BUILDING IMAGE WITH THE PARAMETERS
(THRESHOLD =100, THE NUMBER OF THREADS =2, THE HEIGHT OF THE

TRIANGLE =4 PIXELS, THE BASE OF THE TRIANGLE=4 PIXELS)

α Number of detected lines Serial case Parallel case Time difference
0.1 370 8.7 6.5 1.8
0.15 243 7.8 5.6 2.2
0.2 243 5.6 5.6 0
0.25 62 6.5 4.6 1.9
0.3 62 6.5 6.5 0
0.35 6 4.5 3.5 1
0.4 6 4.5 3.5 1
0.45 2 3 2.5 0.5
0.5 2 3 2.5 0.5
0.55 0 2.4 2.1 0.3

TABLE II. THE EXECUTION TIME (IN SECOND) IN THE SERIAL CASE
AND THE PARALLEL CASE FOR THE ROAD IMAGE WITH THE PARAMETERS
(THRESHOLD =100, THE NUMBER OF THREADS =2, THE HEIGHT OF THE

TRIANGLE =4 PIXELS, THE BASE OF THE TRIANGLE=4 PIXELS)

α Number of detected lines Serial case Parallel case Time difference
0.1 236 5 4 1
0.15 169 4.8 3.85 0.95
0.2 169 4.8 3.85 0.95
0.25 37 4.1 3.4 0.7
0.3 37 4.1 3.4 0.7
0.35 3 3.3 2.7 0.6
0.4 3 3.3 2.7 0.6
0.45 0 2.2 2.1 0.1

Difference between the processing time in the serial case
and the parallel case, also appears in the Fig. 6 and 8, where
the curve of the serial case is more up on the curve of the
parallel case with the small values of α .

The Fig. 5 and 7 show decreasing the number of straight
lines for increasing values of α .

Moreover, the surface of each triangle of the grid is
determined by (height x base)/2 : that means (4x4)

2 =8 pixels.

www.ijacsa.thesai.org 711 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Fig. 5. The Number of Detected Lines in the Building Image Related to the
Table I, Accordingly to the Values α

Fig. 6. The Curves of the Execution Time for the Building Image Related to
the Table I

Fig. 7. The Number of Detected Lines in the Road Image Related to the
Table II, Accordingly to the Values α

Fig. 8. The Curves of the Execution Time for the Road Image Related to the
Table II

An image has (w x h) pixels, divided into [(w.h)8] triangles.

Valid triangles have the number of internal lit pixels,
superior to [8 . α] : they will be considered for computing
dual. For instance, with α=0.5, it appears at least (8 . α)=4 lit
pixels for each triangle, to be valid.

Thus, if the number of valid triangles is the value nv, then
the loose triangles will be ([(w.h)8]-nv) in computing dual. That
leads to loss approximately (([(w.h)8]-nv).8) pixels (for all the
image), representing a possibility to reduce the execution time.

If the value α is increasing, then the number of pixels (8 x
α) to be considered for triangle validation will be reduced : that
reduces effectively the number of straight lines to be detected
and the execution time for any case (serial case and parallel
case). In more details, with the value α increasing, the surface
to be respected in each valid triangle will become small, but
included more triangles that are engaged in the process : more
straight lines passes through a reduced number of aligned tri-
angles. More aligned triangles indicate reduced corresponding
straight lines that pass through them, accordingly to the value
of the threshold applied to the accumulator.

B. The Case of the Parameters (α =0.1, The Number of
Threads =2, The Height of the Triangle =4 Pixels, The Base
of the Triangle=4 Pixels)

With a fixed α =0.1, in varying the threshold, the Tables III
and IV show respectively the execution time for the building
image and for the road image : it presents naturally reduction in
the number of detected lines and the execution time. Because
the number of cells, having the maximum vote is reduced and
the time taken to read the accumulator data is short for the
serial case and for the parallel case.

TABLE III. THE EXECUTION TIME (IN SECOND) IN THE SERIAL CASE
AND THE PARALLEL CASE FOR THE BUILDING IMAGE WITH THE

PARAMETERS (α =0.1, THE NUMBER OF THREADS =2, THE HEIGHT OF
THE TRIANGLE =4 PIXELS, THE BASE OF THE TRIANGLE=4 PIXELS)

Threshold Number of detected lines Serial case Parallel case
100 370 8.7 6.5
125 53 7.6 5.6
150 13 7.6 5.4
175 7 7.6 5.3
200 5 7.4 5.3
225 2 7.8 5.3
250 1 7.4 5.4
275 0 7.7 5.4

TABLE IV. THE EXECUTION TIME (IN SECOND) IN THE SERIAL CASE
AND THE PARALLEL CASE FOR THE TOAD IMAGE WITH THE PARAMETERS
(α =0.1, THE NUMBER OF THREADS =2, THE HEIGHT OF THE TRIANGLE

=4 PIXELS, THE BASE OF THE TRIANGLE=4 PIXELS)

Threshold Number of detected lines Serial case Parallel case
100 236 5 4
125 24 4.83 3.8
150 6 4.8 3.7
175 1 4.7 3.7
200 0 4.7 3.7

www.ijacsa.thesai.org 712 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

C. The Case of the Parameters (Threshold =100, Number of
Threads =2, The Height of the Triangle =8, The Base of the
Triangle=8)

Tables V and VI illustrate the case of a large triangle with
the parameters (height = 8 pixels, base =8 pixels).

TABLE V. THE EXECUTION TIME (IN SECOND) IN THE SERIAL CASE
AND THE PARALLEL CASE FOR THE BUILDING IMAGE WITH THE

PARAMETERS (THRESHOLD =100, NUMBER OF THREADS =2, THE
HEIGHT OF THE TRIANGLE =8, THE BASE OF THE TRIANGLE=8)

α Number of detected lines Serial case Parallel case Time Difference
0.1 140 7 5.3 1.7

0.15 79 6.7 4.8 1.9
0.2 57 6.2 4.5 1.7

0.25 19 5.3 4 1.3
0.3 5 4.1 3.2 0.9

0.35 3 3.1 2.5 0.6
0.4 3 2.4 2 0.4

0.45 3 1.9 1.8 0.1
0.5 3 1.8 1.7 0.1

0.55 3 1.8 1.7 0.1
0.6 3 1.8 1.7 0.1

0.65 3 1.8 1.7 0.1
0.7 3 1.8 1.7 0.1

0.75 3 1.8 1.7 0.1

TABLE VI. THE EXECUTION TIME (IN SECOND) IN THE SERIAL CASE
AND THE PARALLEL CASE FOR THE TOAD IMAGE WITH THE PARAMETERS

(THRESHOLD =100, NUMBER OF THREADS =2, THE HEIGHT OF THE
TRIANGLE =8, THE BASE OF THE TRIANGLE=8)

α Number of detected lines Serial case Parallel case Time Difference
0.1 97 4.5 3.6 0.9

0.15 55 4.3 3.5 0.8
0.2 29 4.1 3.2 0.9

0.25 8 3.6 3 0.6
0.3 0 2.9 2.6 0.2

As a conclusion, for any case of triangle, the difference
between the parallel execution time and the serial one will
be more large, in favour to the parallel case that has a short
reduced time with the small values of α .

D. Straight Line Recognition in Real Images

This section is focusing on the application of parallel
Hough Transform to real images.

1) Straight Line Recognition in the Building Image with
a Triangle 4 x 4: For the building image, the accumulator
data and the results of straight line recognition are respectively
illustrated in Fig. 9 in Fig. 10.

Fig. 9. The Accumulator Data after Application of the Parallel Computing:
On the Left Image, The Sinusoid Curves and on the Right the Maximum

Votes Superior to the Threshold =150

2) Straight Line Recognition in the Road Image with a
Triangle 4 x 4 : For the road image, the accumulator data
and the straight line detection also appear respectively in
Fig. 11 and 12, in considering the parameters (thread=2,
threshold=100, α=0.3).

Fig. 10. Straight Line Recognition in the Building Image with the
Parameters (Threads =2, Threshold = 150, α =0.1)

Fig. 11. The Accumulator Data after Application of the Parallel Computing:
On the Left Image, The Sinusoid Curves; On the Right Image the Maximum

Votes is Superior to the Threshold =100

Fig. 12. Straight Line Recognition in the Road Image with the Parameters
(Threads =2, Threshold = 100, α =0.3)

V. CONCLUSION AND PERSPECTIVES

A new parallel Hough method has been proposed effec-
tively to compute the dual of objects based on the standard
Hough transform, through algorithms using openmp library to
create threads. An image is analyzed with a meshing technique
and different threads, computing the dual of virtual generated
objects for updating the accumulator data.

Experimental results have been realized with the pymp
library in python for parallelization and reveal reduction on
the execution time in parallel execution than in the serial one.
As outputs, the detection of straight lines is effectively realized
in a building image and a road image. But optimizations of
the proposed algorithms to improve more the execution time in
the parallel case and comparisons with similar parallel methods
still remain to do .

In perspectives, the study of parallelism will focus on
straight line recognition in a rectangular grid, in an hexagonal
grid or in an octagonal grid.

The future works will also analyze in detail, the internal
structure of object dual to determine recognition for rectangles,
triangles, hexagons and octagons in the image.

www.ijacsa.thesai.org 713 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

All these works will contribute forward to strengthen the
building of a toolkit for the Hough Transform method, being
integrated to a software for image processing, to bring out
extensions for new functionalities, as a plug-in or a library for
programming languages.

REFERENCES

[1] H. Maitre, A review on Hough Transform, Traitement du signal, 1985,
volume 2, number 4, pages 305-317,

[2] M.Dexet,Architecture d’un modeleur géométrique à base topologique
d’objets discrets et méthodes de reconstruction en dimensions 2 et 3,
Université de Poitiers (France) Thèse en informatique et applications,
2006, decembre

[3] P.-V.-C. Hough, Method and means for recognizing complex patterns, In
United States Pattent, 1962 volume 3069654, 47-64,

[4] R.O. Duda and P.E. Hart, Use of the hough transform to detect lines and
curves in pictures, Communications of the ACM, 1972,15(1),11-15

[5] A. Sere, O. Sie and E. Andres, Extended Standard Hough Trans-
form for analytical line recognition, 6th International Conference on
Sciences of Electronics, Technologies of Information and Telecom-
munications (SETIT), Sousse, Tunisia, 2012, pp. 412-422, doi:
10.1109/SETIT.2012.6481950.

[6] M Dexet and E. Andres, A generalized preimage for the digital analytical
hyperplane recognition,Discrete Applied Mathematics, 2009, volume
157, Issue 3, pages 476-489,

[7] Abdoulaye SERE, Dario COLAZZO, Oumarou SIE, A Hough Transform
Based On a Map-Reduce Algorithm, International Journal of Engineering
Research and Application ISSN : 2248-9622, Vol. 6, Issue 8 (part 2)

[8] Mateus Coelho, Dylan Sugimoto, Gabriel Melo, Vitor Curtis and Juliana
Bezerra A MapReduce based Approach for Circle Detection, In Pro-
ceedings of the 14th International Conference on Software Technologies
- Volume 1: ICSOFT, 454-459, 2019 , Prague, Czech Republic

[9] J.P.Reveillès, Combinatorial pieces in digital lines and planes. In pro-
ceeding SPIE 2573, Vision Geometry volume IV, issue 23, (1995)

[10] E.Andres , Discrete linear objects in dimension n : the standard model.
In Graphical Models, volume 65, issue 1-3, pages 92-111(2003).

[11] Angella Yao, Juergen Gall, Luc Van Goo, A Hough Transform-
Based Voting Framework for Action Recognition, IEEE Conference on
computerVision and Pattern Recognition (CVPR 10), (2010).

[12] Gabriel Fanelli, Juergen Gall, Luc Van Goo, Hough Transform-based
Mouth Localization for Audio-Visual Speech Recognition, British Ma-
chine Vision Conference, September (2009).

[13] Séré A., Ouedraogo T. F., Zerbo B.; An improvement of the standard
Hough transform method based on geometric shapes, Future of Infor-
mation and communication conference (FICC), 2018, 5-6

[14] Cheick Amed Diloma Gabriel TRAORE, Abdoulaye SERE, Straight
Line Detection with the Hough Transform Method based on a Rectan-
gular Grid, Fifth International Conference on Information and Commu-
nication Technology for Competitive Strategies (ICTCS-2020)

[15] Abdoulaye SERE, Yaya TRAORE, Frederic T OUEDRAOGO, Towards
New Analytical Straight Line Definitions and Detection with the Hough
Transform Method, International Journal of Engineering Trends and
Technology 62.2 (2018): 66-73.

[16] Abdoulaye SERE, Cheick Amed Diloma Gabriel TRAORE, Yaya
TRAORE, Oumarou SIE, Towards Traffic Saturation Detection Based on
the Hough Transform Method. In: Proceedings of the Future Technologies
Conference (FTC) 2020, Volume 2. FTC 2020. Advances in Intelligent
Systems and Computing, vol 1289. Springer, Cham.

[17] Awani Kendurkar, Mohith J. A Comparative Analysis of Parallelisation
Using OpenMP and Pymp for Image Convolution . International Research
Journal of Engineering and Technology (IRJET) ISSN: 2395 0056
Volume : 08 Issue: 09, Sep 2021 www.irjet.net p ISSN: 2395 0072

[18] Jack E Bresenham, Algorithm for computer control of a digital plotter,
IBM Systems Journal, ACM.

[19] Wright William E., Rendering, Parallelization of Bresenham’s
Line and Circle Algorithms, IEEE Computer Society Press,
https://doi.org/10.1109/38.59038

[20] M. W. Spratling, A neural implementation of the Hough transform and
the advantages of explaining away, Image and Vision Computing, doi:
10.1016/j.imavis.2016.05.001

[21] Jošth R., Dubská M., Herout A., Havel J. (2011) Real-Time Line
Detection Using Accelerated High-Resolution Hough Transform. In:
Heyden A., Kahl F. (eds) Image Analysis. SCIA 2011. Lecture Notes
in Computer Science, vol 6688. Springer, Berlin, Heidelberg

[22] Ouedraogo, M., Sere, A., Some, B.M.J., Traore, C.A.G.D, Straight-
Line Recognition Using a Triangular Grid. In: Arai, K. (eds) Advances in
Information and Communication. FICC 2022. Lecture Notes in Networks
and Systems, vol 438. Springer, Cham.

www.ijacsa.thesai.org 714 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

APPENDIX

Algorithm 4: Building a triangular grid
Function meshing2(Nl, Nc,h, b: integers): table of integers

Variables: tab: table of 6 integers
Output: tab[1] (tab[3]): base (height) of the triangle

of our meshing ;
tab[0] : number of parts of length tab[3] on the line ;
tab[2]: number of parts of length tab[1] on the
column ;
tab[4] : the remainder of the Euclidean division of Nl
by h ;
tab[5] : the remainder of the Euclidean division of Nc
by b ;
begin
tab[1]← b;
tab[3]← h;
tab[0]← int[Nl/h];
tab[2]← int[Nc/b];
tab[4]← Nl mod h;
tab[5]← Nc mod b;
return tab;

Algorithm 5: Rate of lit pixels
Function count(img pymp : image, A, B, C : 3 tables of

two integers containing the coordinates of the vertices of
the triangle) : real

Variables: k, l : integers;
D : table of two integers
begin
k← 0;
l← 0;
D← A;
if B[1]≥ A[1] and C[0] ≥ A[0] then

for x between A[0] and C[0] do

DE← |x−C[0]|× |A[1]−B[1]|
|A[0]−C[0]|

;

y0← A[1]+ round(DE);
for y between A[1] and y0 do

if img pymp[x,y] ̸= 0 then
k← k+1;

else
l← l +1 ;

if B[1]] ≤ A[1] and C[0] ≤ A[0] then
for x between C[0] and A[0] do

DE← |x−C[0]|× |A[1]−B[1]|
|A[0]−C[0]|

;

y0← A[1]−E[DE];
for y between y0 and A[1] do

if img pymp[x,y] ̸= 0 then
k← k+1;

else
l← l +1 ;

return
k

k+ l
;

Algorithm 6: Recognition of discrete lines
Pre-condition: 0 < α < 1, 0 < threshold
Data: α

Variables: tab : table of 6 integers ;
A, B, C : tables of two integers ; accum row, accum column, irho, Nl, Nc : integers;
accum : matrix of dimensions ”accum row×accum column”;
threshold, α, dtheta, rho, theta, DE : real;
Begin
% import of pymp library
import pymp;
% image reading
imge=cv2.imread(’image.jpg’);
img= pretraited image;
% the dimensions of the image ;
Nl← number of rows of image; Nc← number of columns of image;
%create a pymp type matrix
img pymp← pymp.shared.array([Nl,Nc]);
% α : the rate of lit pixels from which the triangle is selected ;
α = 0.8 ;
% threshold : the minimum number of votes ;
threshold← 150 ;
% the dimensions of the virtual triangles to be entered manually;
h← 4 ; b← 4 ;
% the dimensions of the matrix ”accum pymp”
accum row← 180 ; accum column← E(

√
(Nc2 +Nl2));

dtheta = π/180 ;
% creation of the pymp type accumulator matrix
accum = pymp.shared.array([Ntheta,Nrho]);
accum seuil = pymp.shared.array([Ntheta,Nrho]);
tab← meshing(Nl,Nc,h,b) ;
H = Nl− tab[4] ; L = Nc− tab[5] ;
% assign the pixel values of the pre-processed image to the matrix of type pymp
for x in range(Nl): do

for y in range(Nc) do
img pymp[x,y]← img[x,y]

% walk through all the triangles of the grid without taking into account any residues and updating the
accumulator

%
pymp.config.nested=False;
% the maximum number of threads allowed
pymp.config.thread limit = 4;
with pymp.parallel(2) as p :

for x in tab[3] and Nl with a step of tab[3]+1 do
for y between tab[1] and Nc with a step of tab[1]+1 do

A[0] = x− tab[3] ; A[1] = y− tab[1] ; B[0] = x− tab[3] ; B[1] = y ; C[0] = x ;
C[1] = y− tab[1] ; D = A;

if B[1]¿A[1] and C[0]¿A[0] then
if count(img pymp, A,B, C)≥ α then

for z between A[0] and C[0] do

DE← |x−C[0]|× |A[1]−B[1]|
|A[0]−C[0]|

;

y0 ← A[1]+ round(DE);
for t between A[1] and y0 do

Acc update();

A[0] = x ; A[1] = y ; B[0] = x− tab[3] ; B[1] = y ; C[0] = x ; C[1] = y− tab[1] ; D = A;
if B[1]¡A[1] and C[0]¡A[0] then

if count(img pymp, A,B, C)≥ α then
for z between C[0] and A[0] do

DE← |x−C[0]|× |A[1]−B[1]|
|A[0]−C[0]|

;

y0 ← A[1]−E[DE];
for t between E[y0] and A[1] do

Acc update();

if tab[4] ̸= 0 then
for z between H and Nl do

for t between 0 and Nc do
Acc update();

if tab[5] ̸= 0 then
for z between 0 and Nl do

for t between L and Nc do
Acc update();

Search for maxima in the accumulator;
Line drawing;
End

www.ijacsa.thesai.org 715 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Algorithm 7: Accumulator update
Procedure Acc update(): void

% Updating the accumulator
if img pymp[z, t] ̸= 0 then

for itheta in p.range(accum row) do
theta← itheta×dtheta;
rho← t× cos(theta)+ z× sin(theta);
irho← int(rho);
if irho > 0 and irho < accum column then

accum[itheta][irho]←
accum[itheta][irho]+1

www.ijacsa.thesai.org 716 | P a g e

