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Abstract—The Minimum Variance Distortionless Response
(MVDR) beamforming algorithm is frequently utilized to extract
speech and noise from noisy signals captured from multiple
microphones. A frequency-time mask should be employed to
compute the Power Spectral Density (PSD) matrices of the
noise and the speech signal of interest to obtain the optimal
weights for the beamformer. Deep Neural Networks (DNNs) are
widely used for estimating time-frequency masks. This paper
adopts a novel method using Graph Convolutional Networks
(GCNs) to learn spatial correlations among the different channels.
GCNs are integrated into the embedding space of a U-Net
architecture to estimate a Complex Ideal Ratio Mask (cIRM).
We use the cIRM in an MVDR beamformer to further improve
the enhancement system. We simulate room acoustics data to
experiment extensively with our approach using different types
of the microphone array. Results indicate the superiority of our
approach when compared to current state-of-the-art methods.
The metrics obtained by the proposed method are significantly
improved, except the Scale-Invariant Source-to-Distortion Ratio
(SI-SDR) score. The Perceptual Evaluation of Speech Quality
(PESQ) score shows a noticeable improvement over the baseline
models (i.e., 2.207 vs. 2.104 and 2.076). Our implementation
of the proposed method can be found in the following link:
https://github.com/3i-hust-asr/gnn-mvdr-final.

Keywords—Multi-channel speech enhancement; graph convolu-
tional networks; minimum variance distortionless response beam-
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I. INTRODUCTION

Speech enhancement is a subject studied and applied in
many applications, e.g., automatic speech recognition, tele-
conference, or aided hearing [1-4]. There are two algorithm
categories of speech enhancement: single-channel algorithms
(using a single microphone) [5-8] and multi-channel algo-
rithms (using multi microphones) [9], [10]. The performance
of multi-channel algorithms is generally better than that of
single-channel algorithms because they use not only statistical
information related to signals but also more spatial information
[11].

Speech enhancement using microphone array beamforming
is a type of multi-channel approach. The basis of these tech-
niques is to enhance signals from desired directions (signals
of interest) and attenuate signals from uninterested directions
(noise signals). One of the beamforming algorithms used
in speech enhancement is the MVDR beamforming [12-14].
There are two conventional approaches to determine MVDR
filter weights for noise reduction and/or dereverberation.

The first approach is to estimate the characteristic vector of
Acoustic Transfer Functions (ATF) from the speech source to
the microphone array based on a priori assumptions such as the
position of the desired signal source, the microphone array’s
configuration, and room acoustics. In a real environment, the
performance of this approach is reduced since the effect of
multi-paths [15], [16].

The second approach does not involve any such a priori
assumptions. Instead of using an ATF vector, a Relative Trans-
fer Function (RTF) vector is estimated based on data collected
from the microphone array. The (RTF) vector is defined as
the (ATF) vector normalized to a reference microphone of
the microphone array. The (RTF) vector estimate is calculated
from (PSD) matrices of noise and desired signal. A time-
frequency mask is used to estimate the matrices. There are
some techniques to create the mask [17], [18].

Recently DNNs have been widely used for speech-related
task for better robustness and performance [10], [19-23].
GCNs are considered a generalization of Convolutional Neural
Networks (CNNs) [24]. In [23], the GCNs are used to learn
spatial features and incorporate them with a U-net to estimate
a cIRM. The cIRM is used directly to estimate clean speech
based on spectral information obtained from multi-channel.
Some experiments in [23] show that speech enhancement using
GCNs and U-Net has results that outperform the prior state-
of-the-art approach.

This paper adopted the idea of using GCNs and U-Net
architecture of [23] for a speech enhancement system with two
contributions. Firstly, instead of using the number of nodes of
GCNs in [23] as the number of microphones, we increase the
node number of GCNs. It helps GCNs learn spatial features
more precisely. Therefore a cIRM can be better estimated by
incorporating GCNs in the U-Net architecture. Secondly, we
use an MVDR beamformer based on the obtained cIRM to
estimate the clean speech rather than the attention layer as in
[23].

These works are implemented and tested on the dataset
provided from ConferencingSpeech2021 Challenge [25]. The
results demonstrate that the combination between MVDR
beamforming and GCNs improves the performance of the
speech enhancement system. The metrics obtained by the
proposed method are significantly improved, except for the SI-
SDR score. The PESQ score shows a noticeable improvement
over the baseline models (i.e., 2.207 vs. 2.104 and 2.076).
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The rest of the paper is organized as follows. In Section
II, a brief basis of speech enhancement, MVDR beamformer,
GCNs, as well as evaluation metrics is described. In Section
III, we review some related works. In Section IV, the proposed
speech enhancement approach is detailed. In Section V, we
explain some experimental setups and analyze the results of
the proposed approach. Finally, the conclusions are presented
in Section VI.

II. PRELIMINARY

A. Speech Enhancement

The noisy speech signal can be represented in the Short-
Time Fourier Transform (STFT) domain:

X(t, f) = S(t, f) +N(t, f) (1)

where X(t, f) represents the complex-valued time-
frequency (t, f) bin of noisy speech, S(t, f) denotes the
reverberated signal received at the microphone and N(t, f)
indicates the interference noise at time frame t and frequency
bin f with t = 0, ..., T−1 and f = 0, ..., F−1. T and F are the
number of frames and frequency bins, respectively. The neural
beamformer here focuses on the task of suppressing noise.
The objective is to remove the interference noise N(t, f) and
retrieve the speech signal S(t, f).

Deep learning-based speech enhancement approaches are
usually designed in a supervised manner. Based on how to
obtain the target, the applied techniques can be classified
into mapping-based or masking-based methods. In mapping-
based approaches, the goal is to approximate a non-linear
function from the noisy speech into the desired speech through
a learning process. Meanwhile, the most popular methods
recently used are masking-based, where the target is masks
computed between desired and noisy speech.

The masking-based approaches try to approximate a non-
linear function from an observed noisy speech spectrum
X(t, f) to a Time-Frequency (T − F ) mask M(t, f) through
the learning/training process. The commonly used masks in
recent researches include: binary-based mask [17] and ratio-
based mask [18].

The binary-based mask usually indicates the Ideal Binary
Mask (IBM). Each entry of the T − F mask is set to 1 when
the local Signal-to-Noise Ratio (SNR) is greater than a pre-
defined threshold value R (indicates that speech is dominated
over noise), or 0 if otherwise (indicates that noise is dominated
over speech). In particular,

MIBM(t, f) =

{
1, if SNR(t, f) > R.

0, otherwise.
(2)

here SNR(t, f) indicates the SNR at the frame index t
and the frequency bin f within the T − F mask.

Typical ratio-based mask commonly refers to Ideal Ratio
Mask (IRM), where each entry of the T−F mask is set by the
soft ratio of the reverberated speech over the observed noisy
signal, that is:

MIRM(t, f) =
|S(t, f)|α

|S(t, f)|α + |N(t, f)|α
(3)

here |S(t, f)| indicates the magnitudes of reverberated
speech, |N(t, f)| denotes the noise in the T −F domain, and
α is a factor over the magnitudes, which is to scale the value
of each entry of the mask or change the dynamic ranges of the
features. From Eq. 2 and 3, we could deduce that IRM-based
methods could provide an enhanced signal with less distortion,
while it may possibly lead to much computation [26].

Williamson et al. [27] further improved this approach,
called cIRM. The complex ratio mask (CRM), demonstrated
to be more effective than the ideal ratio mask (IRM) [28-30].
Given the complex spectrum of noisy speech, X(t, f), we get
the spectrum of reverberated speech, S(t, f), that is:

S(t, f) = X(t, f)⊙McIRM(t, f) (4)

where ⊙ is the element-wise multiplication. Note that,
X(t, f), S(t, f) and McIRM(t, f) are complex-valued matri-
ces.

Given the observed input noisy signals X(t, f) from the
T − F domain and the target mask M(t, f), the deep neural
networks are optimized by the Mask Approximation (MA)
objective function, which minimizes the Mean Squared Error
(MSE) loss between the estimated and the target mask. On the
other hand, recently, more approaches have been starting to
employ Signal Approximation (SA) objective functions [31-
33]. This objective aims to minimize the MSE loss between
the estimated and the target reverberated speech spectrum.
Besides, another approach minimizes MSE between the es-
timated reverberated signal and the target one in the time-
domain by additionally applying inverse STFT. Furthermore,
the conclusions in [31], [34] show that mixing the objectives
(i.e., MA and SA) could lead to further improvement in both
the magnitude and the spectral domains.

B. MVDR Beamformer

The separated speech can be obtained as

ŜMVDR(t, f) = hH(f)X(t, f) (5)

here h(f) ∈ CM denotes the weights of MVDR beam-
former at frequency index f , M denotes the number of
channels and (·)H indicates Hermitian operation. The main
target of the MVDR beamformer is to suppress the interference
noise while keeping the desired signal undistorted as much as
possible, that is:

h(f) = argmin
h

hH(f)ΦN (f)h(f)

s.t. hH(f)v(f) = 1
(6)

Here ΦN (f) is the PSD matrix of the noise, and v(f) ∈
CM represents the steering vector to the target source.

Different approaches could be adopted to find the optimal
weights of the MVDR beamformer. To reduce the computation
in the beamforming block, we employ the MVDR solution of
Souden et al. [12]:

h =
(ΦN (f))−1ΦS(f)

trace((ΦN (f))−1ΦS(f))
u (7)
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where ΦS(f) ∈ CM×M is the PSD matrix of speech,
ΦN (f) ∈ CM×M indicates the PSD matrix for noise. u ∈ RM

is a one-hot vector representing a reference microphone.

Two masks, MS(t, f) and MN (t, f), will be used to
estimate the desired PSD matrices:

ΦS(f) =

T∑
t=1

(X(t, f)⊙MS(t, f))(X(t, f)⊙MS(t, f))
H

(8)

ΦN (f) =

T∑
t=1

(X(t, f)⊙MN (t, f))(X(t, f)⊙MN (t, f))H

(9)

where ⊙ is the element-wise multiplication.

C. Evaluation Metrics

The standard metric to measure the performance of Auto-
matic Speech Recognition (ASR) systems is Word Error Rate
(WER). However, other objective metrics are also employed to
evaluate the performance of the front-end techniques, such as
denoising. The typical metrics include Short-Time Objective
Intelligibility (STOI) [35], Extended Short-Time Objective
Intelligibility (ESTOI) [36], SI-SDR [37], and PESQ [38].
It is worth looking at [39] for more detailed definitions and
explanations of the objective metrics.

D. Graph Neural Networks

1) Definition: Graph Neural Network (GNN) [24] is a new
type of deep neural network designed to work with graph
data. Graphs provide a much more flexible way to process
and aggregate information. GNN allows for generalizing DNN
operations to graph-structured processing [40], [41]. By ag-
gregating information from neighboring nodes, GNN models
encode structural-relational information into the representation,
which then is applied in a wide range of tasks, including
biochemical structure discovery [42], [43], computer vision
[44], and recommendation systems [45].

A specific variance of GNN is the convolutional GNN (so-
called GCN) which is similar to CNN [46] with the basis of
shared weights through training. There are two approaches
for building GCN, Spectral GCN and Spatial GCN [47-49].
Spectral GCN, infrequently used nowadays, is based on the
Eigen-decomposition of graph Laplacian. Spatial GCN defines
convolution operations that work directly on a graph through
the nodes and edges and aggregate spatial information between
neighboring nodes and edges. Therefore, Spatial GCN is less
computational and complex and can generalize better than
spectral GCN. Recently, new convolutional GNN structures
[47] have drastically leveraged the performance of GNN by
employing various techniques, including normalization [46],
attention [50], and activation [51].

2) Graph Convolutional Network: Given a graph G =
(V, E), where V represents the set of nodes vi of the graph
and E represents the edges of the graph between two nodes
(vi, vj). The GCN applies non-linear transformation on the
input X ∈ R|V|×N , where |V| is the number of nodes and N
is node feature size. In particular, GCN can be mathematically
represented as follows:

H(l) = g
(
D−1/2AD−1/2H(l−1)W(l−1)

)
(10)

where D ∈ R|V|×|V| is the diagonal matrix, A ∈ R|V|×|V|

is the adjacency matrix, H(l) ∈ R|V|×K is the lth GCN layer
with K hidden features, H(0) = X , W(l−1) is the trainable
parameters at the l−1th layer, and g is a non-linear activation
function.

III. RELATED WORK

A. LSTM-Based Speech Enhancement

For the recognition of sequence-based data, context in-
formation is essential. Certain straightforward approaches for
processing context-dependent data have been adopted, such
as concatenating several consecutive features to construct
long-context input features [52]. Moreover, Recurrent Neural
Networks (RNNs), especially the Long Short-Term Memories
(LSTMs), have been experimented with to be able to capture
the information of the long sequence [53-56].

ConferencingSpeech 2021 Challenge1 [25] adopted LSTM
to suppress noise in distorted input signal. In particular, the
multi-channel noisy speech is converted into frequency-domain
by STFT transformation.

The STFT features were stacked with “cosIPD” features
[57], a smoother version of Inter-channel Phase Difference
(IPD), to obtain the input features, and then used to train
the model. A 3-layer real-valued LSTM is used to capture
the temporal information of input features. The output of the
LSTM model is treated as the cIRM then a real-valued fully
connection layer is added to map the output into real and
imaginary components of the mask, respectively.

The cIRM mask was multiplied with the first microphone
channel of STFT features of noisy speech to filter out the
noise. The model was trained with SA objective functions,
minimizing MSE between the estimated reverberant signal and
the target signal in time-domain. Code and samples can be
found in this repository2.

B. GCN-Based Speech Enhancement

Recently proposed solutions are introduced to tackle the
problem of speech enhancement by employing DNN models
with spatial post-filtering techniques such as the filter-and-sum
beamformer [23], [58-60]. Tzirakis et al. [23] proposed a novel
approach by treating each audio channel (microphone) as a
node of a graph structure.

The well-known U-Net architecture was incorporated to
learn representations for the inputs, especially in speech im-
provement problems [61], [62]. GCN was used in the embed-
ding space of a U-Net architecture to learn spatial correlations
between the different nodes (or channels/microphones).

This approach utilizes both real and imaginary parts of
the complex features in the STFT domain. Complex spectro-
grams from each channel are fed into the encoder part of
the architecture. The higher level features obtained after the
Encoder part are used to construct the multi-channel GCN.
After that, the Decoder produces the estimated cIRM for a
reference microphone with the same dimension as the input.
Finally, cIRM for noisy STFT features is computed, which is
used to estimate the desired clean speech.

1https://tea-lab.qq.com/conferencingspeech-2021/
2https://github.com/ConferencingSpeech/ConferencingSpeech2021
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IV. PROPOSED MULTI-CHANNEL PROCESSING METHOD

A. Proposed System

This paper proposes a novel pipeline for multi-channel
speech enhancement tasks by incorporating GNN with a neural
MVDR beamformer. GNN is successfully applied in a wide
range of tasks with structural data, including computer vision
[44] and speech processing [23]. At the same time, MVDR
demonstrates its superior performance over the Filter-and-Sum
technique [63]. However, to the best of our knowledge, no prior
work focuses on integrating both these techniques to tackle the
speech enhancement problem.

The overall proposed model is schematically depicted as
Fig. 1. The whole pipeline consists of three main processes:

1) Signal transformation includes signal conversion
from the time domain to the STFT domain (STFT
block) and signal inversion from the STFT domain
back to the time domain (iSTFT block);

2) Mask estimation for both clean speech and noise
(Mask Estimator block);

3) Applying MVDR for noise suppression (MVDR
block). However, only the parameters in the Mask
Estimator block are trainable (details illustrated in
Algorithm 1).

The two signal transformation blocks are trivial, while the
mask estimation and the MVDR blocks are more advanced
and described below.

1) Mask Estimator Block: Firstly, we employ the well-
known U-Net architecture for mask estimation blocks. The
u-Net model has been shown very successfully in many
computer vision tasks and used in some recent approaches
in speech processing [64]. In addition, U-Net architecture
comprises an encoder/decoder part with an embedding layer.
The encoder/decoder parts in U-Net are set to be cascaded
CNN layers, while the GCN is used as a core embedding layer.
We adopt this idea from the currently published approach of
[23].

Secondly, our proposed U-Net model is unique and differ-
ent from [23] because we use other graph construction methods
for the embedding layer. In [23], the input channels, denotes
as M , is preserved as GCN nodes, so that, GCN has only
M nodes (M = {2, 4} as reported in [23]). With such a
few nodes, we realize that GCN’s ability to capture spatial
information is restricted.

From that deduction, we propose a novel graph construc-
tion method such that GCN’s nodes are now set equal to
the number of channels (kernels) of the last CNN layer in
the encoder part of U-Net. In detail, suppose that the STFT
features with the shape of (M×T ×2F ) dimensional feeds to
the encoder. The latter then represents with the dimension of
(H × T ′ × F ′), where H is the number of kernels of the last
CNN layer in the encoder, while T ′, F ′ are the reduced size of
T and F after all layers of CNN in the encoder, respectively.
As a result, the number of nodes in GCN is H , allowing us
to choose an appropriate number of nodes during the training
process. For more detail about the graph construction process,
see Section IV-C.

Finally, outputs of the mask estimation process are two
masks for clean speech and noise, denote as mask speech and
mask noise in Fig. 1, respectively.

2) MVDR Beamformer: We utilize a neural MVDR beam-
former as posterior filtering to leverage the enhancement
performance. The MVDR uses these aforementioned estimated
masks from the previous step to compute beamforming weights
on-the-fly. The detailed computation is introduced in section
II-B. The process of MVDR beamformer is integrated with
mask estimation and trained as a unified model so that, making
the enhancement system more robust.

B. System Procedure

The overall procedure of this approach in Fig. 1 is shown
in Algorithm 1.

First, the multi-channel speech signals are transformed into
the time-frequency domain with STFT transformation. The
components of the complex STFT features are stacked together
to create a new feature with a two-channel of size (T×F×2),
where T denotes the number of frames, and F indicates the
number of frequency bins, in total.

Considering M channels, the input features will have the
shape of (M×2×T×F ) dimensional, in which each entry is a
real value. After that, these STFT input features are fed to the
Encoder of Mask Estimator, which produces more complex
and high-level representations. The feature is reshaped into
(M × T × 2F ) dimensional to fit the requirement of our
proposed method. The Encoder then produces representations
with the dimension of (H×T ′×F ′), where H is a number of
filters of the last CNN layer in the encoder. At the same time,
T ′ and F ′ are the reduced size of T and F after the entire
layers of CNN in the encoder, respectively. Next, the GCN
is used as a core embedding layer between the encoder and
decoder parts. The representations produced from the Encoder
are utilized in constructing a graph with H nodes, which
captures the spatial information by aggregating the information
of its nodes and edges. The GCN construction process is
described in detail in Section IV-C.

The output of GCN layers is forwarded through the de-
coder part, which converts the hidden features to the original
dimension. The decoder outputs could be treated as two cIRM
masks for clean and noisy speech, then used to compute the
PSD matrices and MVDR weights. Estimated STFT features
of reverberant speech Ŝ are computed by applying MVDR
processing as in Section II-B. Finally, the inverse STFT
transformation is applied to obtain the estimated reverberant
speech in the time domain.

C. Graph Construction

We adopt a recently published approach that captures
multi-channel signal information with graph structure [23]. The
graph structure is first constructed using the hidden feature
representations obtained after the Encoder. We construct an
undirected graph, G = (V, E), where V represents the set of
nodes vi of the graph. For example, with hidden features of
shape (H × T ′ × F ′) from the previous step, a graph with H
nodes with a feature size is N = T ′F ′ will be constructed
by flattening function. E represents the edges of the graph
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Fig. 1. Proposed MVDR System using GNN-Based U-Net Architecture as mask Estimator. The Estimated Masks are then used to Compute the Beamformer
Weights and Applied to a Noisy Signal to Provide the Enhanced Signal.

between two nodes (vi, vj). Then, an adjacency matrix of the
graph, A ∈ RH×H , is computed.

We also employ a learnable adjacency matrix, where each
entry of A is treated as a weighted obtaining from edge
(vi, vj) ∈ E . Intuitively, each entry represents a similarity
between two nodes in the graph. In our approach, the learn-
able weights, wij , {i, j ∈ V}, of the adjacency matrix A
are optimized during the training process. For two nodes vi
and vj , their representations will be concatenated, fvi , fvj ∈
RN as [fvi∥fvj ] and then passed through a non-linear layer
F ([fvi∥fvj

]). The node degree matrix D is a diagonal matrix,
where Dii =

∑
j Aij .

The graph constructed G provides an efficient way to
capture the structured information from its nodes (e.g., micro-
phones). We use the GCN to produce high-level abstraction
for the hidden node representations by learning aggregated
features for each node w.r.t its neighbors. The mathematical
detail of the GCN layer can be seen in Section II-D2.

D. Loss Functions

In the training process of the proposed network, we adopt
loss computations in different forms. We use a loss function
with magnitude features and raw signals in the time domain.
More specifically, these losses are:

Lmag =
∥∥∥∣∣Ŝ∣∣− ∣∣S∣∣∥∥∥

1
(11)

Lraw =
∥∥ŝ− s

∥∥
1

(12)

L = Lmag + Lraw (13)

where ∥ · ∥1 indicates the L1 norm, |S| indicates the
magnitude spectrogram of the complex spectrogram S, s indi-
cates reverberant signal, andˆsign indicates the corresponding
predicted entities.

V. EXPERIMENTAL EVALUATION

A. Dataset

With some missing information about the dataset configu-
rations and the authors did not publish the implementation of
their proposed model in [23], we decided to utilize the dataset
provided from ConferencingSpeech 2021 Challenge [25]. The
simulation set was provided for all participants to develop the
enhancement systems and estimate the objective scores. To
focus on the development of algorithms, the authors designed
the challenge with the close training condition. In other words,
only the provided list of open-source clean speech and noise
datasets could be used in the training process.

1) Training Set: Clean training speech set signals are
chosen from three open source speech databases: AISHELL-
13 [65], AISHELL-34 [66], and Librispeech [67]. The speech
utterances with SNR higher than 15 dB are selected for
training. The total duration of the clean training example is
around 550 hours. The noise set is selected from MUSAN [68]
and AudioSet [69]. The total duration is around 120 hours.

The imaging method is used to simulate Room Impulse Re-
sponse (RIR) for three types of microphone arrays: (i) a linear
microphone array with uniformly distributed 8 microphones,
(ii) a circular microphone array, and (iii) a linear microphone
array with non-uniformly distributed 8 microphones. The room
size ranged from 3× 3× 3 m3 to 8× 8× 3 m3, and provided
RIR set contains more than 2500 rooms.

The microphone array is randomly placed in the room
with a height ranging from 1.0 to 1.5 m. The sound source,
including speech and noise, comes from any possible position
in the room with a height ranging from 1.2 to 1.9 m. The
angle between two sources is wider than 20◦. The distance
between the source and microphone array are ranged from 0.5
to 5.0 m. The total number of RIR is more than 10000 for
each microphone array. The simulated SNR ranges from 0 to
30 dB, and the duration of each clip is 6 seconds.

3https://www.openslr.org/33/
4http://www.openslr.org/93/
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Algorithm 1 Summary the Process of the Proposed Model for Multi-Channel Speech Enhancement

Require: M -channel noisy speech x ∈ RM×L in time domain; reference microphone vector u.

Ensure: Enhanced speech ŝ ∈ RL in time domain.

1: X = STFT (x) ▷ X ∈ RM×2×T×F

2: X = reshape(X, [M,T, 2 ∗ F ]) ▷ X ∈ RM×T×2F

3: skips = [ ]

4: a = copy(X) ▷ a ∈ RM×T×2F

5: for enc layer in Encoder do ▷ UNet Encoder

6: a = enc layer(a)

7: skips.append(a)

8: end for

9: A = construct adj(a) ▷ a ∈ RH×T ′×F ′
,A ∈ RH×H , see Section IV-C

10: g = GCN(A, a) ▷ g ∈ RH×T ′×F ′
, Applying GCN, see Equation 10

11: e = a⊗ g ▷ e ∈ RH×T ′×F ′
, ⊗ Hadamard product

12: for dec layer in Decoder do ▷ UNet Decoder

13: skip = skips.pop(−1)

14: e = e+ skip

15: e = dec layer(e)

16: end for

17: mask speech = linear speech(e) ▷ e ∈ RM×T×2F ,mask speech ∈ RM×T×2F

18: mask noise = linear noise(e) ▷ e ∈ RM×T×2F ,mask noise ∈ RM×T×2F

19: ΦS = get psd matrix(mask speech, X) ▷ ΦS ∈ CF×M×M , see Equation 8

20: ΦN = get psd matrix(mask noise, X) ▷ ΦN ∈ CF×M×M , see Equation 9

21: h = get mvdr weights(ΦS ,ΦN ,u) ▷ h ∈ CF×M , see Equations 7

22: Ŝ = hHX ▷ Ŝ ∈ RT×F×2, Applying MVDR, see Equation 5

23: ŝ = iSTFT(Ŝ) ▷ Enhanced speech ŝ ∈ RL

2) Development Set: The development set is categorized
into three parts: Simulation clips, Semi-real recordings, and
Real recordings. In this experiment, we only experiment with
simulated audio with a single microphone array scenario (there
also exists another task using multiple microphone arrays).
1588 clips are simulated for three types of the microphone ar-
ray. 1624 clean speech selected from AISHELL-1, AISHELL-
3, and 800 noise clips selected from MUSAN are used to
simulate these sets. The simulated SNR ranges from 0 to 30
dB, and the duration of clips is 6 seconds.

B. Experimental Setup

For a convenient comparison with other approaches, we set
up the training configurations as follows. The AdamW [70]
optimization algorithm is adopted to optimize the proposed
models with a fixed learning rate of 10−4 and a mini-batch of
size 16. The number of microphones in the experiments is set
to M = 8. The complex features are the STFT computed with
a window of length 1024, the window’s type is set to Hanning,
and an overlap size of 512.

Our proposed model (MVDR-GCN) uses the optimized
configuration. Each block in the Encoder (Decoder) part
of U-net architecture comprises one CNN layer, followed
by batch normalization and a SELU activation function.
Each Encoder block’s kernels of CNN layers are set to
{64, 128, 128, 128, 32}, respectively. The blocks in the De-
coder have the same configurations as the Encoder but in
reverse order. All the kernel sizes of CNN layers are 3 × 3,
and the stride is 2× 2, with no padding.

For the embedding layer of U-Net, GCN, a bottle-neck
layer is used with the hidden size of 64, then two GCN layers
are integrated with hidden units as same as the dimension of
the bottle-neck layer. In order to generate two masks for speech
and noise, after the Decoder part, two Linear layers are added
with an input size equal to the hidden size of the last CNN
layer in the Decoder, while the output size is set to the same
as feature size of STFT features.

The LSTM-based baseline model (Section III-A) is set up
as same as the model in [25]. The model is composed of three
layers of RNN with 512 hidden units. The input features are
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TABLE I. DETAILED ENHANCEMENT RESULTS OF BASELINES AND OUR PROPOSED SYSTEM ON THE DEVELOPMENT SIMULATION SET

MA Model PESQ STOI E-STOI SI-SDR

Linear

Noisy 1.551 0.807 0.716 4.673

Baseline (LSTM) 2.091 0.867 0.779 13.065

Baseline (GNN) 2.088 0.853 0.772 12.001

Proposed System (MVDR-GCN) 2.101 0.861 0.773 10.996

Circular

Noisy 1.558 0.807 0.716 4.633

Baseline (LSTM) 2.129 0.872 0.782 13.118

Baseline (GNN) 2.077 0.852 0.771 12.007

Proposed System (MVDR-GCN) 2.260 0.886 0.804 12.270

Non-uniform

Noisy 1.543 0.804 0.712 4.536

Baseline (LSTM) 2.091 0.867 0.777 13.042

Baseline (GNN) 2.061 0.851 0.768 11.769

Proposed System (MVDR-GCN) 2.261 0.889 0.806 12.333

TABLE II. OVERALL RESULT OF BASELINES AND OUR PROPOSED SYSTEM ON THE DEVELOPMENT SIMULATION SET

Model PESQ STOI E-STOI SI-SDR

Noisy 1.551 0.806 0.715 4.614

Baseline (LSTM) 2.104 0.869 0.758 13.075

Baseline (GNN) 2.076 0.852 0.770 11.926

Proposed System (MVDR-GCN) 2.207 0.879 0.794 11.866

STFT stacking up with cosine of IPD features.

The GNN-based baseline model (Section III-B) has the
same configurations as our proposed system, which in-
cludes input STFT features and parameters of layers in
Encoder/Decoder blocks, except that number of kernels in
each CNN layer, are slightly different from our proposed
model ({64, 128, 256, 128, 32}). Note that this is the optimized
configuration in [23].

Finally, a noisy scenario is obtained by directly computing
the metrics with noisy data, simulated with SNR ranging from
0 to 10, and scaling from 0.2 to 0.9.

C. Enhancement Results and Evaluation

Our proposed approach’s results are compared with Tzi-
rakis et al. [23], a novel GCN-based multi-channel enhance-
ment model. The detailed enhancement results are presented
in Table I.

For overall comparison, the result of scenarios is averaged
and reported as in Table II. Combining the MVDR algorithm
showed an improvement in scores. The metrics obtained by
the MVDR method are significantly improved, as expected,
except for the SI-SDR score. The PESQ score achieved by
the MVDR system shows a noticeable improvement over the
baseline or GCN-based model (i.e., PESQ 2.207 vs. 2.104 and
2.076).

However, in the linear array scenario, our proposed system
obtains worse scores than others, except for the PESQ metric,
because of the distribution of the microphone in arrays. In
circular and non-uniform scenarios, the position of micro-
phones is various to capture more spatial information. The
masks are more accurately estimated, and the model can
achieve decent overall metrics. Conversely, the microphones
are placed equidistant for the linear array, the information may
be symmetric, and the mask estimator model may receive less
information than others and get worse scores.

VI. CONCLUSION

In this approach, we propose a new method of using a
graph neural network to exploit the spatial correlations among
the different channels in the speech enhancement task. We
use the U-Net architecture with the encoder, which tries to
produce higher-level representations for each channel. After
that, the GCN is constructed using these hidden features. GCN
is used to learn spatial features by propagating and aggregating
information in the graph. Then the features are fed to the
decoder to reconstruct into the original forms of each channel.
By integrating the GCN-based U-Net into the MVDR system,
the experimental results validate our approach’s effectiveness
when compared with recent state-of-the-art approaches.
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