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Abstract—As exascale systems come online, more ways are
needed to keep them within reasonable power budgets. This
study aims to help uncover power advantages in algorithms likely
ubiquitous in high-performance workloads such as searching.
This study explored the power efficiency of binary search and
its ternary variant, comparing consumption under different
scenarios and workloads. Accurate modern on-chip integrated
voltage regulators were used to get reliable power measurements.
Results showed the binary version of the algorithm, which runs
slower but relies on a barrel-shifter circuit, to be more power
efficient in all studied scenarios offering an attractive time-power
tradeoff. The cumulative savings were significant and will likely
be valuable where the search may be a substantial fraction of
workloads, especially massive ones.
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I. INTRODUCTION

The fastest supercomputers in the world today are capable
of solving problems at the petascale level, i.e., 1015 floating
point operations/second (flops). Complex simulations of more
realistic models are becoming less feasible on current petas-
cale supercomputers. These workloads need exascale (1018)
machines. The main obstacle to exascale was the projected
power consumption [1]–[4]. If petascale-era technology had
been scaled, it would have consumed absurd amounts of power
in the order of gigawatts. The US Defense Advanced Research
Projects Agency (DARPA) specified that the peak power
consumption should be below 20 megawatts (MW), which led
[4] to conclude that substantial advances in hardware, software,
and algorithms were needed to meet that requirement. Some
experts [5], [6] had predicted that a complete exascale system
would enter service by 2020. The first one that also meets the
DARPA provision arrived in 2022 [7]. The Frontier supercom-
puter (Oak Ridge National Lab, USA) made its official debut
on the 2022 Top500 list as the first supercomputer to exceed
1.0 exaflops [8], [9]. Engineers project reaching 1.5 exaflops
peak at 29 MW (19.33 MW/exaflop) [10].

The previous studies on power and energy reduction fo-
cused on architecture, chip technology, algorithm optimization,
and management. This study aims to explore the inherent
power advantages in algorithms, i.e., those stemming from the
method. It pays particular attention to the power (the time
rate), which once was an obstacle in the path to exascale
and likely will continue to be a significant concern. The work
relies on direct measurement and observations at the microar-
chitectural level. It encourages rethinking time optimization,
which has long been a classic interest in computing, as it may
sometimes interfere with the power concerns of systems where

saving power may be of primary interest. With those concerns
in mind, [11] examined the power efficiency of mergesort
against that of quicksort, the standard general-purpose sorting
algorithm. Their results showed that the power consumption
of the mergesort was significantly better than an optimized
quicksort when it exploited the barrel shifter, a digital binary
shift circuit, to do the partitioning phase. The barrel shifter
is a simple, power-efficient component in modern processors
utilized to perform powers (exponent) of two divisions and
multiplications in one clock cycle. The quicksort ran faster
on average, as expected. Hence switching sorting methods did
involve a time-power tradeoff.

The preceding encouraged a look into more algorithms that
rely on the shifter hardware to see if similar power trends hold
elsewhere. Accordingly, binary search should perhaps have
a power advantage against a ternary version since it divides
search lists by two, which could utilize the power-efficient
barrel shifter. This study attempts to investigate and quantify
that advantage. Binary search is a log-efficient procedure for
unordered querying an array of ordered keys based on an
implicit optimal binary tree [12, see S. 6.2], which is very
useful for multiple random queries. It is a significant part of
various general workloads [13]. Conceptually, it looks for a
key value X in a sorted list as follows:

if ( X == middle element )
X is found

else if ( X < middle element )
search 1st half of list using the same method

else
search 2nd half of list using the same method

A ternary search algorithm works as outlined next:

if ( X == middle1 element )
X is found

if ( X == middle2 element )
X is found

else if ( X < middle1 element )
search 1st third of list using the same method

else if ( X > middle2 element )
search 3rd third of list using the same method

else
search 2nd third of list using the same method

The rest of the paper is organized as follows: Section II
reviews related work in chronological order. Section III de-
scribes the experiments. In Section IV, findings are presented
and discussed. Finally, concluding remarks and suggestions for
further research are in Section V.
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II. RELATED WORK

The research in [14]–[16] introduced a new energy man-
agement component and used it to select the best energy-
saving sorting algorithm on mobile platforms. The energy man-
agement component selects the best algorithm dynamically.
The results show good energy saving and encourage more
investigation.

The author in [17] presented a new methodology to
estimate power consumption for parallel computation in a
multicolor environment. They also prove that the total power
consumption for the computation is not equal to the sum of
each core individually. The results show that their measure-
ment accuracy was 95%. In [18], the author enhanced the
performance and energy consumption for a parallel program
running on the Intel Core i7-2600 processor by increasing the
data locality. They increased energy efficiency by more than
six times.

The author in [19] presented a methodology to predict
the energy consumption for algorithms using the algorithm
atomic operations analysis. They use it to evaluate the energy
consumption for the classical bubble sort algorithm. Their
prediction methodology accuracy was more than 95%. The
author in [20] used the scheduler control information to
estimate the needed number of cores to execute the waiting
program threads. Their results show some power savings. The
author in [21] developed a power-efficient algorithm based
on mathematical modeling for sorting on a mesh-connected
network that utilized an optical pyramid layout (on chips
equipped with optics capabilities). They showed a reduction in
energy consumption due to data movement based on energy
modeling vs. time. There was no direct assessment of power.
The author in [22] presented a new methodology to save power
in mobile platforms using Intel Core i5 processor by running
different workloads on a limited number of cores. They reduce
the power consumption by 40%.

In [23], the author presented a methodology to save power
consumption in multicore environments by reducing the thread
idle time. They applied it to the concurrent execution of ILU-
PACK (an LU decomposition software). The results showed
that they achieved good savings in power. In [24], the author
presented a new method to save energy by adopting an energy-
efficient I/O management approach in supercomputers. They
examined three radically different I/O schemes, including time
partitioning, dedicated cores, and dedicated nodes. They also
characterized how different configurations of the application
and the system can impact performance and energy con-
sumption. Reference [25] translated the CPU dissipated power
into tokens to select the best power-saving technique. The
dissipated power was predicted at cycle level and basic block
level. They enhanced the energy consumption by 11%.

The authors in [26] and [27] observed power efficiency
characteristics of the barrel shifter circuit in the context of
digital signal processing where powers of two divisions and
multiplications are dominant.

The author in [28] investigated power and energy consump-
tion of mergesort against that of quicksort running on the Intel
Xeon E5-2640 (Sandy Bridge). That study had two drawbacks.
First, it eliminated some, but not enough, side activities that
could contribute to the readings. Second, it relied on an older

part that did not support fine power control or detailed internal
instrumentation, including crucial cache activity information.
Nevertheless, their results identified a statistically significant
power advantage for basic mergesort. The author in [29], [30]
developed a methodology for evaluating power and energy
consumption on the NVIDIA Tesla K40c GPU and used it
to compare GPU-optimized bitonic mergesort and quicksort.
Their results showed that the mergesort outperformed quicksort
in power consumption. The bitonic mergesort was further
analyzed in [31] for power and energy consumption on the
NVIDIA platform. They identified the factors that caused the
mergesort to have a power advantage (in a follow-up study,
[32] showed that varying the block size on the GPU further
improved the power performance of the mergesort).

In [11], the author developed a rigorous experimental
procedure to eliminate sources that could taint measurements
based on a CPU with improved power instrumentation. They
showed natural mergesort to have a clear power advantage
against a highly optimized 3-way quicksort. A meta-analytical
comparison of the energy consumption of mergesort and quick-
sort was conducted in [33] based on an extensive literature
review that included [11]. The study concluded that there was
no significant difference in energy needs. Results in [11] had
earlier agreed on energy but found the mergesort to consume
less power based on direct measurement, stressing a concern
when two systems go through the same energy budget at
different rates. It is the basis of time-power tradeoffs. In
some applications, the time rate, i.e., power, is perhaps more
consequential.

III. EXPERIMENTAL DESIGN AND PROCEDURES

Realistic measurement of the power consumption of a
program running on a CPU is not easy. In a modern run
environment, a program runs on a CPU with many other pieces
of code that share the CPU and other resources. Programs run
on many CPU cores under OS control. Therefore environmen-
tal factors, which confound measurement that may credibly
be attributed to the experiment’s code, had to be eliminated.
Some challenges are not unlike those faced when profiling
program run time or studying the time behavior of an algo-
rithm. In addition, empirical assessment of power character-
istics presents extra challenges. Ambient and CPU-generated
heat act as thermal noise that can distort measurements. A
modern CPU actively manages power, adjusting its cooling fan
speeds, internal voltages, and frequencies to maintain health
and keep power consumption in check, which changes power
performance unpredictably. In this study, the authors strove
to eliminate as many external factors and sources of power
consumption as needed to ensure proper, consistent readings
that serve the purpose of the study. The classic generic iterative
versions of the binary and ternary search algorithms, hereafter
referred to as BS and TS, respectively, were used. Finally,
timing data was collected as an experimental control to verify
programming and expected complexity behavior.

The following describes the experimental environment, the
tools used to profile power, the executables that code the
algorithms, and the datasets and related test procedures.
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TABLE I. SPECIFICATIONS OF THE TEST BED WORKSTATION

Processor
Intel Xeon E5-2680 v3 (Haswell-EP)

12 Cores (24 Logical)
TDP Limit = 120 W

Cache Memory
L1/core: 32 KB Instruction, 32 KB Data

L2/core = 256 KB
L3 Shared = 30 MB

OS Linux Ubuntu 16.04 LTS 64-bit
Physical Memory (RAM) 8.00 GB

A. The Environment

The test bed machine was a FUJITSU HPC workstation
kept under consistent server-room conditions to control ambi-
ent thermal effects. Specifications are listed in TABLE I. The
experiments ran with the power supply fan ON. The processor
environment is an HPC-grade Intel Xeon CPU that appears in
machines such as the SGI ICE X supercluster, which ranked
40 in the 2015 Top500 list.

The following settings were applied to the CPU and the
OS to eliminate thermal noise and other factors that could
contaminate the power readings:

• Disabled hyper-threading (architectural optimization).

• Disabled power management options (architectural
optimization).

• Disabled the CPU fan to eliminate effects of cooling
(an external fan was used between runs to bring the
CPU back to a consistent initial thermal state).

• Closed unnecessary OS services and processes to run
the OS with minimum resources.

• Moved the necessary OS processes and services to
cores 2 and above to dedicate core 0 for the experi-
ments.

• Left core 1 idle to reduce thermal interference from
the other cores.

B. The Profiler

The Linux perf tool was used to profile the CPU. The pro-
filer, part of the Linux kernel, provides a wealth of information
about the CPU, including power and energy consumption. It
largely depends on the RAPL (running average power limiting)
interface, which, in turn, depends on the quality of CPU state
control and probe components embedded in the processor.
The HPC-grade 2600v3 Haswell-series, including the part
used in this work, featured [34]: 1) a shift from an indirect
model-based reporting to actual measurement based on fully
integrated voltage regulators (FIVR), and 2) the addition of per
core voltage regulators that control the frequency and power
states of cores individually. Previous generations relied on
one mainboard regulator to infer detailed information. A 2018
study found that RAPL closely matched plug power readings
in the Haswell architecture [35]. As a result, the profiler can
provide reliable, higher-resolution instrumentation on the Xeon
2680v3. The tool was configured to obtain an average of 300
runs and used the following command for each one.

perf stat -e power/energy-pkg ./algorithm

Fig. 1. Barrel Shifter Instructions SAR and SHR in Disassembled BS Code.

TABLE II. DATASETS AND RUN SCENARIOS

Dataset Size Number
Datasets

Number
Runs Total Runs

Set 1 48,000 20 300 20×300 = 6000
Set 2 64,000 20 300 20×300 = 6000
Set 3 512,000 20 300 20×300 = 6000
Set 4 8,000,000 20 300 20×300 = 6000

C. The Executable Files

The search code was generated using the GCC 64-bit com-
piler in release mode. All optimization options in the compiler
were disabled to avoid those that replace bare code with parts
optimized for specific architectural features. Optimizations do
not serve the purpose of the experiments. They may result in
readings that reflect the machine or the compiler more than
the algorithms in principle. The authors consider bare code a
fair rendition of the algorithm on machines from the same
instruction set architectural (ISA) style. Turning off power
features in an otherwise power-efficient CPU also fits that
concern. Finally, disassembled code from the BS executable
was examined to confirm that it utilized the shifter circuit
instructions to halve the sizes of search lists (Fig. 1).

TABLE IV shows the average power consumption for
various dataset sizes under the different run scenarios for
each search algorithm. The averages were calculated from 290
runs/list (after discarding the first ten of 300) for 20 different
lists. So each power value in the table represents 5800 runs.
Fig. 2 show these findings comparatively.
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(a) Similar-Iterations

(b) Single-Element

(c) All-Elements

Fig. 2. Average Power Consumption in Watts for Search Scenarios.

TABLE III. NUMBER OF ITERATIONS FOR SIMILAR-ITERATIONS AND
SINGLE-ELEMENT SEARCH SCENARIOS

Dataset Size Similar-Iterations Single-Element
BS TS BS TS

48k 9 9 14 9
64k 9 9 16 9
512k 11 11 19 11
8M 15 15 23 15

D. The Datasets

Lists of unique random integers, sorted in ascending order,
were generated in four size sets, each comprising 20 different
lists. Each dataset ran 300 times for a total number of 24,000
runs. The first ten runs/dataset were discarded to avoid effects
from the initial thermal state of the CPU. See TABLE II for a
summary of the datasets and run scenarios.

The authors chose 300 after running test trials and found
that averages tended to start converging after 230 runs. Dataset
sizes were chosen based on cache miss data from [11], where
they used the same CPU. Some experimentation with different
sizes confirmed that power readings for datasets located in the
same cache level were reasonably similar. So sizes were based
on crossing L1, L2, and L3 cache boundaries. Sizes of sets 1
and 2 represent lists in L1 and L2, respectively, and those of
sets 3 and 4 represent small and large lists in the L3 cache,
taking care not to cross over to DRAM. The DRAM was ex-
cluded for two reasons. First, to maintain comparable readings
since the on-chip SRAM-based cache levels likely share the
same physical characteristics, hence the power profile. Second,
to better discern effects from algorithmic operations that the
off-chip DRAM access may further drown. Data movement
along communication links is a known prominent contributor
to power consumption, so the decision works for the authors’
approach to emphasizing the algorithm.

IV. RESULTS AND DISCUSSION

To avoid unpredictable effects from the best and worst
cases on averages and to gain better insights, the experiments
ran in three controlled search scenarios:

1) Similar-iterations search: The scenario picks an
element near the middle of the randomly-generated
list, then calculates the iterations needed to find this
element. Each algorithm needs a different number of
iterations to find it. The smallest is selected to set both
to run iterations equal to that number. For example,
if BS needed nine iterations and TS needed eleven,
both are set to run nine iterations. It represents the
minimum run cost to find the key. It also quantifies
the power cost of searches/finds that take the same
amount of iterating, which may be a fair basis to com-
pare the algorithms. TABLE III shows the number of
iterations used for this scenario.

2) Single-element search: Again, set the two algorithms
to search for an element near the middle of the list.
Here each algorithm runs all the needed iterations to
find it. This scenario quantifies the full cost of a find
that can compare with the first scenario. The number
of iterations for this scenario is in TABLE III.
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TABLE IV. AVERAGE POWER IN WATTS (COLUMN ∆% SHOWS PERCENT INCREASE FROM BS TO TS)

Dataset Similar Iterations Single Element All Elements
Size BS TS ∆% BS TS ∆% BS TS ∆%
48k 16.08 16.21 0.81 15.23 16.18 6.24 22.65 28.77 27.02
64k 16.06 16.31 1.56 16.20 16.33 0.80 24.80 26.48 6.77

512k 16.08 16.22 0.87 16.11 16.49 2.36 24.90 25.13 0.92
8M 16.07 16.26 1.18 15.85 15.92 0.44 27.78 28.03 0.90

3) All-element search: This scenario sets each algo-
rithm to search for all the elements in the dataset
in each run. For example, if the dataset size is 100,
the algorithm searches for element 1, then 2, until
100. Some element locations are the worst for the
algorithms, while others are the best. The power
consumption of all searches is measured to avoid
the impact of the element’s location on the power
consumption and averaged to find the average power
consumption for all the positions for each algorithm.

The results show that BS was consistently more power
efficient, with slim margins in the similar-iterations and single-
element search scenarios (datapoint 64k-single-element ap-
pears anomalous). Power savings, however, were substantial
in the all-elements case. The savings seem to depend on the
cache level. They seem to diminish as the computation spills
to the next cache level and then stabilize at around 1% in L3.

Before discussing the results, readers are minded that both
algorithms are incredibly fast, with TS holding a slight runtime
edge. They go quickly through keys to reach either a found
or not found outcome. The run times are comparable since
both belong to the logarithmic efficiency class (TS in base
3, hence its edge). Therefore, it is perhaps unsurprising to
see close power readings in the similar-iterations and single-
element search scenarios. They both depict an isolated query.
Notably, BS still manages to hold a consistent edge in power
consumption. In the similar-iterations case, had BS taken as
few iterations as TS, it would have consumed less power, i.e.,
it had a lower power cost of iterating. The all-elements search
scenario paints a more realistic picture of what to expect as a
cumulative effect likely to be experienced during an extended
period. It is where those seemingly minor differences observed
in the other two scenarios come into play.

Furthermore, cache memory interferes with the run time
performance of the binary search (likewise the TLB, if DRAM
is involved) [13]. With large subarrays, binary search is prone
to generating indices to elements in distant memory. The
effects of weaker locality increase as datasets grow in size.
Power consumption should follow a similar trend. Power
overheads due to cache miss rise as more physical circuits are
engaged to satisfy the misses. Interactions with cache memory
generally may explain the decline in power savings as the
effects from misses increase. Therefore, limiting list sizes was
conducive to the aims of the experiments. The L1 cache is
expected to yield the most realistic view of power from the
algorithmic operations since it suffers the least from the power
overheads of misses.

Little differences in power consumption may not look
promising when viewed from a single application standpoint.
In a large-scale system, however, the cumulative effect should
be significant, especially for a computation likely a good frac-

tion of the general workload for extended times like searching.
The savings may be substantial, which may be more valuable
for a power-sensitive system like an exascale supercomputer.
Moreover, those savings were really due to the algorithm.
BS calls for an inherently inexpensive operation on a binary
computer, which reflects in simple power-efficient hardware,
not the other way around. If not mindful, it may be tempting
to pick the ternary version to speed up runs, especially since
the cost of implementation is negligible.

The findings seem to support the idea that some algorithms
have a power (not energy necessarily) advantage over those
that need to work harder, i.e., expend energy at a higher rate,
to achieve the same results. The inherent power efficiency of
an operation reflects in the hardware, as is the case with the
division by two on a binary device. One may expect an algo-
rithm that relies on that operation to be more power efficient.
This observation should be interesting where power savings
are more significant than some runtime gains, such as those
offered by TS. Eventually, interactions with microarchitectural
features, such as those underlying the memory, may erode
those savings in the real world. However, the savings can add
up system-wide in pervasive computations. Thus a massive
exascale system may be in a better position to benefit from the
cumulative savings. Mobile systems should also benefit from
power-focused optimizations since they relate to the critical
concern of how quickly a battery drains. A power-efficient
workload helps a smaller (lighter) battery go a long way.

V. CONCLUSIONS

This work experimentally explored the power efficiency
of two variants of binary search: the classic binary decision
(BS) and the faster-running ternary decision version (TS),
both in the same time efficiency class. The authors tuned the
experimental environment to focus on the search code while
eliminating other run environment factors. Under the exper-
imental conditions, the results showed that BS outperformed
TS in power consumption under different search scenarios. The
BS could take advantage of the more efficient shift hardware.
The findings seem to corroborate the authors’ initial suspi-
cions about BS, which stemmed from work reported in [11].
The savings in BS were likely inconsequential for individual
searches, but the cumulative effects may be significant.

The study has been an early attempt to establish the binary
decision version of binary search as a preferred alternative
for exascale applications. It quantified a power advantage and
exposed a potentially interesting tradeoff with time, especially
from a workload-wide view. Further investigation with differ-
ent scenarios and environments may be needed to argue that
the reported findings stem from the method (algorithmic) rather
than the run environment, i.e., a binary decision is inherently
efficient in terms of power consumption on any binary com-
puter. Future investigations in other processor environments
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would be interesting, for example, later core processors or
GPUs whose importance in HPC continues to grow. Higher
resolution instrumentation and better reporting tools should
provide deeper insights. Such studies may uncover trends
independent of architecture. Eliminating other microarchitec-
tural interferences help further amplify behaviors due to the
algorithm. For example, basic binary search is quite branchy,
so it may be helpful to turn off branch prediction. Other
algorithms that rely on the binary shift hardware may be
worth exploring. Finally, this work focused on average power.
It may be interesting to observe peak power, which should
be of interest from a system-wide workload in a massive
supercomputer viewpoint.
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