
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

CertOracle: Enabling Long-term Self-Sovereign
Certificates with Blockchain Oracles

Shaoxi Zou, Fa Jin, Yongdong Wu∗
Jinan University, Guangzhou, China

∗Corresponding author

Abstract—Identity certificate is an endorsement of identity
attributes from an authority issuer, and plays a critical role in
many digital applications such as electronic banking. However,
the existing certificate schemes have two weaknesses: (1) a
certificate is valid only for a short period due to expiry of
the issuer’s private key, and (2) privacy leaks because all the
attributes have to be disclosed in the attribute verification process.
To overcome the weaknesses, this paper proposes a blockchain-
based certificate scheme called CertOracle. Specifically, CertOr-
acle allows a traditional certificate owner to encrypt the off-
chain certificate attributes with fully homomorphic encryption
algorithms. Then, the uploading protocol in CertOracle enables
to post the encrypted off-chain attributes into the blockchain
via a blockchain oracle in an authenticated way, i.e., the off-
chain attributes and on-chain encrypted attributes are consistent.
Finally, the attribute verification protocol in CertOracle enables
anyone to verify any set of on-chain attributes under the control
of the attribute owner. As the on-chain certificate attributes
are immutable forever, a traditional short-term certificate is
transformed into a long-term one. Besides, the owner of the on-
chain certificate attributes can arbitrarily select his/her attributes
to meet the requirements of target applications, i.e., the on-chain
certificate has the self-sovereign merit. Moreover, the proposed
scheme is implemented with fully homomorphic encryption and
secure two-party computation algorithms, and its experiments
show that it is viable in terms of computation time and commu-
nication overhead.

Keywords—Digital certificate; blockchain oracle; fully homo-
morphic encryption; secure two-party computation

I. INTRODUCTION

As an important way to identify persons or other objects,
an identity certificate is a set of electronic credentials that are
used to verify the certificate owner’s identity. It can be an
electronic ID card, an electronic graduation certificate, a health
certificate, or other identity certificate issued by a Certificate
Authority(CA) such as a government, university, hospital, etc.
Since most digital identity schemes use digital certificates to
uniquely identify people on the Internet, this will lead to the
frequent use of digital certificates in daily lives.

Most existing digital certificate schemes are based on
public-key cryptography. During the issuance of a certificate,
the CA’s private key will be used to sign on the attributes
of the certificate. However, according to the specification of
NIST, the private key of CA should be updated within three
years [1], otherwise the security of certificate scheme may
be compromised. Usually, the period of a private source-
authentication key, such as signing key, is the same as the
period of associated public key. Therefore, once the key of
CA is refreshed, the verification on previously issued digital

certificates (e.g., electronic ID card or electronic graduation
certificate) may fail, and hence cause inconvenience or security
vulnerability. Therefore, it’s necessary to extend the life cycle
of these digital certificates and verify identity attributes even
if the CA’s private key has expired.

Usually, digital identity certificates contain multiple user
attributes, including user’s private information. When users
want to use certain services supported by verifiers, they have
to present a part of attributes in their certificates. However,
if the identity certificate is presented straightforwardly, all
the attributes in the certificate will also be exposed. This
is a coarse-grained representation that does not satisfy the
principle of least leakage. Meanwhile, someone can’t verify
the certificate’s authenticity when only some attributes of the
certificate are displayed. Therefore, it is necessary to propose
a method to perform fine-grained verification of attributes in
certificate.

To solve the above problems of expiry of CA’s private
key and privacy leakage of user’s attributes, Self-Sovereign
Identity(SSI) [2] solutions are proposed to enable the owners to
control their attributes with decentralized technologies [3] such
as blockchain or distributed ledger. Presently, there are many
mature decentralized identity schemes, such as Hyperledger
Indy and Civic built on consortium blockchains and ION
built on public blockchains. However, these proposed solutions
mostly rely on on-chain issuers. It is difficult for them to tackle
the off-chain certificates, i.e., the traditional digital identity
certificates.

Since the blockchain is characterized by decentralization,
immutability and openness, the on-chain certificate lifetime
will be extended to long-term. Nonetheless, since the informa-
tion on the blockchain is public and traceable, storing digital
certificates on the blockchain in plaintext can lead to pri-
vacy leakage. Therefore, the attributes of on-chain certificates
should be encrypted. To ensure the encrypted traditional certifi-
cates are uploaded into a blockchain authentically, blockchain
oracle can be played as a middleware role in building a bridge
between off-chain and on-chain.

This paper presents CertOracle, a management scheme
for long-term and fine-grained certificates by transforming
an off-chain traditional digital certificate into an on-chain
certificate. Technically, CertOracle enables users to encrypt
their digital certificates by themselves and ensures that the en-
crypted identity certificate is uploaded into the blockchain in an
authentic way via a blockchain oracle. The on-chain encrypted
attributes can be arbitrarily selected for verification under
the control of the attribute owner. CertOracle ensures that
on-chain certificate attributes are fine-grained verifiable and

www.ijacsa.thesai.org 796 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

long-term. Additionally, CertOracle is implemented with fully
homomorphic encryption and secure two-party computation
algorithms, and the experiments demonstrate that CertOracle
is practical.

The remainder of this paper is organized as follows. Section
II shows recent work. Section III introduces the preliminaries.
Section IV describes the system model, security model, and
the protocol details of CertOracle. Section V analyzes Cer-
tOracle. Section VI elaborates the CertOracle implementation
and evaluates CertOracle with abundant experiments. Finally,
Section VII draws conclusions.

II. RELATED WORK

To feed blockchain with encrypted certificates, blockchain
oracles need to verify the correctness of the encrypted cer-
tificate. According to recent research, the implementation of
blockchain oracles could be divided into three categories [4]:
TLS-based scheme, Enclave-based scheme, and Voting-based
scheme.

TLS-based schemes are conducted to construct a protocol
based on Transport Layers Security (TLS), such as TLS-
N [5], DECO [6], etc. TLS is a protocol instrumented to
guarantee message integrity and server authentication through
the exchange of certificates during TLS-handshake. TLS-N, as
a practical and decentralized blockchain oracle, enhances the
audibility and reliability of web content based on the TLS.
However, the scheme is less deployable, which requires some
improvements to TLS. Therefore, DECO proposes a three-
party protocol based on modifications of TLS client, which
minimizes the modification requirements of the TLS proto-
col and enhances compatibility. CanDID [7] uses TLS-based
oracles to fetch identity information securely from outside
systems. However, the oracles are not viable for protecting
the digital identity certificates issued by traditional identity
systems.

Enclave-based oracle is constructed with Trusted Execution
Environment (TEE), such as Intel Software Guard Exten-
sions(Intel SGX) and TrustZone. Using the technology of
Intel SGX, Town Crier [8] can encrypt and decrypt data
requests from smart contracts and external data from data
sources, securely managing sensitive information. But Town
Crier highly depends on the trusted execution environment and
may be vulnerable to side-channel attack [9].

Voting-based schemes, such as Augur, Oraclize [10],
Chainlink [11] and Augur [12], motivate oracles to vote
for data honestly through monetary rewards and penalties.
Oraclize provides proof for the data it fetches, ensuring that
the original data source is real and untampered. But its
centralized model cannot guarantee that the service will always
be available. ChainLink is a decentralized oracle solution on
Ethereum. By querying multiple sources, ChainLink can avoid
dependency of a single oracle. Augur is a prediction market
platform oracle built on Ethereum. It allows users to vote
on information from the outside world based on their tokens.
Therefore, the prediction accuracy is limited by the scale of
the platform, and the uneven distribution of tokens affects the
credibility of results. Apart from that, voting-based schemes do
not provide authenticity of the data and are not suitable when
data is not publicly available, especially digital certificates.

III. PRELIMINARIES

A. Digital Certificate

Digital certificate such as X.509 [13] is an electronic
document issued by CA. Since the user’s digital identity
certificate is issued by a trusted center, it can be used to
prove personal attributes such as age, gender, and country.
To produce a certificate, the attributes will be compressed
using a one-way hash algorithm such as 256-bit Secure Hash
Algorithms (SHA256) [14] first. Then a CA adopts a digital
signature algorithm such as ECDSA and its private key to sign
on the hash value. As a result, anyone can verify the signature
with the CA’s public key.

Taking the hash algorithm SHA256 and digital signature
algorithm RSA as examples, CA chooses randomly two large
prime numbers p and q, and computes N = pq and ϕ =
(p − 1)(q − 1) first. Secondly, it chooses a random integer
e(1 < e < ϕ), so that gcd(e, ϕ) = 1, and computes d(1 <
d < ϕ), so that ed ≡ 1 mod ϕ. Then CA owns public key
(N, e) and private key d. Thirdly, to generate hash value of
certificate content M with l bits, CA adds a bit “1” at the
end of the message, then add k “0”, and finally, fills in 64
bits representing the length of the message. k is the smallest
non-negative integer that satisfies:

l + 1 + k + 64 = 0 mod 512

The padded message is divided into several message blocks
M0,M1, · · · ,Mn in unit of 512 bits, and the Mi is en-
coded using big-endian and represented as W 0

i ,W
1
i , · · · ,W 15

i .
Then CA construct Wi tables for every block according to
W 0

i ,W
1
i , · · · ,W 15

i . Then, for t = 16 . . . 64,

W t = σ1(W
t−2) +W t−7 + σ0(W

t−15) +W t−16

After initializing A . . .H , CA runs 64 rounds of com-
pression function with Wi table for every block, denoted as
A64 . . . H64 = Com(A . . .H,Wi), where Com(·) is the hash
operation of one block. The A64 . . . H64 will be assigned
to A . . .H for compressing the next message block. After
performing Com(·) on every block sequentially, CA gets the
hash value h.

Finally, CA computes σ = hd mod N (Hereafter, we omit
the padding processing in the digital signature algorithm for
the sake of simplicity) and obtains σ as signature. To verify
the signature, any entity can compute h = σe mod N and
calculate h′ using SHA256 with certificate to be verified. If
the value of h = h′, it means that the certificate has not been
tampered with and is indeed issued by the CA.

B. Secure Multi-Party Computation

Secure multi-party computation (SMPC) protocol [15], is
a cryptographic primitive that allows several participants to
jointly calculate some functions and outputs correct results
without revealing the original input data of the participants.
It is suitable for distributed networks like blockchain because
it deals with security and trust issues in a distributed environ-
ment.

As the simplest one in SMPC, a two-party computation
(2PC) ensures that two non-trusted parties attempt to se-
curely evaluate a function. Technically, it specifies a random

www.ijacsa.thesai.org 797 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

process that maps pairs of inputs to pairs of outputs, i.e.,
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where each party
has one private input and one output. For example, Goldreich-
Micali-Wigderson (GMW) [16] protocol is a secret-shared-
based 2PC scheme and can evaluate NOT, XOR and AND.
For instance, for an XOR gate with input values x = {xi}
and y = {yi} and output value z = {zi}, two parties can
compute their shares of the output value as zi = xi ⊕ yi
locally, where ⊕ is eXclusive OR (XOR). The evaluation of
AND gate can be achieved using multiplication triples [17].
Multiplication triples are random shares {ai, bi, ci}, i ∈ {1, 2}
with (c1⊕ c2) = (a1⊕ a2)∧ (b1⊕ b2). They can be generated
using 1-out-of-4 oblivious transfer protocol in the offline set-up
phase which precedes the online phase. During online phase,
the parties can use these multiplication triples to mask the input
shares of the AND gate. Both parties exchange ui = xi ⊕ ai
and vi = yi ⊕ bi, and compute u = u1 ⊕ u2 and v = v1 ⊕ v2.
Then the output can be computed as

z1 = (u ∧ v)⊕ (b1 ∧ u)⊕ (a1 ∧ v)⊕ c1 (1)

and
z2 = (b2 ∧ u)⊕ (a2 ∧ v)⊕ c2 (2)

for each party from their private input x and y.

C. Fully Homomorphic Encryption

A Fully homomorphic encryption(FHE) scheme allows ho-
momorphic evaluation of ciphertext addition and multiplication
an arbitrary amount of times without decrypting the ciphertext
or revealing the secret key [18]. That is to say, for any
messages x and y, and a constant α,

FHE(αx+ y) = FHE(α) · FHE(x) + FHE(y) (3)

for a fully homomorphic encryption algorithm FHE(·).
TFHE(Torus-FHE) [20] is the third generation of FHE

based on the hardness of Learning with Errors(LWE) problem
and its ring variant(Ring LWE). Running over the real Torus
T = R mod 1, TFHE can fix the message space as a discrete
subset M ⊆ T. A message µ ∈ M can be encrypted by
computing

b = s · a+ µ+ e (4)

where s ∈ {0, 1}n is the secret key, a ∈ Tn is uniformly
random and e is sampled from an error distribution over T.
Then, the ciphertext is a pair c = (b, a) ∈ Tn+1. In order to
decrypt, phase φs is introduced to compute

φs(c) = b− a · s (5)

After rounding φs(c) to the nearest point in M, message
µ can be obtained.

TFHE can transform an arbitrary function into a boolean
circuit, then uses bit-wise homomorphic evaluation on cipher-
text c1, c2 as each gate’s input. For example, the AND gate
in TFHE is done by evaluating c = BootsAND(c1, c2, bk), in
which bk is a key used for bootstrapping. Other operations
are also supported with similar gate operations, such as NOT,
NAND, OR, XOR, etc. Since TFHE can evaluate arbitrary
boolean circuits, it is very suitable for functions that can be
represented by several logical operations.

IV. THE PRESENT SCHEME CERTORACLE

CertOracle aims to feed the blockchain-based system with
encrypted identify attributes so as to provide long-term self-
sovereign identity. That is to say, the on-chain encrypted
attributes can be used for fine-grained verification, ensuring
that the attribute holder can have complete autonomy over their
personal identity attributes for a long time. Thus, the scheme
shall achieve the following goals:

• Privacy: The user’s attributes in certificate are pro-
tected during the on-chaining process and on the
chain.

• Unforgeability: The user’s encrypted on-chain certifi-
cate attributes are verifiable as the traditional certifi-
cates and cannot be forged when uploading.

• Fine-grained verification: The on-chain attributes
of certificates can be verified in a fine-grained way
securely.

The parameters of CertOracle are shown in Table I.

TABLE I. NOTATIONS

Variable Definition
Attri : The i-th attribute
Vi : The i-th attribute set V
hi : The i-th bit of hash value h
X′ : The FHE encryption of a message X

X̂ : The obfuscated value of a message X
{Xi} : Vector X = {X0, X1, . . . , X|X|−1}
cert : Identity certificate
σ : Signature of a certificate

A. System Model

As shown in Fig. 1, the blockchain-based identity system
supports the management and control of users’ identities.
When a user has a digital identity certificate generated by an
off-chain CA, he/she can upload the digital identity certifi-
cate to the system through blockchain oracle of CertOracle.
To ensure users’ self-sovereign of the on-chain certificates,
CertOracle permits users to encrypt private information of
digital certificates by themselves. Technically, oracle verifies
the encrypted certificate, in order to confirm that the on-chain
certificate is produced authentically. Then any verifier can
check the selected attributes in a trusted and privacy-preserving
way.

With reference to Fig. 1, CertOracle includes four compo-
nents as follows.

• User: A user owns a certificate which can be rep-
resented as cert = (ID,M, σ), where ID is an
identifier of the user, M is the attributes of certificate
and σ is signature generated by CA. M can be seen as
an array of {Attri, Vi}, where Vi is the value of the
attribute Attri, and signature σ = sign(hash(M))
for attributes in the certificate with hash algorithm
hash(·) and signing algorithm sign(·). The user has
a pair of self-generated FHE keys (pkU , skU), and
can cooperate with the oracle to prove his encrypted
attributes in the certificate.

www.ijacsa.thesai.org 798 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Fig. 1. The System Model of CertOracle.

• Oracle: Oracle has the trusted public keys of the
CAs so as to verify the signatures of the certificates.
In addition, by cooperating with users, oracle will
prove/disapprove the encrypted certificate submitted
from the user.

• Smart Contract: It can upload the encrypted attributes
of certificates after attributes verification. Meanwhile,
It can fetch any set of on-chain attributes and provide
them to the verifier to check user’s claims.

• Verifier: When a user likes to prove his attributes to
a verifier, a verifier can validate on-chain encrypted
attributes by interacting with the user and smart con-
tract.

B. Security Model

With reference to Fig. 1, there are 5 components or
participants. CA is assumed to be honest and trusted by
all. However, CA’s private key may be updated irregularly,
resulting in a decrease in the credibility of the old digital
certificate. Therefore, only when the CA’s private key is valid,
the digital certificate issued by the CA is credible, otherwise
the verification of the previously issued digital certificate will
be considered to be unreliable. The security assumptions of
the other components are as follows:

• Oracle is semi-honest. It honestly follows the protocol
of CertOracle and will not be corrupted by users, but is
curious about the personal attributes of the certificate.

• User is untrustworthy. A malicious user wants to
1) upload a forged digital certificate to blockchain
through oracle; 2) deceive the verifier with fake at-
tributes in order to obtain unauthorized services. In
addition, the ciphertexts sent to the user are assumed
to be well-formed. This assumption can be met with
padding such as OAEP (Optimal Asymmetric Encryp-
tion Padding).

• Smart contract, as a part of the blockchain system, is
trusted and can provide reliable services.

• Verifier is semi-honest. He follows the protocol to
verify some attributes of the users but attempts to
obtain user’s attributes that do not need to be verified

C. CertOracle Protocol

In Fig. 1, CertOracle comprises of four phases. 1) Ini-
tialization (Phase I) configures the parameters in CertOracle;
2) Proof generation (Phase II) validates the authenticity of
the encrypted certificate; 3) On-chaining (Phase III) uploads
the verified attributes in the certificate; 4) Attribute verifica-
tion (Phase IV) checks the on-chain encryption of the user
attributes. In this protocol, assume that the size of hash value
is (n1 +1). Without loss of generality, assume every attribute
is binary, and the number of attributes is (n2 + 1).

1) Phase I (Initialization): In the initialization stage, a user
firstly sends a request to establish a connection with the oracle,
and runs FHE key generation function to get public/private key
pair (pkU , skU). The user keeps the private key skU during
the proof generation and verification process for the encrypted
attributes, and publishes the public key pkU to oracle. Then
the user encrypts some private attributes {Attri, Vi} in cert
bit by bit using pkU , and publishes other attributes of certifi-
cate, such as Version, Certificate Serial Number, Algorithm
Identifier, and Validity Period in Certificate Information in
the certificate format like X.509. In this paper, the public
attributes are omitted, unless otherwise stated. Denote the
ciphertexts V ′

0 , V
′
1 , . . . , V

′
n2

. Denote the encrypted certificate
cert′ = (ID, {Attr0, V

′
0}, . . . , {Attrn2

, V ′
n2
}, σ). The user

constructs ProofRequest as

(op, ID, {Attr0, V
′
0}, . . . , {Attrn2

, V ′
n2
}, pkU , σ)

and sends ProofRequest to the oracle. In ProofRequest,
op is the operations on each attribute {Attrj , V

′
j }, such as

Insert, Update and Delete operation on attributes.

After receiving ProofRequest, the oracle will verify the
signature σ against the encryption of attributes. To this end,
the oracle calculates the hash value of the ciphertext and runs
the signature verification function with the public key of CA.
If the verification result is positive and the certificate is not on
the blockchain, the oracle starts to run the following phases.

2) Phase II (Proof Generation): For any digital certificate
generated from the hash-then-sign algorithm, the proof process
of CertOracle can be divided into two solutions. If the user
cannot keep connected with the oracle during proof genera-
tion, non-interactive proof protocol can be used; otherwise,
interactive proof protocol is recommended

Non-interactive proof protocol: As shown in Fig. 2, if
user can not stay online during proof generation, the ora-

www.ijacsa.thesai.org 799 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Fig. 2. The Non-Interactive Proof Protocol in CertOracle.

cle utilizes properties of fully homomorphic encryption to
realize the proof process. Specifically, the oracle holds the
cert′ = (ID, {Attri, V ′

0}, . . . , {Attrn2
, V ′

n2
}, σ). It uses pkU

to encrypt each attribute {Attri, Vi} bit by bit.

To calculate the hash value of the fully homomorphic
encryption of the certificate attributes, the oracle will run
algorithm FHEsha whose input is the encryption of messages
and whose output is the fully homomorphic encryption of hash
of the messages1. That is to say, the oracle gets the encrypted
hash

h′ = {h′
0, h

′
1, . . . , h

′
n1
} = FHEsha(V ′

1 , V
′
2 , . . . , V

′
n2
) (6)

where V ′
i is an FHE encryption of the ith-bit message Vi,

and h′
i is an FHE encryption of the ith-bit of the hash value

h = hash(V0, V1, . . . , Vn2
).

Moreover, the oracle generates two random arrays A =
{a0, a1, . . . , an1

}, and B = {b0, b1, . . . , bn1
}, and encrypts A

and B to A′ = {a′0, a′1, . . . , a′n1
} and B′ = {b′0, b′1, . . . , b′n1

}
using user’s public key pkU respectively, for all i =
0, 1, . . . , n1,

a′i = FHEencrypt(ai) and b′i = FHEencrypt(bi) (7)

and obfuscates h′ as 2

ĥ′
i = a′i · h′

i + b′i. (8)

Oracle can pack3 {ĥ′
i} into ĥ′ and pad the ciphertext by4

BLOB = FHEencrypt(2k) · ĥ′ + ĥ′, (9)

in which k is the number of bits of ĥ′, and obtains a blob
equivalent to ĥ′||ĥ′.

1A hash function of plaintext can be translated into the encryption of
the hash function of FHE ciphertext with google transpiler. Please refer to
https://research.google/pubs/pub50428/

2{h′
i} can be obfuscated in batch for quick process in Eq.8. Similar for

{V ′
i } in Eq.12 and {∆′

i} in Eq.15.
3Multiple LWE ciphertexts can be packeted into a ciphertext.
4Assume that the value of ĥ is less than half of the FHE domain. Similar

for V̂ in Eq.13 and ∆̂ in Eq.16

Afterwards, the oracle sends BLOB to the user for de-
crypting. The user uses his skU to decrypt the BLOB by

blob = FHEdecrypt(BLOB) (10)

and determines that the blob conformed to the format of
ĥ||ĥ. If the format is correct, the user returns ĥ. The oracle
can recover

hi = (ĥi − bi)/ai (11)

and the hash value h = {h0, h1, . . . , hn1} for proving the
authenticity of the encryption {V ′

i } of the certificate attributes.

Fig. 3. The Interactive Proof in CertOracle.

Interactive proof protocol: as shown in Fig. 3, the oracle
will interactive with the user using secure two-party compu-
tation based on secret sharing. The oracle holds the cert′ =
(ID, {Attr0, V

′
0}, . . . , {Attrn2

, V ′
n2
}, σ). Similar to the non-

interactive solution, the oracle generates two random arrays
A = {a0, a1, . . . , an2}, B = {b0, b1, . . . , bn2}, and encrypts
them to A′ = {a′0, a′1, . . . , a′n2

}, B′ = {b′0, b′1, . . . , b′n2
} using

pkU as Eq.7. The oracle obfuscates the encrypted attribute V ′

as
V̂ ′
i = a′i · V ′

i + b′i (12)

After obfuscating, the oracle can pack {V̂ ′
i } into V̂ ′ and

send the padded ciphertext

BLOB = FHEencrypt(2k) · V̂ ′ + V̂ ′, (13)

in which k is the number of bits of V̂ ′, to the user. The user
uses skU to decrypt BLOB according to Eq.10 and determines
that the blob is equivalent to V̂ ||V̂ , that is, equivalent to
{V̂i}||{V̂i}.

To calculate the digest value of the encrypted certificate,
the oracle and user jointly run 2PCsha based on boolean
sharing. According to Subsection III-B, the user provides
{V̂i} and the oracle provides A = {a0, a1, . . . , an2} and
B = {b0, b1, . . . , bn2} to complete the 2PCsha protocol.

{h0, . . . , hn1
} = 2PCsha

(V̂0 − b0
a0

, . . . ,
V̂n2

− bn2

an2

)
(14)

In the 2PCsha scheme, the deobfuscation circuit will se-
curely produce Vi = V̂i − bi)/ai in the internal wires of the
boolean circuit, and then perform the hash circuit to output the
hash value h for attribute proof.

www.ijacsa.thesai.org 800 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Fig. 4. The Workflow of Attribute Verification.

3) Phase III (On-Chaining): After recovering the hash
value h, the oracle can check the authenticity of the certificate
signature with the signature verification algorithm. If and only
if the recovered hash h matches the signature, the oracle de-
termines that {Attr0, V ′

0}, {Attr1, V
′
1}, . . . , {Attrn2 , V

′
n2
} in

ProofRequest are authentic and then uploads the encrypted
certificate to the blockchain.

After oracle generates the proof of the encrypted certificate,
smart contract checks if the user has certificate attributes on the
blockchain. If not, it creates a DID (Distributed IDentity) for
the user. If the user already exists, the smart contract verifies
whether the user has permission to perform the specified
operation through op such as Insert, updates or deletes the
corresponding attributes in the blockchain.

4) Phase IV (Attribute Verification): As the certificate
attributes are encrypted and stored in the blockchain, anyone
can query and verify user’s attributes publicly without compro-
mising the privacy of the attribute owner. Furthermore, in order
to meet the requirement of self-sovereign identity, querying
and verifying need the assistance of the owner as shown in
Fig. 4.

Technically, when the verifier needs to check whether the
value of the attribute Attrj is Sj , j = 0, 1, . . . , n3, n3 ≤ n2,
it will encrypt Sj to S′

j using the user’s public key pkU .
After that, the verifier generates two random arrays A =
{a0, a1, . . . , an3} and B = {b0, b1, . . . , bn3}, and retrieves the
encryption V ′

j of the attribute Attrj from the blockchain. To
securely authenticate the user, the verifier computes

∆̂′
i = ∆′

i · a′i + b′i (15)

where a′i, b
′
i are ciphertext of ai, bi according to Eq.7 and

∆′
i represents ith-bit of S′

j −V ′
j . Then the verifier packs {∆̂′

i}
into ∆̂′ and sends padded blob

BLOB = FHEencrypt(2k) · ∆̂′ + ∆̂′, (16)

in which k is the number of bits of ∆̂′, to the user.

After the user decrypts BLOB with private key skU ,
confirms that the decryption result conforms to the structure
of ∆̂||∆̂, and returns the obfuscated plaintext ∆̂ to the verifier,
the verifier deobfuscates ∆̂i as

∆i = (∆̂i − bi)/ai. (17)

The verifier confirms the selected attributes of the user if
and only if all the ∆i are 0 (The decision policies may depend
on the applications).

V. ANALYSIS OF CERTORACLE

As trust in identity certificates is transferred to the
blockchain, the life cycle of these certificates can be extended
to be the same as the lifetime of the blockchain. So these
certificates become long-term certificates. This section dis-
cusses how CertOracle meets the goals to enable long-term
self-sovereign certificates.

A. Privacy

In our protocol, the attributes of the certificate are en-
crypted bit by bit using TFHE. The attributes of on-chain
certificates are protected to guarantee user’s self-sovereign
over his identity. When CertOracle is running, oracle is semi-
honest. It wants to know the plaintext of encrypted attributes in
ProofRequest. Since oracle just gets pkU , it cannot learn the
plaintext Vi from {Attri, V

′
i }. Meanwhile, oracle can’t know

the plaintext of V ′
1 , V

′
2 , . . . , V

′
n2

through hash because of the
non-reversibility of hash function.

In the non-interactive solution, the security is based on
TFHE. There are many bit-wise operations in hash function.
With the public key pkU , the oracle of CertOracle can encrypt
the attributes of certificate bit by bit so that it can calculate
the hash value of the ciphertext message by itself. In the
interactive solution, the security of the scheme is based on
the GMW protocol. During 2PCsha, V̂i, A, and B are shared
between oracle and user using boolean sharing. Thus, they
look like uniformly distributed random data and this prevents
the leakage of the data. A semi-honest adversary corrupting at
most one of the participants can just observe secret shares of
other’s inputs. Meanwhile, the oracle can’t learn the internal
states of the circuit.

Moreover, we pad the output of Eq. 8, Eq. 12 and Eq. 15,
that is, repeat the plaintext before encrypting it. By letting the
decryptor check whether the decryption result meets a specific
format, our system is resistant to potential fault injection
attacks [19] from oracles and verifier.

B. Unforgeability

Before users encrypt their certificates, malicious users may
forge attributes by modifying the critical payload {Attri, V ′

i }
into another attribute’s ciphertext {Attri, Ṽ

′
i }. However, be-

cause of the collision resistance of hash function, it is impossi-
ble to find a Ṽ ′

i replacing the true data V ′
i to get the same hash.

In the non-interactive solution, malicious users may submit
forged ProofRequest but return true h when oracle sends h′

back to decrypt after FHEsha. This may result in fake attributes
being successfully verified. However, CertOracle obfuscates
the h′ by multiplying and adding a random number. It is

www.ijacsa.thesai.org 801 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

hard for malicious users to find out the relationship between
obfuscated data and real data, and then forge data to pass
verification. In the interactive solution, malicious users may
submit forged ProofRequest but provide true data in the
process 2PCsha. But they can’t achieve because of obfusca-
tion. In conclusion, CertOracle can effectively prevent forged
certificates from being uploaded.

C. Fine-Grained Verification

User can upload multiple certificates to the blockchain and
aggregate the attributes of certificates. When a user needs
to use some attributes from different certificates to meet the
requirement of a target application, he can construct a claim
about the attributes based on the on-chain certificate. The
on-chain attributes are encrypted and the verification process
requires user’s assistance which prevents all attributes from
being exposed. Meanwhile, CertOracle ensures that the user
attribute can be verified in a fine-grained manner, thereby
ensuring the principle of least leakage. In addition, when a
verifier checks the users’ attributes {Attri, V

′
i }, he obfuscates

the attributes to be verified. Since the malicious user does not
know the random array A,B, they cannot forge V̂ to pass
verification. However, verifiers may utilize deobfuscation to
learn attributes that do not need to be verified. This can be
mitigated by limiting the number of interactions between the
verifier and the same user.

VI. IMPLEMENTATION

The scheme is implemented and tested with an AMD
Ryzen 7 4800U CPU with 1.8 GHz and 4 GB RAM, run-
ning Ubuntu 20.04 LTS. The implementation adopts TFHE
library and ABY [21]. Although the scheme is suitable for
all secure hash algorithms, SHA256 is used as an example in
the implementation. In the experiments, the attribute value is
an integer, and one user may have certificates from different
CAs. As shown in Fig. 5, when a user clicks “Upload Cer-
tifiacte” button, the certificate will be uploaded to the chain
via CertOracle. When a user clicks “Create Claim” button,
an attribute verification process will be activated and the off-
chain certificates can be uploaded through Oracle and shown in
CertificateList. Thus, the user can select an on-chain certificate
and create a claim according to the service’s requirement.

A. TFHE Setting

In CertOracle, we encrypt the certificate bit by bit using
TFHE library. In the TFHE library, it needs at least one
FFT processor to run the library. We choose FFTW3, which
claims to be the fastest free FFT processor available, as the
component. Meanwhile, the library provides two types of keys:
cloud key and secret key. The cloud key is essentially a
bootstrapping key used for cloud to perform homomorphic
operations as well as encrypt constants, whereas the secret key
is for encrypting the initial message and decrypting. Although
addition and multiplication are not directly provided in TFHE
library, we can utilize logical operations to build addition and
multiplication of arbitrary bits.

In the TFHE library, the parameters are only implemented
for 80-bit and 128-bit of security. Both these parameters are
estimated using LWE estimator so that they can resist known

attacks integrated in LWE estimator, such as primal attack and
dual-lattice attack. As cryptographers recommend at least 128-
bit security in practice [22], we use the 128-bit security version
of parameter set in the implementation. However, the TFHE
library does not yet support ciphertext packing. Therefore we
ignore the realization of padding in the experiment. Instead,
the user directly decrypt the output of Eq. 8, Eq. 12 and Eq.
15 using FHEdecrypt.

B. Basic Bitwise Operators

In the SHA256, there are many additional operations in the
algorithm. The efficiency of CertOracle will be mainly limited
by three basic operators: adder, multiplier and obfuscator.

1) Bitwise Addition: Addition between two integers can be
implemented using two XOR gates, a AND gate and a MUX
gate. The adder is based on the simple logic equations

S = X ⊕ Y ⊕ V ′
in (18)

and
V ′
out = MUX(X⊕Y)(V

′
in, X · Y) (19)

where X and Y are binary, V ′
in is a bit that is carried in

from the one less significant bit, and V ′
out is a bit that is to

be carried to the next significant digit. In MUXX⊕Y (V
′
in, X ·

Y), the gate outputs V ′
in if X ⊕ Y == 1 and outputs X · Y

otherwise. As the addition in our protocol is 16-bit addition or
32-bit addition, a 16-bit addition costs about 1.33s.

2) Bitwise Multiplication: It can be implemented using a
combination of adder and multiplexer. The multiplexer, worked
as MUXB[i]

(0, A) with A and B are 16-bit, outputs 0 if i-
th bit of B is equal to 1 and outputs A otherwise. With the
multiplexer worked on 16-bit, it will run 16 times and then
perform addition every time. In short, the 16-bit multiplier
includes 16 multiplexers and 16 · 16 adders and takes about
11.457s on average which is expensive in time consumption.

3) Bitwise Obfuscation: With the bitwise adder and mul-
tiplier, we can evaluate the process of obfuscation. In both
proof solutions, we need to obfuscate the data to be decrypted
by users to prevent users from cheating. According to the
number of obfuscated data, the oracle generates A,B. After
the oracle selects the bytes to obfuscate, the data multiply
and add different random numbers to get the same amount
of obfuscated data. When deobfuscating, the oracle performs
one subtraction and division to recover the original data. In the
experiments, the obfuscation protocol takes about 127.939s to
randomly obfuscate 10 bytes.

C. Non-Interactive Proof Protocol

The non-interactive solution relies on TFHE library using
parameters with security level of 128-bit. Since the additions
modulo 232 in SHA256 need many gates, it is time-consuming
for the oracle to perform a complete SHA256. To improve the
efficiency of the protocol, a user may perform some steps of
SHA256, including message padding, dividing, and W table
construction. The user creates the W table for each block, and
then sends the W tables to the oracle. The oracle only needs
to perform the compression function.

www.ijacsa.thesai.org 802 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Fig. 5. The User-Interface of CertOracle.

The protocol is evaluated from two aspects. On the user
side, we evaluate the function of key generation, procedure
of partial SHA256(Message padding, Message dividing, and
W table construction), encryption of 32 bits, and decryption
of 16 bits. First, cloud key and secret key are generated in
KeyGen. Secondly, PartialSHA256(64bytes) is to perform
partial SHA256 calculation on 64bytes message and generate
two blocks message. Thirdly, the time of certificate encryption
is the time of multiple Enc(32bits) and the Dec(16bits) is a
part of FHEdecrypt. On the oracle side, the result of running
FHEsha with 64bytes and 128bytes messages are investigated.
For instance, FHEsha256(64Bytes) is a homomorphic com-
pression function for 64 bytes messages.

In the Table II for the evaluation results, the computation
time of FHEsha in Table III doesn’t include the time of
obfuscation. Meanwhile, since the time spent in FHEsha is
relatively large, the time on the user side is almost negligible.
In all, the total time of the solution is the sum of FHEsha time
plus obfuscation time.

TABLE II. EVALUATION OF NON-INTERACTIVE PROOF

Procedure Time Size
KeyGen 682.1ms 108.4MB / 108.4MB

PartialSHA256(64bytes) 0.041ms 2048bits
Enc(32bits) 0.42ms 0.077MB
Dec(16bits) 0.06ms 16bits

FHEsha(64bytes) 1834s 4.953MB
FHEsha(128bytes) 3668s 4.953MB

D. Interactive Proof Protocol

ABY is a framework for efficient mixed-protocol secure
two-party computation in the interactive solution. It combines
secure computation schemes based on arithmetic sharing,
boolean sharing, and Yao sharing. The boolean sharings are
used to evaluate functions represented as boolean circuits using
the GMW protocol. Though ABY allows developers to man-
ually specify which part of a function should be computed in

which sharing to achieve the best overall efficiency, we use the
boolean sharing part of ABY to test the present protocol. This
framework, using the semi-honest adversary model, works like
a virtual machine that abstracts secure computation protocols.
Thus, the implementation of CertOracle constructs 2PCsha
using GMW protocol [16] in the ABY.

Using an XOR-based secret sharing scheme to share a
variable, the boolean sharing can perform the evaluation on
NOT, XOR, AND, and others. While XOR gate and NOT
gate can be evaluated locally, AND gate is evaluated using
a precomputed boolean multiplication triple which reduces
the impact of the latency during the online time. Next, we
introduce the evaluation of the interactive solution in a local
area network(LAN) environment.

In the ABY framework, the OT (Oblivious Transfer) ex-
tension protocol uses few base-OTs to quickly compute a large
number of OTs so as to generate multiplication triples. As the
base-OTs are performed once when the connection between
the client and the server is established, their computation time
is omitted in the total time. As a result, the average run-time
is 377.595s and the communication overhead is 49,964 bytes.

The main part of 2PCsha comprises setup phase and
online phase. The setup phase includes the pre-computation
of some nonces generation for one-time pad operation and
the multiplication triples for the AND gates. The run-time
and communication overhead depend on the AND depth of
the circuit, that is the number of messages. The online phase
takes place after the setup phase is done and the inputs to
the circuit are supplied by both parties. During online phase,
two independent 2-bit messages have to be transmitted per
layer of AND gates. This interaction in online phase causes a
performance bottleneck, especially in high latency networks.
Meanwhile, the ABY framework implements load balancing
for the setup phase. As a consequence, the computation and
communication cost are equally distributed among the two
parties.

www.ijacsa.thesai.org 803 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

TABLE III. RUN-TIME AND COMMUNICATION OVERHEAD OF INTERACTIVE PROOF

Message Size
Time[ms] Communication[bytes]

Setup phase Online phase Total Setup phase Online phase Total

64 262.579 3,507.48 3,770.07 6,607,027 113,993 6,721,020

128 380.033 4,991.22 5,371.27 10,774,766 185,713 10,960,479

196 435.822 6,505.23 6,941.07 14,948,640 257,417 15,206,057

In the circuit of 2PCsha, the oracle and user will jointly
perform subtraction and division to deobfuscate data provided
by the user. Then both get the intermediate wires and run the
SHA256 circuit. On average, the run-time and communication
overhead in 2PCsha for different message sizes are shown in
Table III. And each part is also divided into the setup phase and
the online phase to display separately. Clearly, the interactive
solution has better performance than non-interactive solution.

VII. CONCLUSION

This paper presents CertOracle, a management scheme that
provides long-term and self-sovereign certificate to solve the
problem of traditional certificate expiration and privacy leak-
age. Specifically, CertOracle allows users to encrypt the private
data of the digital certificate by themselves, ensuring that the
encrypted certificate is uploaded to blockchain authentically
via oracle. Therefore, the blockchain-based identity system can
achieve privacy, unforgeability and fine-grained verification.
Meanwhile, the uploading method of the certificate can be
selected according to the latency of the network between the
oracle and the user. The implementation and experiments of
CertOracle show that both non-interactive proof and interactive
proof protocols can satisfy the requirements of the long-term
and self-sovereign certificates.

ACKNOWLEDGMENT

This work was in part supported by Guangdong KeyR&D
Plan2020 (No. 2020B0101090002), National Natural Science
Foundation of China (Grant No. 61932011), Guangdong
Basic and Applied Basic Research Foundation (Grant No.
2019B1515120010), Guangdong Key Laboratory of Data Se-
curity and Privacy Preserving (Grant No. 2017B030301004),
National KeyR&D Plan2020 (No. 2020YFB1005600), Na-
tional Joint Engineering Research Center of Network Se-
curity Detection and Protection Technology(Grant Nos.
2016B010124009), Guangdong Provincial Special Funds for
Applied Technology Research and Development and Trans-
formation of Important Scientific and Technological Achieve
(2017B010124002).

REFERENCES

[1] Barker E, Dang Q. Nist special publication 800-57 part 1, revision 4[J].
NIST, Tech. Rep, 2016, 16.

[2] Christopher Allen. The Path to Self-Sovereign Identity [EB/OL].
http://www.coindesk.com/pah-self-sovereign-identity, 2018-08-
19/2022-05-17

[3] Manu Sporny, Dave Longley and David Chadwick. Verifiable
Credentials Data Model 1.0, 19 Nov 2019. [Online]. Available:
https://www.w3.org/TR/verifiable-claims-data-model/. [Accessed: 27
Apr 2020]

[4] Heiss J, Eberhardt J, Tai S. From oracles to trustworthy data
on-chaining systems[C]//2019 IEEE International Conference on
Blockchain (Blockchain). IEEE, 2019: 496-503.

[5] Signing E U C. TLS-N: Non-repudiation over TLS Enabling Ubiquitous
Content Signing[J].

[6] Zhang F, Maram D, Malvai H, et al. DECO: Liberating web data
using decentralized oracles for TLS[C]//Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 2020:
1919-1938.

[7] D. Maram et al., ”CanDID: Can-Do Decentralized Identity with Legacy
Compatibility, Sybil-Resistance, and Accountability,” 2021 IEEE Sym-
posium on Security and Privacy (SP), 2021, pp. 1348-1366, doi:
10.1109/SP40001.2021.00038.

[8] Zhang F, Cecchetti E, Croman K, et al. Town crier: An authenticated
data feed for smart contracts[C]//Proceedings of the 2016 aCM sIGSAC
conference on computer and communications security. 2016: 270-282.

[9] Lerman L, Bontempi G, Markowitch O. Power analysis attack: an
approach based on machine learning[J]. International Journal of Applied
Cryptography, 2014, 3(2): 97-115.

[10] Oraclize: Understanding oracles. https://blog.oraclize.it/understanding-
oracles99055c9c9f7b, accessed 23 Sep 2017.

[11] Breidenbach L, Cachin C, Chan B, et al. Chainlink 2.0: Next steps in
the evolution of decentralized oracle networks[J]. 2021.

[12] Peterson J, Krug J. Augur: a decentralized, open-source platform for
prediction markets[J]. arXiv preprint arXiv:1501.01042, 2015, 507.

[13] Delignat-Lavaud A, Fournet C, Kohlweiss M, et al. Cinderella: Turning
shabby X. 509 certificates into elegant anonymous credentials with the
magic of verifiable computation[C]//2016 IEEE Symposium on Security
and Privacy (SP). IEEE, 2016: 235-254.

[14] Pittalia P P. A comparative study of hash algorithms in cryptography[J].
International Journal of Computer Science and Mobile Computing,
2019, 8(6): 147-152.

[15] Lindell Y, Riva B. Cut-and-choose Yao-based secure computation in
the online/offline and batch settings[C]//Annual Cryptology Conference.
Springer, Berlin, Heidelberg, 2014: 476-494.

[16] Schneider T, Zohner M. GMW vs. Yao? Efficient secure two-party
computation with low depth circuits[C]//International Conference on
Financial Cryptography and Data Security. Springer, Berlin, Heidelberg,
2013: 275-292.

[17] Pullonen P. Actively secure two-party computation: Efficient beaver
triple generation[J]. Instructor, 2013.

[18] Boura C, Gama N, Georgieva M, et al. Chimera: Combining ring-lwe-
based fully homomorphic encryption schemes[J]. Journal of Mathemat-
ical Cryptology, 2020, 14(1): 316-338.

[19] Chillotti I, Gama N, Goubin L. Attacking FHE-based applications by
software fault injections[J]. Cryptology ePrint Archive, 2016.

[20] Chillotti I, Gama N, Georgieva M, et al. TFHE: fast fully homomorphic
encryption over the torus[J]. Journal of Cryptology, 2020, 33(1): 34-91.

[21] Demmler D, Schneider T, Zohner M. ABY-A framework for efficient
mixed-protocol secure two-party computation[C]//NDSS. 2015.

[22] Lenstra A K. Key length. Contribution to the handbook of information
security[J]. 2004.

www.ijacsa.thesai.org 804 | P a g e

