An Efficient Meta-Heuristics-Feature Fusion Model using Deep Neuro-Fuzzy Classifier

Sri Laxmi Kuna¹
Research Scholar, Department of CSE
Koneru Lakshmaiah Educational Foundation
Vaddeswaram, Guntur, A.P, India

Dr. A.V. Krishna Prasad²
Supervisor, Department of CSE
Koneru Lakshmaiah Educational Foundation
Vaddeswaram, Guntur, A.P., India

Abstract—Diabetic Retinopathy (DR) is the major cause of the loss of vision among adults worldwide. DR patients generally do not have any symptoms till they reach the final stage. The categorization of retinal images is a remarkable application in detecting DR. Due to the level of sugar available in the blood, the categorization of DR severity becomes complicated to determine the grading level of the damages caused in the retina. To rectify these challenges, a new DR severity classification model is proposed for detecting and treating the DR. The main objective of the proposed model is to classify the severity grades that occurred in the retinal region of the human eye. Initially, gathered retinal images are enhanced and the blood vessel segmentations are done by utilizing the optic disc removal and active contouring model. The abnormalities such as “microaneurysms, hemorrhages, and exudates” are segmented by utilizing Fuzzy C-Means Clustering (FCM) and adaptive thresholding. Then, the segmented images are given to “VGG16 and ResNet”, in which the two different feature sets are acquired. Then, these features are added to obtain the second set of features as F2. Again, the enhanced images act as an input to the “VGG16 and ResNet”, which are attained as the first feature set as F1. In the feature concatenation phase, the resultant of two features is used for feature fusion with the aid of weights parameter that is optimized by Modified Mating Probability-based Water Strider Algorithm (MMP-WSA), where the feature fusion is carried out using the mathematical expression. Finally, the multi-class severity classifications are done by using the Optimized Deep Neuro-Fuzzy Classifier (ODNFC), where the optimization of hyper-parameters is done by the proposed MMP-WSA. Thus, the experimental results of the proposed model have been acquired by the precise segment of the abnormalities and better classification results regarding the grade level.

Keywords—Multi-class severity classification; diabetic retinopathy; modified mating probability-based water strider algorithm; optimized deep neuro-fuzzy classifier; fuzzy clustering model; adaptive thresholding; optic disc removal; image enhancement

I. INTRODUCTION

The retinal image evaluation is a diligent investigation platform in Diabetic Retinopathy (DR). It is the major cause of serious eye difficulties or even loss of sight in developed countries [9]. The retina mainly comprises of the optic disc, fovea, and blood vessels. A few basic symptoms of DR are “sudden changes in vision, eye pain, double vision, Eye Floaters, blurred vision/fluctuating vision and Shadow in Field of View (FOV) and Spots” [11]. The DR is considered one of the deep-rooted visual problems that tend to vision loss if it is not identified on time [15]. Early detection by utilizing regular periodic evaluations is a determinative factor in declining the hazard of serious visual deterioration [16]. The major lesions present in the DR are referred to as exudates, cotton wools, hemorrhages, and Microaneurysms. Hence, the identification of “Microaneurysms and hemorrhages” plays a significant role in the automatic detection of retinopathy [19]. Furthermore, the determination of this disease needs a huge amount of experience and adequate knowledge from doctors. Also, because of the presence of inadequate ophthalmologists and the lack of resources, the screening of patients with Diabetes Mellitus (DM) is considered to be complicated [20], which leads to loss of vision [12]. The DR is broadly categorized into a couple of sections known as proliferative and non-proliferative. The non-proliferative refers to the weakening of blood vessels inside the retina, which causes “leakage of fluids and blood on the retinal surface” due to DR [13]. This leakage minimizes the retinal sensitivity, while it is wet and swollen. The proliferative refers to the developed levels of DR, which creates neovascularization, a creation of bloody vessels newly and naturally in the variety of microvascular network forms that originate on the retina internally [14].

In automated DR diagnosis and segmentation, soft computing models play a remarkable role. Models for DR diagnosis and classifications are genetic algorithms, neural networks, and evolutionary algorithms [21]. Early detection of diabetic retinopathy can prevent the loss of vision in future [10]. Other than automated DR categorization, the fuzzy classifiers are modeled to be translucent with steps of categorization and logic descriptions that are detectable and understandable [22]. However, it needs a huge amount of labeled data for monitoring the training networks. The categorization of retinopathy images is considered a difficult task and so many experienced clinicians are required for the manual interpretation of a high number of retinopathy images. Because of this, Fuzzy C-Means Clustering (FCM) is considered [23]. The fuzzy methodology supports providing enhanced image representations and also in enhancing the analysis performance and providing a more dependable system for screening [24]. The screening of the DR disease at the early stage itself is complicated and so the “Neuro-Fuzzy Hybridization” provides a synergistic intellectual system that joins the human-like reasoning model of a fuzzy system with a neural network’s learning structure. The Neuro-Fuzzy hybrids are broadly termed “Neuro-Fuzzy Systems (NFS) or Fuzzy Neural Networks (FNNs)” [25]. Thus, the latest investigators
aim on establishing a new DR diagnosis model through deep learning approaches.

The major offerings of this paper are as follows:

- To develop a novel DR severity classification approach based on deep learning approaches for categorizing severities caused by DR, to enhance the early disease diagnosis rate, and to reduce the fatality of patients regarding vision loss.

- The image enhancement process utilizing RGB channels and processing segmentation in two stages known as “blood vessel segmentation and abnormality segmentation” by utilizing the “optic disc removal, adaptive thresholding, FCM and active contouring” model to improve the quality of segmented images.

- To establish the weighted optimal feature selection process in two models by choosing the remarkable features utilized with weight function by developing a Modified Mating Probability-based Water Strider Algorithm (MMP-WSA) for limiting the features and enhancing the performance of categorization.

- To develop an ensemble known as an Optimized Deep Neuro-Fuzzy Classifier (ODNFC), for classifying the DR severity with parameter optimization such as “hidden neurons of DNN, the learning rate of DNN, EXP-bound in fuzzy and weights” are optimized with the developed MMP-WSA for obtaining improved validity in DR categorization.

- To establish a new meta-heuristic algorithm known as MMP-WSA for mounting the weighted optimal feature selection by optimizing the weight function and enhancing the classification accuracy by optimizing the hyper-parameters of developed ODNFC.

The contribution of this research work is as follows. In Section II, the relevant works and their related difficulties are briefed. In Section III, the proposed DR diagnosis model by utilizing ODNFC and image enhancement processing is elaborated. In Section IV, the blood vessel and abnormality segmentation are discussed. In Section V, feature extraction and optimal weighted feature selection for DR diagnosis are explained. In Section VI, the developed MMP-WSA and the developed ODNFC are briefed. In Section VII, the experimental results are discussed. In Section VIII, the proposed DR diagnosis is concluded.

II. LITERATURE SURVEY

A. Related Works

In 2020, Vaishnavi et al. [1] established a new classification approach based on segmentation to categorize the ‘DR images’, effectively. The proposed approach comprised three major processing known segmentation, feature selection, preprocessing, and categorization. The proposed model has undergone pre-processing utilizing “Contrast-Limited Adaptive Histogram Equalization (CLAHE)”. The “AlexNet” model was utilized for feature extraction to collect the most important features. Finally, the categorization of DR images was done by utilizing the SoftMax layer. The experimentation results represented that the established approaches have achieved the maximum categorization rate.

In 2021, Bhardwaj et al. [2] proposed a system known as Hierarchical Severity Level Grading (HSG) for the identification and categorization of disorders in DR. The images of the retinal fundus available in the developed HCG system were classified into grades 0, 1, 2, 3 based on the count of anomalies, hemorrhages, and microaneurysms in the images of the fundus. The complications of the “landmark segmentation of retinal images, DR severity grading and DR retinal discrimination” have been notified in this paper contributing to the proposed model. For the categorization of DR and non-DR images, the developed systems have attained greater accuracy with SVM [17] and KNN [18] classifiers. The hierarchical inequities into more grades of harmfulness in disease have resulted in a certain accuracy range for the KNN classifier. The HCG system attained a remarkably minimum time for computation when compared with other state-of-art models.

In 2022, Vasireddi et al. [3] established an automated DR identification screening model that was needed to enhance the detection speed and accuracy of the diagnosis. Proper treatments have been given to patients to prevent blindness when the complication levels of DR were detected in earlier stages accurately. The utilization of the optimization algorithm along with the required parameters for tuning enhanced the model’s performance. The experimentation results have indicated that the proposed model attains superior accuracy.

In 2020, Gharaiabe et al. [4] proposed soft computing models for the diagnosis of Hemorrhages and microaneurysms in fundus images. This process comprised of several steps “such as i) pre-processing, ii) blood vessel segmentation, iii) blood vessel removal, iv) fovea localization, v) fovea elimination, vi) feature extraction, vii) feature selection and finally viii) detection of Diabetic Retinopathy disease” known as Hemorrhages and microaneurysms. It enhanced the performance of precision, accuracy, specificity, and sensitivity and the diagnosis of the DR easier and faster and the results were efficient and provided effective outcomes in categorization models.

In 2022, Kuna Sri Laxmi et al. [5] employed various CNN architectures used to classify the severity levels of Diabetic Retinopathy. In 2022, Das and Saha [6] proposed a technique on the basis of a genetic algorithm to detect the CNN parameter automatically and further classification of DR. This approach has comprised a series of “pooling and convolution layers” for the feature extraction. The hyper-parameters in the pooling layer, convolution layer, kernel count, and size of the kernel were analyzed by utilizing the genetic algorithm. The proposed model was validated on a normally available dataset known as “The Messidor dataset”. Finally, the SVM utilized for DR categorization has attained greater accuracy than other available models on the basis of a genetic algorithm.

In 2020, Luo et al. [7] aimed on embedding a self-monitored model into an un-monitored deep learning approach. Remarkably, it has developed a “Self-supervised Fuzzy Clustering Network (SFCN)” along with a module for feature learning, fuzzy self-monitoring, and reconstruction. The
reconstruction approach and feature learning have assured the
capacity of the network and the fuzzy self-monitoring module
was in charge of giving more training paths for the entire
network. To analyze the efficiency of the proposed model, it
has established the network on three datasets, in which the
results described the good performance of the un-monitored
image categorization task.

In 2020, Wang et al. [8] proposed a hierarchical
architecture to consolidate the common inter-relationship in-
between the features and severity levels of DR. The proposed
model was analyzed on two individual testing elements by
utilizing the “receiver operating characteristic analysis,
quadratic weighted Cohen's kappa coefficient and precision-
recall analysis”. The experimentation outcomes have
demonstrated that the proposed model has enhanced the
performance of DR severity in comparison with other deep-
learning approaches and attained a performance close to the
experienced ophthalmologists during the detection of DR
severity level.

B. Problem Statement

Diabetic Retinopathy is one of the major diseases in
humans, which affects the retinal region of the eye. In the
medical industry, there is no early predicted symptom for
retinopathy. This disease is caused in two ways: the initial
stage is NPDR and the most affected phase is PDR. The
remarkable symptoms are leaking blood vessels, swelling of
the retina, exudates, damage to nerves, and so on. Hence, the
detection and diagnosis of retinopathy become the most
challenging task. The screening is targeted at an affected
individual that is highly unpredictable. CLAHE and AlexNet
[1] enhance the performance in terms of accuracy, sensitivity,
and specificity. But, the last layer of AlexNet produces a
multiclass classification problem. Gray Level Co-Occurrence
classification of the severity grade level and increase the
accuracy. However, it does not consider blood vessel bleeding
and neovascularisation problem. Also, due to retinal
detachment, acute blindness occurs. Deep Fuzzy Neural
Network (DFNN) and Lion Optimization Algorithm (LOA) [3]
provide a better severity classification. But it has more
time computation complexity. PSO and fuzzy membership [4]
obtains higher accuracy and extracts the blood vessels
precisely. However, it mitigates the performance since it has
fewer quality data. Fuzzy Neural Network [5] improves the
classification rate. Moreover, the limitation is to need more
numbers of rules to perform in a better way. The Genetic
Algorithm and SVM [6] provide higher accuracy for different
datasets. But it possesses structural and computational burdens.
Fuzzy Clustering [7] yields a higher accuracy value and does
not contain most qualitative criteria. However, it has an
imprecision dependency on the model. Multi-task DNN [8]
obtains less error and more accuracy. Moreover, due to various
confidence levels, it may get inaccurate results. To overcome
the mentioned challenges, it is provoked to establish a new
approach for diagnosing diabetic retinopathy disease.

III. ARCHITECTURAL VIEW OF MULTI-CLASS SEVERITY
CLASSIFICATION OF DIABETIC RETINOPTHY

A. Proposed DR Classification Model and Description

A new DR severity classification model is developed with
a weighted feature fusion model and deep learning approach
depicted in Fig. 1. In this model, the DR images data set is
considered from the standard data set DIARETDB1 as input.
These images are preprocessed by four steps enhancement
process such as R, G, and B channel separation, entropy-based
spatial filtering, fuzzy-based weight adjustment, and
concatenation of R, G, and B channels. Then, the blood vessel
segmentation is carried out by utilizing optic disc removal and
active control using enhanced images. The abnormality
segmentation is done with segmented images by FCM and
adaptive thresholding. Then, the feature extraction phase is
done by using a couple of models. In model 1, the obtained
enhanced images are provided as the input to VGG 16 and
ResNet, and the required set of features is extracted as feature
set 1. In model 2, the abnormality-segmented images data set is
provided as the input to “VGG 16 and ResNet” and the
required set of features is extracted as feature set 2. For both
feature set 1 and 2, the feature fusion is carried out for obtaining
“fused features with optimized weight function using the
developed MFP-WSA” to obtain optimal weighted fused
features. Finally, the DR severity classification is done by
using developed ODNFC using the weighted fused features, in
which the parameters such as “hidden neurons of DNN, the
learning rate of DNN, EXP-bound in fuzzy and weights” are
optimized by utilizing the developed MFP-WSA. At last, the
DR severity-based outcome is obtained as four categories
of DR known as normal, earlier, moderate and severe for the
proposed DR severity classification model.

Fig. 1. Developed Multi-Class DR Severity Classification Model with
Adaptive Weighted Feature Fusion and Deep Learning Approach.

B. Novel Image Enhancement Process

The images for input are taken from
“https://www.it.lut.fi/project/imageret/diaretdb1/”. It is a public
database for the process of benchmarking the DR severity
classification from digital images. The collected database
images are denoted as \(IM^m_\text{COL} \), where \(m = 1, 2, \cdots, M \) and
the total image count is represented as \(M \). The \(IM^m_\text{COL} \)
is provided as input for the process of image enhancement in the
proposed DR severity classification. The image enhancement process is carried out as follows:

- Separation of RGB channels: The input images $IMG_{c}^{col.}$ are pre-processed for enhancing the quality of the image by removing unwanted elements. The separation of the R, G, and B channels is utilized for the evaluation of elements of primary colors of each region of an image. Hence, the enhanced image obtained after the separation of R, G, and B channels is denoted as ENH_{c}^{opt}.

- Applying entropy-based spatial filtering: In this step, the RGB-separated images ENH_{c}^{opt} are given as input. The spatial filtering on the basis of entropy is created for global contrast enhancement of the images. Hence, a single entropy function is applied to the entire image. The algorithm gives contrast enhancement without remarkable deformation on the output image. Thus, the enhanced image obtained from the spatial filtering is represented as ENH_{c}^{img}.

- Concatenation of RGB channels: Finally, the separated images are concatenated after removing all kinds of unwanted elements from the image channels. Thus, the quality of the images is enhanced for further processing. Hence, the enhanced image obtained is represented as ENH_{c}^{img}.

IV. ENHANCED DIABETIC RETINOPATHY SEGMENTATION MODEL THROUGH NEW ABNORMALITY SEGMENTATION

A. Optic Disc Removal

The optical disc is removed from enhanced images ENH_{c}^{img} of the data set for further processing. In the process of optic disc removal for the developed DR severity classification, the enhanced images ENH_{c}^{img} are provided as the input, and further processing is made. For removing it, the edge-enhanced image on the basis of the curvelet is opened by using a disk-shaped element, which is eliminated from the inverted equalization image. The matching filtering will intensify the visibility of blood vessels present in the enhanced image. The morphological operation is carried out for the processing of optic disc removal. Thus, the segmented image obtained after the process of optic disc removal is represented by SEG_{c}^{opt}.

B. Active Contour-based Blood Vessels Segmentation

In the process of blood vessel segmentation, the optic disc removed image SEG_{c}^{opt} is provided as input to segment the blood vessel using active contour. The active contour is a technique of segmentation that utilizes energy forces and difficulties to split the pixels’ interest from images for later evaluation and processing. Active contouring is the methodology of collecting the degradable structures of an image with problems and energy forces for the process of segmentation of blood vessels. The contour model determines the borders of the image elements to create a contour. The curvature of the structure is identified by utilizing various methodologies that comprise internal and external forces. The energy functions are always interrelated to the curve of images. The contour blood vessel segmentation constraints for available images are identified on the basis of requirements. The needed structure is obtained by determining the energy function. A gathering of points that position a contour is utilized to define deformations in contour. Thus, the blood vessel segmented image obtained from active contouring is represented as SEG_{c}^{act}.

C. Abnormality Segmentation by Fuzzy Logic-based Adaptive Thresholding

The abnormality segmentation of the developed DR severity classification is carried out on the basis of two models known as FCM and Adaptive Thresholding on the basis of fuzzy logic and it is briefed below.

FCM [31]: Here, the blood vessel segmented images are provided as input and that is segmented into five classes, which are remarked as the blood vessel, the outer area of the eyeball, the healthy area in the background of the retina, cotton wools and hard exudates. In the processing of clustering, the input images are subdivided into 3×3 non-overlapping regions. Then, for each region, the average intensity is computed. There exists p total number of 3×3 regions present in the image.

Suppose we have a collection of N data (x_i; $i = 1, 2, 3,\ldots,N$) to be segmented into five fuzzy sets. There will be a membership matrix em of size $5XN$.

Then, the value of entries of the matrix em is initialized randomly between 0 and 1 while keeping the sum of each column of em to 1 and computed on the basis of the following Eq. (6)

$$\sum_{a=1}^{h} em_{ab} = 1 \forall b = 1,2,\ldots,p$$

(6)

The FCM divides the data into five categories as h and then determines the center of cluster for every group iteratively during the minimization of cost function on the dissimilarity. Thus, the function of dissimilarity is determined on the basis of the following Eq. (7).

$$B = \sum_{a,b=1}^{h} (em_{ab})^{w_{e}} \cdot ed_{ab}^{2}$$

(7)

Here, the term em_{ab} denotes the entries of em, ed_{ab} indicates the Euclidean distance between a^{th} cluster h_a, b^{th} is the data point, and we represents the weighting exponent. Then, the cluster center and the entries are upgraded by utilizing the following Eq. (8) and Eq. (9)

$$Cl_{b} = \frac{\sum em_{ab} y_{ab}}{\sum em_{ab} w_{e}} \forall b = 1,2,\ldots,C$$

(8)

$$em_{ab} = \frac{1}{\sum_{c=1}^{C} (ed_{ab})^{2}} \frac{(ed_{ab})^{2}}{w_{e}}$$

(9)
The output from the FCM is obtained in the form of non-overlapping regions indicating five clusters. The abnormality segmented image obtained from FCM is denoted as SEG_{F}^{ENH}. Adaptive Thresholding [32]: The segmented image SEG_{F}^{ENH} obtained from FCM is provided as input and further processing is made. This method generates local thresholds for various areas of images. This is also called the dynamic threshold. By utilizing thresholding, the value of pixels of the images can be categorized from the background. The “adaptive thresholding algorithm” is processed by determining the weighted averages available locally in the image by utilizing the recursive filters. Thus, by using adaptive thresholding, the objects can be separated from the background and also the boundaries are separated. This is attained by generating the surface of the threshold so that the threshold value will be available for each pixel. Hence, the adaptive thresholding is computed based on Eq. (10).

$$Th_{gaussian} = \frac{1}{\sqrt{2\pi}\sigma_{a,b}} e^{-\frac{(a-b)^2}{2\sigma_{a,b}^2}}$$ \hspace{1cm} (10)

Here, the term a denotes the column pixel index, and b indicates the row pixel index σ denotes the standard deviation and μ represents the averages. The abnormality segmented image obtained from adaptive thresholding is indicated as SEG_{abn}. The process of abnormality segmentation based on FCM and adaptive thresholding is indicated in Eq. (10).

VGG 16 [29]: In this, the enhanced images ENH_{c}^{img} and segmented images SEG_{c}^{abn} are provided as input. It is composed of three divisions named “convolutional layer, totally connected layer, and pooling layer”. It also consists of a total of 10 layers that are different from the pooling layers. It has a developed network design. For this, the input size of an image is fixed as “224 × 224 pixels” and the size of the filter in the obtained image is fixed at “3 × 3 pixels”. The output division in the VGG 16 is named “SoftMax”. The gathered deep feature element from the VGG-16 is represented as $FESEG_{deepVGG16}$ and $FEEN_{deepVGG16}$ from ENH_{c}^{img} and SEG_{c}^{abn}, respectively.

ResNet-150 [29]: For this, the selected features of enhanced images ENH_{c}^{img} and segmented images SEG_{c}^{abn} are provided as input for the ResNet model. It is a developed form of the CNN model. The ResNet gives the shortest route between the divisions to resolve the problems. It also eliminates the level of dispersion, which occurs at the time of complex generation of the network. Moreover, the “bottleneck blocks” are used to fasten the learning process in the ResNet mode. The extracted features from the ResNet model are denoted as $FESEG_{deepRN}$ and $FEEN_{deepRN}$ from ENH_{c}^{img} and SEG_{c}^{abn}, respectively.

B. Optimal Feature Selection: Model 1

In model 1, the enhanced images ENH_{c}^{img} are provided as input for the feature extraction with VGG 16 and ResNet. Then, by utilizing developed MMP-WSA, the extracted features such as $FEEN_{deepRN}$ and $FEEN_{deepVGG16}$ are optimized for obtaining optimal deep features denoted as F_{1}. Total counts of 10 features are extracted from model 1.

C. Optimal Feature Selection: Model 2

In model 2, the abnormality-segmented form of images is fed as input and the feature element extraction is done by utilizing two models known as VGG 16 and ResNet. Then, by utilizing the developed MMP-WSA, the selected segmented features such as $FESEG_{deepRN}$ and $FESEG_{deepVGG16}$ are optimized for obtaining optimal deep features denoted as F_{2}. Total counts of 10 features are extracted in model 2.

D. Proposed Feature Fusion

The obtained optimal features F_{1} and F_{2} from model 1 and model 2 are then fused for obtaining optimal fused features. The weight function is considered during the process of feature fusion, which is optimized using the developed MMP-WSA, and the fusion process takes place as shown in the following Eq. (11).

$$F_{fus} = [F_{1} * W + (1 - W) * F_{2}]$$ \hspace{1cm} (11)

Here, the terms F_{1} and F_{2} indicate the optimal features sets from model 1 and model 2, represent the optimized weight function and denote the feature fusion.
VI. DIABETIC RETINOPATHY SEVERITY CLASSIFICATION BY OPTIMIZED DEEP NEURO FUSSY CLASSIFIER

A. Proposed MMP-WSA

The developed MMP-WSA algorithm is utilized and implemented in the DR severity classification approach for optimization of parameters such as “hidden neurons of DNN, the learning rate of DNN, EXP-bound in fuzzy and weights” in the feature fusion phase for enhancing the DR classification performance. WSA [26] is selected in this model since it attains efficient optimization in performance issues. In the stage of mating, the probability of attraction is transferred to adaptive or dynamic instead of static, which gives effective convergence performance, but there exist certain limitations in WSA such as the evaluation count is not an acceptance function of the internal elements and so there exists potential complexity in programming languages, which cannot help the global variable to control the total function and evaluation count. Due to the presence of such difficulties in conventional WSA, it is essential to propose an enhanced WSA named MMP-WSA for improving the DR severity classification. In this MMP-WSA, the probability of mating is updated with an adaptive concept, whereas in the traditional algorithm, it is updated with a random parameter.

WSA is an algorithm designed on the basis of feeding mechanism, mating style, territorial behavior, and succession of water strider bugs. The step involved in the algorithm is briefed below.

Initial Birth: The creation of candidate solutions randomly in the searching platform as indicated in Eq. (12) below.

\[Ws^0_j = l_b + rand(u_b - l_b) : j = 1,2,\ldots,NWs \] (12)

Here, the initial positions \(Ws \) are analyzed by utilizing an objective function to compute the fitness. The term \(u_b \) and \(l_b \) indicates the lower and upper bound of variables, \(Ws^0_j \) denotes the initial positions of the \(j^{th} \) \(Ws \) in the searching space, \(NWs \) indicates the population size and \(rand \) represents the random number that lies between \([0,1]\).

Territory Establishment: For introducing \(ni \) count of territories, the \(i^{th} \) member of every group is allocated to the \(i^{th} \) territory \((i=1,2,\ldots,ni) \). Hence, the number of \(Ws \), nesting in every territory is equal to \(\frac{NWs}{ni} \) and \(\frac{NWs}{ni} \) count of groups is generated orderly and \(Ws \), are sorted on the basis of fitness. The territory locations with good and bad fitness are obtained as female and male, respectively.

Mating: The male \(Ws \) gives a “ripple to the female” \(Ws \) for the process of mating. Since the female side response is not clear, the mating probability \(Pr \) is considered for attracting the female. In the conventional algorithm, \(Pr \) is fixed in the constant range of 0.5, which degrades the performance of an algorithm. Hence, in the developed MMP-WSA, the mating probability \(Pr \) updated on the basis of upper-bound and lower bound based concepts as shown in Eq. (13) below.

\[Pr = \left[\left(me(R) - me(l_b)\right)/\left(me(u_b) - me(l_b)\right)\right]*(1-0)+0 \] (13)

Here, the term \(me(l_b) \) denotes the mean of the lower bound and \(me(u_b) \) indicates the mean of the upper bound. Then, the value of \(R \) is computed by the following Eq. (14).

\[R = Ws^t_j - Ws^{t+1}_j \] (14)

Then, the male location is upgraded in Eq. (15).

\[Ws^{t+1}_j = \begin{cases} Ws^t_j + T.rand & \text{if mating happens} \\ Ws^t_j + T.(1 + rand) & \text{otherwise} \end{cases} \] (15)

The length \(T \) is computed by Eq. (16).

\[T = Ws^t_j - Ws^{t+1}_j \] (16)

Here, the term \(Ws^{t-1}_j \) and \(Ws^{t+1}_j \) indicates the male and female \(Ws \) in \((s-1)^{th}\) cycle.

Feeding: The process of mating requires a huge amount of energy for male water sliders \(Ws \) searches the food later than the process of mating. The access of objective function for the presence of food is carried out. If the value of fitness is better than the prior condition, the male \(Ws \) has identified food in a new location, or else it was not. In the further circumstance, the male \(Ws \) transport to the superlative \(Ws \) of the pond \([Ws_{tmp}] \) for founding the food, which is computed in Eq. (17).

\[Ws^{t+1}_j = Ws^t_j + 2rand*(Ws^t_{tmp} - Ws^t_j) \] (17)

Fatality and Progression: If the chap \(Ws \) could not identify food in a new location, then it will die and another male \(Ws \) will replace the position of the old one. This process is expressed in Eq. (18).

\[Ws^{t+1}_j = l_b + rand*(u_b - l_b) \] (18)

Here, the term \(u_b \) and \(l_b \) indicates \(Ws \) location for the maximum and minimum values inside the \(i^{th} \) territory.

WSA Execution: If the circumstance of the termination is not satisfied, the baseline approach will send back to the step of mating again for creating a new disk. Here, the “Maximum Number of Function Evaluation (MaxNfe)” is represented as the execution condition. The pseudo-code of the developed MMP-WSA is indicated in Algorithm 1.

Algorithm 1: Pseudo Code of Developed MMP-WSA

```
Initialize random population
Compute the value of fitness Ws
While (execution circumstance is not satisfied) do
Introduce ni region count and allow the Ws
For (every region) do
Update the mating probability Pr
The male gives “mating ripples” and the chosen female predicts the reply to attract the female by Eq. (13)
Update the location on the basis of the female response with Eq.
```
(15) Analysis of the new location to search for foodstuff for compensate the obsessive power during the process of mate
If (the male could not identify the foodstuff) then
Searching for foodstuff sources and reaching the territory of the food-rich region by Eq. (16)
If (male could not identify the foodstuff again)
The starving male will be died due to malnourishment
Another male is replaced in the place of died one by Eq. (18)
End
End
Return W_{opt}

The flowchart of the projected MMP-WSA is represented in Fig. 3.

![Flowchart of Proposed MMP-WSA](image)

Fig. 3. Flowchart of Proposed MMP-WSA.

B. Optimized Deep Neuro-Fuzzy Classifier

The obtained optimal fused features are given as input for the process of “DR severity classification” by utilizing the developed ODNFC. For the process of image analysis, a rule-based system is modeled by fuzzy network operation. Fuzzy logic is a type of many-valued logic whose variables’ truth values can be any real number between 0 and 1. To enhance this operation, the computation of “Single-Input-Multi-Output (SIMO)” is carried out based on Eq. (19).

\[
\begin{align*}
 y \text{ is } A_{n}, & \quad \text{then} \quad f_{n_{i}}(y), f_{n_{2}}(y), \ldots, f_{n_{N}}(y) = 1, 2, \ldots, N
\end{align*}
\]

(19)

Here, the term y represents the input variable from the discourse universe (Y), N is denoted as count of rules, n indicates the output count, A_{n} denotes the fuzzy set for n^{th} rule determined over (Y) and $f_{n_{i}}$ implies the output of n^{th} rule, the outputs are considered as non-linear functions of the inputs. For the process of analysis of sub-regions, the universe of discourse is considered as the sub-region of the considered image. Also, the set of fuzzy is considered as the remarkable pattern. Lastly, the membership grade is considered as the similarity between the provided pattern and the sub-regions. Every fuzzy rule present in the rule set is entrapped in various patterns present in the image. Hence, the rewrite equation is obtained as shown in Eq. (20).

\[
\begin{align*}
 \begin{bmatrix}
 f_{1_{i}}(y) \\
 f_{2_{i}}(y) \\
 \vdots \\
 f_{N_{i}}(y)
 \end{bmatrix}, n = 1, 2, \ldots, N
\end{align*}
\]

(20)

Thus, the proposed model considers SIMO-based system, where the provided image is given as the individual input, the n^{th} rule attracts the pattern in the images of sub-regions, every output represents a non-linear function against the sub-regions for n^{th} pattern, and the output of de-fuzzification is affected by joining of the specific patterns by fuzzy set in every image rules. The operation of fuzzy interference involves the following steps:

1) **Computing the membership**: For every rule, the membership grade (M_{n}) of the matrix is computed, where every element present in the matrix indicates identity in between the sub-regions present in the image and fuzzy set (A_{n}). The membership values are allotted at the range of $[0,1]$.

\[
M_{n} = \left[m_{i_{n}} = [a_{i}, A_{n}] \right] \quad (21)
\]

Here, the term a_{i} is the i^{th} image sub-region and $m_{i_{n}}$ is the item in M_{n}.

2) **Computing firing strength**: The firing strength of every rule is determined by membership grade normalization matrix grade as represented in Eq. (22).

\[
\overline{M}_{n} = \frac{M_{n}}{\sum_{x=1}^{N} M_{x}} \quad (22)
\]

3) **Computing final output**: The final outputs of the system rules are provided as shown in Eq. (23) below.

\[
w_{i} = \sum_{n=1}^{N} w_{n_{i}} = \sum_{n=1}^{N} \overline{M}_{n_{i}} f_{n_{i}}(y) \quad (23)
\]

Here, the term w_i denotes the output while $w_{n_{i}}$ indicating the output of n^{th} rule. From the categorization by developed ODNFC, the output is obtained in the form of severe, moderate, normal, and abnormal DR.

The proposed approach focuses on the main objective function for parameter optimization in developed DR severity classification. The parameters considered for the optimization are “hidden neurons of DNN, learning rate of DNN, EXP-bound in fuzzy and weights of fused features”. The objective function is computed in Eq. (24).

\[
OBFN = \arg \max_{\left[HN_{DV}, LR_{DNN}, EX_{Fuzz}, WE \right]} \left(ACCU \right) \quad (24)
\]

Here, the term HN_{DV} indicates the hidden neurons of DNN, LR_{DNN} denotes the learning rate of DNN, EX_{Fuzz} indicates the Exp-bound in fuzzy, and WE represents the weight. The hidden neurons count for DNN is fixed in the range of $[5,255]$ and the learning rate count for DNN is fixed in the range of $[0.01,0.99]$ and the weight range is fixed in-
between $[0.01,0.99]$, respectively. The term $ACCU$ represents the accuracy “closeness of measuring the distance to a specific value”, which is computed in the following Eq. (25).

$$ACCU = \frac{(true _ true + false _ true)}{(true _ true + false _ true + false _ false)}$$

(25)

Here, the term $true _ true$ and $false _ true$ denotes” the true positive and true negative values” and the terms $true _ false$ and $false _ false$ indicates the “false negative and false positive values”. The developed ODNFC-based DR severity classification is diagrammatically depicted in Fig. 4.

![Flowchart of Proposed MMP-WSA.](image)

VII. RESULTS AND DISCUSSIONS

A. Experimental Setup

The developed DR severity categorization sculpt was established in python and the experimentation analysis is carried out. The concert evaluation of the projected approach was done by the relative examination with traditional models using several quantitative procedures. These quantitative procedures were further divided into two divisions named “positive measures and negative measures”. “Positive measures or Type I includes Negative Predictive Value (NPV), Specificity, Accuracy, MCC, Precision, Sensitivity, and F1Score. Negative measures were taken as Type II measures such as False Discovery Rate (FDR), False Negative Rate (FNR), and False Positive Rate (FPR)”.

The experimentation was carried out on “10 counts of population and the total count of iterations was considered as 25”.

The proposed MMP-WSA was compared with various algorithms like “Particle Swarm Optimization Algorithm (PSO) [4], Grey Wolf Optimization (GWO) Algorithm [28], Butterfly Optimization Algorithm (BOA) [27], Water Strider Algorithm (WSA) [26] and machine learning algorithms like Deep Neural Network (DNN) [8], Resnet-VGG16 [29], Fuzzy [7], and ODNFC [30]”.

B. Performance Metrics

The concert of the established DR severity classification model was tested for quality evaluation of the enhanced approach with several quantitative measures that are briefed as follows.

1. **MCC** MCC is “a measure of the quality of binary classifications of testing” as Eq. (26)

$$MCC = \frac{true _ true \times true _ false - false _ true \times false _ false}{\sqrt{(true _ true + false _ true)(true _ false + false _ false)(true _ true + false _ false)(true _ false + false _ true)}}$$

(26)

2. **Specificity** Spe is “the proportion of negatives that are correctly identified” as Eq. (27)

$$Spe = \frac{true _ true}{true _ true + false _ true}$$

(27)

3. **NPV** NPV is “the sum of all persons without disease in testing” as denoted in Eq. (28)

$$NPV = \frac{true _ true}{true _ true + false _ false}$$

(28)

4. **F1-score** $Fsco$ is “the measurement of the accuracy in the conducted test” as Eq. (29)

$$Fsco = \frac{2 \times true _ true}{2 \times true _ true + false _ true + false _ false}$$

(29)

5. **FNR** Fnr is “the proportion of positives which yield negative test outcomes with the test” as Eq. (30)

$$Fnr = \frac{false _ true}{false _ true + true _ true}$$

(30)

6. **Sensitivity** Sen is “the proportion of positives that are correctly identified” as Eq. (31)

$$Sen = \frac{true _ true}{true _ true + false _ true}$$

(31)

7. **FPR** Fpr is “the ratio between the numbers of negative events wrongly categorized as positive (false positives) and the total number of actual negative events” as Eq. (32).

$$Fpr = \frac{false _ true}{false _ true + true _ true}$$

(32)

8. **FDR** is “a method of conceptualizing the rate of errors in testing when conducting multiple comparisons” as denoted in Eq. (33)

$$Fdr = \frac{false _ true}{false _ true + true _ true}$$

(33)

C. Performance Evaluation on Several Baseline Approaches

The concert evaluation of the developed DR severity classification is carried out by comparison with several algorithms as shown in Fig. 5 at different learning percentages. By taking into consideration, the precision of the proposed MMP-WSA, the performance is 0.3%, 0.42%, 0.38%, and 0.49% enhanced than the PSO-ODNFC, GWO-ODNFC, BOA-ODNFC, and WSA-ODNFC, respectively at the learning percentage of 75. Likewise, for every performance measure, the proposed MM-WSA outperformed in terms of the developed DR severity classification model than the traditional approaches.
The performance of the proposed DR severity classification model improves its performance among several available models.

TABLE I. COMPARATIVE ANALYSIS ON DR SEVERITY CLASSIFICATION MODEL BASED ON EXISTING META-HAUSTIC ALGORITHMS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"Sensitivity"</td>
<td>99.1012</td>
<td>89.8876</td>
<td>92.1348</td>
<td>93.2584</td>
<td>95.5056</td>
</tr>
<tr>
<td>"Specificity"</td>
<td>96.6677</td>
<td>89.5833</td>
<td>91.6567</td>
<td>93.575</td>
<td>95.8333</td>
</tr>
<tr>
<td>"Precision"</td>
<td>91.6667</td>
<td>91.4894</td>
<td>93.617</td>
<td>93.75</td>
<td>95.8333</td>
</tr>
<tr>
<td>"FPR"</td>
<td>09.7561</td>
<td>09.7561</td>
<td>07.3171</td>
<td>07.3171</td>
<td>04.878</td>
</tr>
<tr>
<td>"FNR"</td>
<td>08.3333</td>
<td>10.4167</td>
<td>08.3333</td>
<td>06.25</td>
<td>04.1667</td>
</tr>
<tr>
<td>"NPV"</td>
<td>90.2439</td>
<td>88.0952</td>
<td>90.4762</td>
<td>92.6829</td>
<td>95.122</td>
</tr>
<tr>
<td>"FDR"</td>
<td>08.3333</td>
<td>08.5106</td>
<td>06.383</td>
<td>06.25</td>
<td>04.1667</td>
</tr>
<tr>
<td>"F1-Score"</td>
<td>91.6667</td>
<td>90.5263</td>
<td>92.6316</td>
<td>93.75</td>
<td>95.8333</td>
</tr>
<tr>
<td>"MCC"</td>
<td>81.9106</td>
<td>79.7058</td>
<td>84.2213</td>
<td>86.4329</td>
<td>90.9553</td>
</tr>
</tbody>
</table>

E. Evaluation of the Proposed DR Diagnosis Model for Various Classifiers

The complete evaluation is made on the proposed DR severity classification model for performance estimation among several classifiers as portrayed in Table II. By considering the precision of the developed ODNFC, the performance improves 0.047%, 0.035%, 0.037% and 0.045% than the DNN, RESNET-VGG16, FUZZY, and DNFC, respectively. Therefore, the proposed DR severity classification model improves its performance than other available models.

TABLE II. COMPARATIVE ANALYSIS OF DR SEVERITY CLASSIFICATION MODEL BASED ON EXISTING CLASSIFIERS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"Accuracy"</td>
<td>87.6404</td>
<td>87.6404</td>
<td>88.764</td>
<td>93.2584</td>
<td>95.5056</td>
</tr>
<tr>
<td>"Sensitivity"</td>
<td>85.4167</td>
<td>87.5</td>
<td>89.5833</td>
<td>93.75</td>
<td>95.8333</td>
</tr>
<tr>
<td>"Specificity"</td>
<td>90.2439</td>
<td>87.8049</td>
<td>87.8049</td>
<td>92.6829</td>
<td>95.122</td>
</tr>
<tr>
<td>"Precision"</td>
<td>91.1111</td>
<td>89.3617</td>
<td>89.5833</td>
<td>93.75</td>
<td>95.8333</td>
</tr>
<tr>
<td>"FPR"</td>
<td>09.7561</td>
<td>12.1951</td>
<td>12.1951</td>
<td>07.3171</td>
<td>04.878</td>
</tr>
<tr>
<td>"FNR"</td>
<td>14.5833</td>
<td>12.5</td>
<td>10.4167</td>
<td>06.25</td>
<td>04.1667</td>
</tr>
<tr>
<td>"NPV"</td>
<td>84.0909</td>
<td>85.7143</td>
<td>87.8049</td>
<td>92.6829</td>
<td>95.122</td>
</tr>
<tr>
<td>"FDR"</td>
<td>08.8889</td>
<td>10.6383</td>
<td>10.4167</td>
<td>06.25</td>
<td>04.1667</td>
</tr>
<tr>
<td>"F1-Score"</td>
<td>88.172</td>
<td>88.4211</td>
<td>89.5833</td>
<td>93.75</td>
<td>95.8333</td>
</tr>
</tbody>
</table>

VIII. CONCLUSION

This paper has developed a novel DR severity classification model with enhanced meta-heuristic-based feature fusion and fuzzy categorization approaches. It includes a number of procedures, together with image enhancement, optic disc enhancement, optic disc...
removal, image segmentation, and two sets of "model 1 and model 2" characteristics. The acquired fused features were then obtained after performing feature fusion between two feature sets. Where the weighted utility was optimized by utilizing the developed MMP-WSA in fused features and the optimal weighted fused features were obtained, then the classification of DR severity was carried out by utilizing developed ODNFC, in which its hyperparameters such as hidden neurons and learning percentage of DNN, EXP-bound in fuzzy were optimized by utilizing the developed MMP-WSA. The developed MMP-WSA-ODNFC model has provided higher accuracy as 0.047% than DNN, 0.035% than ResNet-VGG 16, 0.037% than fuzzy, and 0.045% than ODNFC. Hence, the developed DR severity classification model with ODNFC-based categorization using MMP-WSA has provided improved performance than other available DR severity classification models. It also acts as a potential path for clinicians for evaluating huge data and for fastening up DR severity classification.

REFERENCES

[29] M.Toğacar, B.Ergen, Z.Cömez and F.Özyurt, "A Deep Feature Learning Model for Pneumonia Detection Applying a Combination of mRMR

