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Abstract—For autonomous intelligent systems, 3D object 

detection can act as a basis for decision making by providing 

information such as object’s size, position and direction to 

perceive information about surrounding environment. Successful 

application using robust 3D object detection can hugely impact 

robotic industry, augmented and virtual reality sectors in the 

context of Fourth Industrial Revolution (IR4.0). Recently, deep 

learning has become potential approach for 3D object detection to 

learn powerful semantic object features for various tasks, i.e., 

depth map construction, segmentation and classification. As a 

result, exponential development in the growth of potential 

methods is observed in recent years. Although, good number of 

potential efforts have been made to address 3D object detection, a 

depth and critical review from different viewpoints is still lacking. 

As a result, comparison among various methods remains 

challenging which is important to select method for particular 

application. Based on strong heterogeneity in previous methods, 

this research aims to alleviate, analyze and systematize related 

existing research based on challenges and methodologies from 

different viewpoints to guide future development and evaluation 

by bridging the gaps using various sensors, i.e., cameras, LiDAR 

and Pseudo-LiDAR. At first, this research illustrates critical 

analysis on existing sophisticated methods by identifying six 

significant key areas based on current scenarios, challenges, and 

significant problems to be addressed for solution. Next, this 

research presents strict comprehensive analysis for validating 3D 

object detection methods based on eight authoritative 3D 

detection benchmark datasets depending on the size of the 

datasets and eight validation matrices. Finally, valuable insights of 

existing challenges are presented for future directions. Overall 

extensive review proposed in this research can contribute 

significantly to embark further investigation in multimodal 3D 

object detection. 

Keywords—3D object detection; deep learning; vision; depth 

map; point cloud 

I. INTRODUCTION 

3D object detection provides precise representation of 
objects in the format of semantically meaningful 3D bounding 
boxes. 3D object detection aims to categorize and localize 
objects from various sensors data, i.e., monocular and stereo 
cameras [1, 2], LiDAR point clouds [3], to understand the 3D 
visual world and associated semantic labels for objects in 3D 
scenes, has attracted increasing attention from vision 
community. In addition, advances of deep learning facilitate 

the rapid progress of 3D object detection indicates strong 
application demands which can serve numerous applications, 
i.e., robotics, autonomous driving, augmented reality, virtual 
reality, robot navigation, enabling systems to understand their 
environment and react accordingly. As a result, there has been 
a surge of interest for developing improved 3D object 
detection pipeline. Although current methods show impressive 
performance despite the facts that various problems form 
different viewpoints were observed and illustrated by this 
research. 

This research identified four major approaches along with 
deep neural networks for 3D object detection, i.e., monocular 
images, stereo images, LiDAR and Pseudo LiDAR based 
approaches. 3D object detection from monocular frames is a 
fertile research area due to potentially vast impact, ubiquity of 
cameras, low expense, easy implicated solution with one 
camera [4]. However, estimation of depth from single 
monocular images is an ill-posed inverse problem causes 
accuracy of 3D detection from only monocular images is 
lower than that from LiDAR or stereo images [2, 5]. In 
addition, loss of significant information during calibration is 
another reason for degraded performance on the same 3D 
object detection benchmarks comparing with LiDAR and 
stereo methods. Advances of deep neural network facilitate 
immensely the progress of 3D object detection using LiDAR 
and stereo based methods. The inclusion of depth information 
allows capturing the three-dimensional structure of the 
object’s environment, is a key feature for ensuring robustness 
while maintaining high accuracy. Modern LiDAR acquisition 
sensors provide meaningful information not only for avoiding 
imminent collisions, but also to perceive the environment as 
good as image-based data and even surpass it under poor 
lighting conditions. For stereo images, calibration issues 
between two camera rigs [6] and occupation of more pixels for 
nearby objects than far way objects during perspective 
projection are considered as major challenges. Besides, high 
cost of LiDAR sensor encourages researchers to look for 
alternatives such as Pseudo LiDAR based approaches. In this 
context, Pseudo LiDAR based approaches uses pre-trained 
depth network to compute an intermediate point cloud 
representation to mimic LiDAR data and then fed to a 3D 
detection network [7]. The strength of Pseudo LiDAR based 
approaches is that they monotonically improve with depth 
estimation quality although for long distance object Pseudo 
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LiDAR approaches could not provide expected detection 
outcome. However, accountability of the depth estimation is 
the prime gap between Pseudo-LiDAR and LiDAR based 3D 
object detection. In this context, simpler end-to-end 
monocular 3D detectors shows strong promise as an option 
where lack of same scalability from unsupervised pre-training 
for their one stage nature is the main drawbacks in this 
context. Besides, existing datasets for validating 3D object 
detection was not generalized well for different weather 
conditions and geographical locations, i.e., any method trained 
on Waymo datasets [8] suffer from dramatic performance drop 
on KITTI dataset [1]. Therefore, approaches to effectively 
adaptive 3D object detection method are highly demanded for 
practical applications where environment varies significantly. 
In this context, recent success for various 3D object methods 
mostly depends on larger datasets of 3D scenes where 
annotations are done carefully and remains as main bottleneck 
in the context of available datasets. 

In summary, the contributions of this work are: 

1) Six key areas are identified to analysis existing 3D 

object detection methods from different viewpoints to guide 

future development and evaluation by bridging the gaps using 

various sensors, i.e., cameras, LiDAR and Pseudo- LiDAR. 

2) This research demonstrates extensive experimental 

analysis based on existing research depending on three major 

aspects, i.e., comprehensive insights on hardware and 

software, analysis and challenges of using six datasets with 

details specification, illustration of eight performance metrics 

required for validation of 3D object detection methods. 

3) Based on comprehensive previous research 

investigation on existing 3D object detection methods, six key 

observations are elaborated for improving future 3D object 

detection methods. 

II. BACKGROUND 

3D object detection methods mostly depend on four types 
of input pattern, i.e., monocular image, stereo image, LiDAR 
point cloud and pseudo-LiDAR signal. Research in [9] also 
used monocular RGB images as input and mapped image 
features into an orthographic 3D space by describing deep 
learning architecture for estimating 3D bounding boxes. They 
performed front-end feature extractor to extract features from 
monocular RGB images to form 3D features space and the 
transformation from 2D features maps to 3D features map was 
termed as Orthographic Feature Transform (OFT). However, 
validation on large variations of scales and distances could 
provide real time usage of their proposed method. Research in 
[10] used monocular RGB images as input to predict 3D 
human locations by learning data ambiguity without 
supervision which leads to predict confidence intervals with 
point estimation. They used Laplace loss to model Aleatoric 
Uncertainty and multivariate Gaussians to model Epistemic 
Uncertainty. However, loss of multiview visual characteristics 
and spatial structure characteristics from 2D human poses for 
3D localization might be the reason for low accuracy 
compared with other research results. 

Research in [1] used stereo data as input to produce set of 
3D object proposals which run through convolutional neural 
network for high quality 3D object detection. Their proposed 
method generated 3D proposals using energy minimization 
function to encode object size priors, context of ground plane 
and features for depth information. However, they used 3D 
integral images which are not suitable for real time 3D object 
detection. Research in [4] used stereo data to predict sparse 
key point for estimating 3D bounding box. They proposed 
Stereo R-CNN to improve overall performance. However, 
recent advancement of R-CNN like Faster R-CNN should be 
implicated to justify the effectiveness of their proposed 
method. Research in [2] used stereo imagery as input to 
estimate depth using convolutional neural net (CNN) [11] to 
compute point clouds.  They used proposal generation 
problem as inference in Markov Random Field (MRF) to 
encode high density in the point cloud. However, overall 
performance of their proposed method depends on accurate 
depth estimation. 

Research in [2] used LiDAR point cloud and RGB images 
as input to generate 3D proposals and projected them to 
multiple views for feature extraction. They used region-based 
fusion network to deeply integrate Multiview information for 
classification of 3D proposals. However, region based fusion 
network works-based region using convolutional neural 
network [12] requires more computation overheads for real 
time detection. In addition, LiDAR sensor is expensive 
whereas optical camera could be a potential alternative for 
their proposed method. Research in [7] generated 3D proposal 
by using raw point cloud instead of generating proposals from 
RGB image or projecting point cloud to bird’s view or voxels. 
They used PointNet++ to learn point-wise features for 
describing the raw point clouds which later used for 
foreground point cloud segmentation. However, for sparse 
convolutions, alternative point-cloud network structures, such 
as VoxelNet could be investigated as their backbone network. 
Research in [13] used RGBD data as input for raw point 
clouds and proposed framework for RGB-D data-based 3D 
object detection called Frustum PointNets. Their frustum 
region is based on 2D region proposal indicates that no 3D 
object will be detected without 2D region proposal or 2D 
detection. However, aggregation of image feature after 
extracting features using based on their backbone network 
could improve overall 3D object detection performance. 
Although, point clouds can provide detailed geometry and 
capture 3D structure of the scene, on the other hand, point 
clouds are irregular, which cannot be processed by powerful 
deep learning models, such as convolutional neural networks 
directly [14]. Research in [5] used both monocular images and 
stereo images and estimated depth and disparity for monocular 
and stereo images respectively to generate point clouds. They 
proposed two step approach by first extracting dense pixel 
depth from stereo or monocular imagery followed by back-
projecting pixels into a 3D point cloud to view the 
representation as pseudo-LiDAR signal. However, for long 
distance objects pseudo-LiDAR signal could not provide 
expected detection results comparing with short distance 
objects. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 11, 2022 

205 | P a g e  

www.ijacsa.thesai.org 

III. ANALYSIS OF METHODS BASED ON SIX ASPECTS 

This research identified six significant key areas to 
analysis existing methods for 3D object detection mentioned 
in Fig. 1 and comprehensively illustrated in the next 
subsequent sections. 

 
Fig. 1. Six Key Areas to Analysis Existing Methods for 3D Object 

Detection. 

A. Monocular rgb Images 

Although 3D point cloud extracted from LiDAR provides 
superior performance, previously less effective alternative was 
monocular RGB images that were collected from single view 
RGB image as input for monocular 3D object detection [15].  
Usage of monocular RGB images can facilitate domain 
adaptation for multimodal big data management and 
significantly aids for 3D model retrieval and classification 
when compared with multiview image sets [16].  Research in 
[4] used a single monocular image to generate class specific 
object proposals to run through standard CNN pipelines for 
3D object detection. However, they assumed that objects 
should be on a ground plane which makes the overall 
proposed methodology uncomfortable to be used for other 
mediums such as detection from UAV, UGV or Krane. 
Research in [10] used monocular RGB images to tackle ill-
posed problem of 3D human localization. They used Laplace 
distribution to address ambiguity by predicting confidence 
intervals of 3D bounding boxes. However, they used 2D 
human poses for 3D localization which might be the reason 
for low accuracy compared with other research results. 

Research in [5] used both monocular and stereo images to 
mimic LiDAR signal and depth map constructions using the 
Pseudo-Signal hence called Pseudo-LiDAR and provided a 
milestone instead of using LiDAR sensor for point cloud 
generation. However, Pseudo-LiDAR approach required 
additional post processing steps due to the range issue of 
objects from the source of the camera platform. 

If these pose processing can be eradicated, then Pseudo-
LiDAR can be considered as a potential option to generate 
point cloud and depth map.  Research in [9] used orthographic 
feature transforms from monocular image as part of an end-to-
end deep learning architecture to map image-based features 
into an orthographic 3D space. However, fruitful 
experimentation on large variations of scales and distances can 
provide real time usage of their proposed method.  There are 
several challenges exists for using monocular images for 3D 
object detection, i.e., significant information loss, object pose 
inconsistency, complex background of monocular images 
[16], accurate depth information [6]. Monocular images lose 
significant information during calibration such as multiview 

visual characteristics and spatial structure characteristics. 
Overall scenarios of using monocular images are mentioned in 
Fig. 2. 

 
Fig. 2. Scenarios of using Monocular RGB Images for 3D Object Detection. 

B. Stereo rgb Images 

Stereo cameras work in a manner like human binocular 
vision which is cost less and have higher resolutions for which 
they have gathered significant attention in academia and 
industry [17]. Disparity cues are provided by stereo images to 
enable better depth estimation compared to monocular images 
[18]. Research in [1] exploited stereo imagery for high quality 
3D object proposals using energy minimization function to 
encode object size, localization of objects on the depth 
informed features to reason free space, point cloud densities 
and distance to the ground. They used CNN to exploit depth 
information for regressing 3D bounding box coordinates and 
object pose. However, they used 3D integral images which 
might cause additional computational cost during training. 
Research in [4] used stereo R-CNN for detecting associated 
objects in the stereo images. To achieve the aim, they 
proposed a 3D box estimator to exploit stereo box key points 
and dense region-based photometric alignment method to 
improve 3D object localization accuracy. However, due to 
later advancement of R-CNN like Faster R-CNN could be 
better option to investigate in their proposed method. Research 
in [5] proposed a twostep approach using stereo imagery data, 
i.e., estimation of depth map from stereo and usage of existing 
LiDAR-based 3D object detection pipelines. Although they 
used both monocular and stereo images, it is not clear based 
on the elaboration whether they used combined depth maps 
for both types of images or not. Research in [2] used 
contextual models by exploiting stereo information by 
reasoning and placing in 3D proposals in the form of 3D 
bounding boxes. Although, they implicated their proposed 
method for autonomous driving, they claimed better 
performance on other object classes such as Cyclist and 
Pedestrians. Several other shortcomings for using stereo 
images are observed by this research although stereo image 
based detection shown promising results, i.e. calibration issues 
between two camera rigs [2], memory expensive 3D cost 
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volume learning in image space due to the image’s high 
resolution and requirement of additional dimension for 
features [18], depth estimation in image space while 
downstream detection is performed in 3D space [18], 
existence of many pixels among nearby objects due to 
perspective projection than faraway objects which lead to 
biased depth estimation with degraded long-range detection 
performance [18], dependency on anchor-based 2D detectors 
with association approach [17]. 

For stereo images, in image space, 3D cost volume 
learning is costly in memory due to high computation and 
extra dimension of the features. Besides, previous lest 
computation time for one frame was 0.5 seconds which can be 
challenging for critical applications such as collision 
avoidance [17, 20, 21]. Besides, in stereo images, depth 
estimation is performed in 2D image space whereas detection 
tasks take place in 3D space. Existence of more pixels in 
nearby objects than faraway objects due to perspective 
projection led to imbalance biased depth map. Overall 
scenarios of using stereo images are mentioned in Fig. 3. 

C. LiDAR Data/ Point Cloud Density 

Research in [1] extended 3D object proposal with class 
independent variant and neural network to grab both 
appearance and depth features. Later, they used point clouds 
obtained via LiDAR followed by giving comparison of the 
stereo, LIDAR and hybrid settings.  However, class specific 
module they proposed, needs further elaboration to justify 
their claim. Research in [3] used sensory-fusion framework to 
take both LiDAR point cloud and RGB images as input. They 
encoded sparse 3D point cloud for compact multiview 
representation. 

 
Fig. 3. Scenarios of using Stereo Images for 3D Object Detection. 

Their proposed deep learning network was composed of 
two subnetworks, i.e., one for 3D object proposal generation 
and other one for multiview features fusion. For multiple 
views and interactions between intermediary layers they used 
deep fusion schemes to combine these two parts. However, 
region based fusion network works-based region using 

convolutional neural network requires more computation 
overheads for real time detection. In addition, LiDAR sensor 
is expensive whereas optical camera could be a potential 
alternative for their proposed method. Research in [4] used 
raw point cloud for generating small number of high-quality 
3D proposals via segmenting the point clouds of the whole 
scene into foreground points and background. They performed 
3D box refinement later by combing local spatial features with 
global semantic features [22] for each point cloud. However, 
later version of RCNN such as Fast RCNN and Faster RCNN 
could be aligned later to find the suitability of the proposed 
method with most recent deep learning architectures in case of 
using CNN for raw point cloud achieved from LiDAR. 

D. Pseudo-LiDAR Generation 

Previous LiDAR methods formulated LiDAR point cloud 
as point [7], pillar [23] and voxel representation [29,30]. 
Despite the remarkable performance of these methods, LiDAR 
sensors are expensive sensor and for the far distance, LiDAR 
sensor-based detection can potentially make 3D object 
detection tasks difficult which initiate the need for some 
approaches to mimic LiDAR point cloud due to high accuracy 
called Pseudo-LiDAR based point cloud representation. 
Research in [26] proposed self-supervised learning schemes 
by mimicking latent spatial features representation based on 
point-based module. However, their proposed method depends 
on 2D-3D detection pairs. Accurate depth map is one of the 
key challenges for 3D object detection from monocular image 
as lack of prior information is the main issue and eradicated 
recently by deep learning approaches [25, 27]. By constructing 
robust depth map, Pseudo-LiDAR point cloud can be 
constructed to mimic LiDAR point cloud based on pre-
calibrated intrinsic camera parameters [28,29]. However, 
heavy computation is the bottleneck for this research. 
Research in [30] generated pseudo-ground without the need of 
LiDAR point clouds by proposing a statistical shape model to 
address the challenge of disparity annotations in training. 
However, for monocular 3D object detection, disparity map 
generation will not be possible for their proposed method. In 
addition, their proposed research depends on shape analysis 
which may provide poor performance in case of obstacles 
such as shadow. Research in [31] combined 2D object 
detection with Pseudo-LiDAR point cloud data generated 
from stereo images to investigate the boost of performance 
with existing six different 3D object detectors. However, 
distance calculation for their proposed method can be costly. 
Besides, they did not investigate high consistency issue for the 
point clouds generated by Pseudo-LiDAR approach.  Research 
in [32] constructed a pseudo-LiDAR feature volume 
(PLUME) to estimate depth map and 3D object detection in 
3D metric space. The main purpose for their proposed 
PLUME is to avoid biased depth estimation with degraded 
long-range detection for stereo images. However, for low light 
and extreme weather conditions, their proposed method may 
encounter due to the need of accurate depth map estimation. 

E. Depth Map 

Recent algorithms for stereo depth estimation can produce 
surprisingly accurate depth maps [33]. However, inferring 
depth of pedestrians from monocular images is a 
fundamentally ill-posed problem [10]. This additional 
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challenge is due to human variation of height. If every 
pedestrian has the same height, there would be no ambiguity 
[10]. LiDAR point clouds has been dominated approach in the 
existing research for 3D object detection due to the 
availability of accurate depth map [3, 13, 34, 35, 36, 37, 38, 
39]. However, performance of image-only methods lacks in 
absolute depth information of LiDAR. In this context, optical 
cameras are highly affordable than LiDAR, operate at a high 
frame rate, and provide a dense depth map rather than 64 or 
128 sparse rotating laser beams that LiDAR signal is 
inherently limited to [5]. Research in [40] proposed first study 
for estimating depth map in outdoor environments where they 
combined single RGB image and LiDAR point cloud. 
However, due to large learning network, powerful 
architectures for training were needed to use their proposed 
method. Research in [5] converted estimated depth map from 
stereo or monocular imagery into a 3D point cloud referred to 
as pseudo-LiDAR as it mimics the LiDAR signal. Then they 
took the advantage of existing LiDAR-based 3D object 
detection pipelines [13, 34] to train directly on the pseudo-
LiDAR representation using deep convolutional neural 
networks to obtain unprecedented increase in accuracy of 
image-based 3D object detection algorithms. However, usage 
of LiDAR based method may not be suitable for other image-
based classifier for overall 3D object detection. Besides, their 
proposed pseudo-LiDAR fails to detect far-away objects 
precisely due to inaccurate depth estimation. Research in [10] 
detected 2D joints using PifPaf and used MonoDepth [41] to 
estimate depth for a set of 9 pixels around each key point 
followed by consideration of minimum depth as their 
reference value. Later, they calculated distance from 
normalized image coordinates of the centre of the bounding 
box using the estimated minimum depth rather than using the 
average one. However, their proposed method needs further 
investigation for monocular image as their method worked 
only for stereo images. Overall scenarios for depth map 
estimation using different sensors and images are shown in 
Fig. 4. 

 
Fig. 4. Overall Scenario for Depth Map Estimation using Different Sensors 

and Types of Images. 

F. Backbone Network 

For 3D object detection various backbone networks has 
been used for feature representation shown in Fig. 5.  
Research in [42] preferred image features in ResNet-101 [4, 
17, 43] for block 1 to maintain a high spatial resolution and 
avoid redundancy of same features. However, ResNet as 
backbone network contains too many layers and are not very 
efficient [4]. Darknet-53 [44] as a backbone network are used 
with fewer floating-point operations and more speed. Darknet-
53 is better than ResNet-101 and 1.5× faster. In addition, 
Darknet-53 has similar performance to ResNet-152 and is 2× 
faster. Darknet-53 also achieves the highest measured 
floating-point operations per second which means the network 
structure better utilizes the GPU, making it more efficient to 
evaluate and thus faster. 

 
Fig. 5. Backbone Networks for 3D Object Detection. 

Research in [13] used PointNet (v1) and PointNet++ (v2) 
backbone due to much cleaner in design. While out of the 
scope for their work, sensor fusion in terms with aggregation 
of image feature for 3D object detection after extracting 
features using PointNet (v1) and PointNet++ could further 
improve their results. Research in [7] extracted point-wise 
features encoded by PointNet++ as backbone point cloud 
network, they appended one segmentation head for estimating 
the foreground mask and one box regression head for 
generating 3D proposals. However, alternative point-cloud 
network structures, such as VoxelNet with sparse convolutions 
could be investigated as their backbone network. Research in 
[16] used ResNet-50 as the backbone for feature extraction 
followed by a fully connected neural network [45] with one or 
two hidden layers. The number of hidden nodes is tuned with 
64, 100, 128, and 192 to generate the candidate results which 
cause additional processing due to too many layers. Research 
in [63] used SDN [46] as backbone network to estimate dense 
depth map and fine-tuned on the KITTI datasets. However, 
their predicted depth was not accurate enough since the 
ground truth is very sparse.  Research in [47] used ResNet34 
[48, 49] with Feature Pyramid Network (FPN) [48] as 
backbone network. They replaced BatchNorm+ReLU layers 
with the synchronized version of InPlaceABN activated with 
LeakyReLU with negative slope 0.01 as proposed in [50] to 
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free up a significant amount of GPU memory for scaling up 
the batch size or input resolution. However, top down and 
bottom-up features fusion in feature pyramid network might 
create additional processing due to combine ResNet34 and 
FPN. Existing methods mostly used ResNet-50 as the 
backbone network for both monocular and stereo images due 
to contain too many layers [4]. InceptionNet-v4 [49] was 
previously used for visual feature extraction, however, in case 
of 3D models for multiview mages, InceptionNet-v4 needs to 
be further investigated for 3D object detection overall 
pipeline. DenseNet-201 [16] was used to extract the visual 
features of monocular images and ResNet-18 [16] was for 
multiview feature extraction of 3-D models. However, 
combination two backbone network at two different phases, 
may increase overall computational overheads. In case of 
monocular images and multiview fusion, four key aspects can 
ensure efficient use of backbone network for 3D object 
detection mentioned in Fig. 6 [16]. 

Domain adaptation is the first concerns for backbone 
network to be used with any method or strategy to solve cross 
domain problem. In this context, improved datasets developed 
with the concerns about cross domain ease the task for 
backbone network. For monocular and multiview aspects 
different fusion strategies for multiview views are needed for 
the extracted features using backbone network, such as 
pooling, concatenation. As monocular images lose multiview 
visual characteristic and spatial structure characteristic causes 
significant information loss, various function needs to be 
designed during features learning process. Efficient 
implication of the above three aspects helps for efficient pair 
wise similarity measurement. 

 
Fig. 6. Four Key Aspects for Efficient Use of Backbone Network for 3D 

Object Detection. 

IV. REVIEW ON EXPERIMENTAL ANALYSIS 

A. Hardwares and Software Specification for 

Experimentation 

Previously researcher used sensors such as Grayscale 
cameras [51], optical cameras [5], color cameras [51] and 
LiDAR like Velodyne HDL-64E LIDAR [5, 51] for own 
datasets development for validating 3D object detection 
evaluation. For training, various GPUs were used mentioned 
in Fig. 7. PyTorch machine learning framework [42, 52, 53, 
54, 55, 56] have been mostly used by existing research. 

 
Fig. 7. GPUs Used in Previous Research. 

B. Datasets 

Domain gaps for different datasets depend on object size, 
weather condition, specific locations, and orientation [57]. 
Overall gaps can be categorized in to two categories 
mentioned below. 

1) Content gap such as object, weather condition due to 

locations during data capture depending on time. 

2) Point distribution gap owing to different LiDAR types 

such as number of beam ways, beam range, vertical 

inclination, horizontal and vertical angularity estimation of 

LiDAR. Existing datasets used for 3D object detection 

purpose are mentioned in Fig. 8. 

 
Fig. 8. Datasets for 3D Object Detection. 

1) KITTI dataset: KITTI is the most used dataset for 3D 

object detection. However, existing datasets such as nuScenes, 

Waymo, Lyft, SUN RGB-D, COCO, PASCAL VOC and 

ILSVRC2013 shown in Fig. 8 has been used by the research 

for more robust validation. 
The KITTI 3D dataset [58, 59] is the most used benchmark 

in the 3D object detection task and it provides left camera 
images, calibration files, annotations for 3D detection [45]. 

Domain 
Adaptati

on 

Multivie
w 

Fusion 

Loss 
Functio

n 

Similarit
y 

Measure 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 11, 2022 

209 | P a g e  

www.ijacsa.thesai.org 

KITTI datasets are the widely used benchmark for validating 
3D object detection includes 2D object detection, Average 
Orientation Similarity (AOS), Bird’s Eye View (BEV) [13, 
60, 61]. Samples in KITTI datasets include 3D point clouds, 
images and Camera-LiDAR calibration data [52]. Images in 
KITTI datasets are captured in the same city using same 
camera [10]. 3D bounding boxes for various object classes are 
provided in KITTI datasets which includes cars, vans, trucks, 
pedestrians and cyclists labelled manually in 3D point clouds 
depending on calibrated camera’s information [62]. Number 
of training and test images or point clouds in KITTI datasets 
are 7481 and 7518 images respectively containing three 
classes, i.e., car, pedestrian and cyclist [1,2, 8, 42, 52, 54, 60, 
61, 63, 64, 65, 66, 75]. Each class is annoted by camera Field 
of Vision (FOV) with the 3D bounding boxes [64]. Evaluation 
for each class depends into three categories, i.e., easy, 
moderate, hard according three aspects, i.e., object size, 
occlusion state and maximum truncation levels of objects [10, 
42, 53, 55]. For ranking the completion of the methods, 
moderate category is used in the benchmark [2].  Easy object 
is indicated with minimum pixel height as 40px within 28m as 
vehicles correspondence. Besides, 25px are the limit for 
moderate and hard level objects within minimum distance of 
47m [62]. 

In another way, there are three commonly used data splits 
in the KITTI dataset, i.e., split for testing, validation category 
1, and validation category 2 mentioned in Fig. 9. 

 
Fig. 9. Split of Images for Training and Testing in KITTI Datasets. 

In KITTI datasets, object detection validation is estimated 
mostly through average precision (AP) and IOU (Intersection 
over union) with threshold 0.7 for car class [8, 53, 42, 67, 62], 
0.5 for pedestrian [60, 67, 62] and 0.5 for cyclist [60, 67, 62]. 
Six illustrative factors for using KITTI datasets is shown in 
Fig. 10. 

In addition, this research identified ten challenges to use 
KITTI dataset mentioned in Fig. 11 although KITTI dataset is 
the commonly used dataset for 3D object detection 
performance validation. 

2) nuScenes dataset: nuScenes dataset contains 1000 

segments of 20 seconds each for 3D object detection where 

750, 150 and 150 segments for training, validation and testing, 

respectively [10, 68, 69, 57, 70]. Annotation rate is 2Hz for 

which 28k, 6k and 6k annotated frames are available in these 

datasets for training, validation and testing respectively. This 

dataset contains more classes comparing with KITTI datasets 

which is 10 and evaluation metrics are mean average precision 

and nuScenes detection score (NDS) [68]. BEV center 

distance is the true positive metric for this dataset instead of 

IoU which is another significant difference with KITTI 

datasets. However, camera extrinsic information is not also 

available in this dataset like in KITTI datasets [69]. 

 
Fig. 10. Six Illustrative Factors to use KITTI Datasets for 3D Object 

Detection. 

 
Fig. 11. Ten Challenges to use KITTI Datasets for 3D Object Detection 

Validation Performance. 

Split for Testing [60] 

7,481 images for 
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7,518 images for testing 
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1[60, 61, 62] 

3,712 images for 
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3,682 images for 
training 

3,799 images for testing 
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4. Annotation Camera Field of Vision 
(FOV) 

3D bounding boxes 

5. Validation category Easy 

Moderate 

Hard 
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1. Ambibuity 
• Usage of different overlap criteria for three 

classes creates ambiguity [1,3] 

2. Object size 
• Objects are typically small requires addition 

processing [1] 

3. Distance 
• 3D detection benchmark is difficult for image-

based method, performance tends to decrease as 
objects distance increases [3]. 

4. Depth error 

• Depth error becomes larger as the object 
distance increase due to the inversely 
proportional relation between disparity and 
depth. [3] 

5. Fewer 
positive classes 

• Contains fewer 3D objects (positive classes) per 
sample compared to the background (negative 
classes) for which data augmentation becomes 
essential for high performance [42, 43]. 

6. Camera 
Extrinsic 

Information 

• Lack of camera extrinsic information creates 
absence of ego-pose information from the 
KITTI odometry [55]. 

7. Annotations • Lacks ring view annotations (less practical) [71] 

8. 
Confidentiality 

of test set 

• Test set is confidential and can only be tested on 
the KITTI website [52, 72] 

9. High 
resolutions 
cloud data 

• Contains LIDAR data with millions of points 
which is of quite high resolution causes 
processing a challenge especially in real world 
situations. [73] 

10. Suitablity 
for augmented 

mehthods 

• Contains less than 10,000 training images [82] 
causes upcoming augmentation methods to be 
validated in other large scale dataset. 
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3) Waymo dataset: Waymo Open Dataset is more recently 

released datasets consists of 798 training sequences and 202 

validation sequences [8, 53, 71, 42, 72, 57]. Waymo dataset 

provides object labels in the full 360◦ field of view with a 

multi-camera rig which is the advantage over KITTI and 

NuSceneses dataset. However, Waymo dataset includes only 

150 test sequences without ground truth data. In addition, 

there is no published depth results on Waymo open dataset 

[15]. 
In addition, with KITTI, nuScenes and Lyft datasets, for 

3D object detection other datasets such Lyft [68, 57], 
PASCAL VOC [73, 74], ILSVRC2013 [73, 74] dataset was 
previously used for validation. However, these datasets use 
different annotation rules for validation, i.e., large number of 
objects outside the road were not annotated for validation. 

C. Validation Metrics 

Overall framework for 3D object detection has been 
validated based on two tasks, i.e., object detection and then 
object detection with orientation estimation [75,103]. To 
validate accurate object detection, Average Precision (AP) 
metric was used by most of the existing research, Average 
Orientation Similarity (AOS) was used mostly for object 
detection and orientation estimation. The true positive metric 
is based on 2D/3D IoU. This research identified eight major 
performance metrics for validating any method for 3D object 
detection mentioned in Fig. 12. 

 
Fig. 12. Major Eight Performance Metrics for Validation for 3D Object 

Detection. 

1) Oracle Recall: Oracle recall computes the percentage 

of the recalled ground truth objects to receive recall rate [75, 

2, 76, 104,105]. For certain threshold, if at least one proposal 

overlaps with IoU, then ground truth object is said to be 

recalled [1]. Recall is measured for both 2D bounding box and 

later for 3D bounding box for overall performance. 

2) Average Recall (AR): For 3D object detection 

performance, Average Recall (AR) [32] is highly correlated 

metrics that needs to be measured for both 2D bounding box 

and 3D bounding box for overall performance [1,4,75,32]. For 

stereo AR metrics, Average Recall needs to be measured for 

both left and right images [3]. 

3) Average Precision (AP): For various sampled points, 

average precision (AP) extracts average value of precision at 

various recall threshold values [62]. 

In other words, Average Precision (AP) indicates the 
average precision value for recall over 0 to 1.  For precision 
and recall, ideal value is 1 [62]. However, for the real time 
scenarios, any method is assumed to be good enough if the 
precision and recall metrics gets closer to 1. In this context, 
this research observed that there is a trade-off between 
precision and recall, i.e.  if more optimizations can be done on 
precision, recall gets lower, oppositely if recall can be 
improved, precision value becomes lower. So, this research 
recommends to balance at the point of fixing threshold point. 
Average Precision (AP) is used for 2D and 3D object 
detection for both monocular and stereo images [1, 4, 8, 53, 
62, 63,75,77, 83,102]. Like AR, stereo AP metric needs to be 
evaluated for both on left and right images. 

4) Average Orientation Similarity (AOS): Average 

Orientation Similarity (AOS) indicates perfect prediction 

between 0 and 1 [1,2, 75]. For 3D object detection, AOS has 

been used for orientation estimation task for 2D object 

detection performance towards 3D object detection [75, 15]. 

5) Average Localization Precision (ALP) [1,10]: Average 

precision and recall are the requirement to calculate Average 

Localization Precision (ALP) which can be computed 

similarly to AP except that 3D localization precision needs to 

be replaced in pace of bounding box overlap [1]. In other 

words, ALP provides a prediction to be correct depending on 

the error between predicted distance and ground truth is 

smaller than threshold [10]. In this context, predicted 3D 

location is to be correct if the distance to the ground truth 3D 

location is smaller than certain threshold [1]. 

6) Average Localization Error (ALE) [10]: For 

misaligned bounding box, Average Localization Error (ALE) 

is estimated from the target category [10]. In other words, 

ALE provides variation of the actual and estimated value of 

each location in the localization process. 

7) mean Average Precision (mAP): mean Average 

Precision (mAP) is calculated from Average Precision (AP) 

from all classes for the IoU thresholds depending on various 

problems scenario [42,78, 101]. 

8) Confidence Score: Confidence score indicates the 

optimum threshold to categorize false positives to ensure the 

predicted bounding box contains minimum standard score and 

often used for model performance evaluation [19,79,106]. Non 

optimal settings for any proposed model requires more 

minimized confidence score for precise bounding box 

detection for 3D object detection. 3D box confidence 

estimation for 3D object detection realized by the previous 

research. Research in [80] calculated 3D IoU from the 

predicted 3D box and ground truth involves 3D object 

dimensions. Research in [47] used 3D box loss to represent 

3D detection. Research in [81] introduced self-balancing 
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confidence loss for generating confidence score from 

relatively achievable samples. However, all these methods 

considered loss function for confidence score. To overcome 

this problem, research in [82] considered the relationship 

between 3D objects and associated 2D boxes to decompose 

confidence mechanisms.  However, in case of weak 

transformation for 2D to 3D, their proposed confidence 

decomposition may result in weakness for their proposed 

methodology. Research in [10] addressed ill posed problems 

for predicting confidence intervals to account aleatoric and 

epistemic uncertainties. They estimated pose to obtain 2D 

joints which later were used as input to feedforward network 

and output the 3D location along with a confidence interval. 

However, their proposed method is suited only for small 

training data [100]. Research in [83] propagated information 

from the labelled to unlabeled training set in the form of 

pseudo-labels contains significant noise for which they 

introduced confidence-based filtering mechanism for 3D 

object detection. Their confidence proposals were based on 

predicted objectless and class probability to filter low quality 

pseudo labels. However, their proposed confidence intervals 

depend on category specific thresholds. 

V. OBSERVATIONS AND FUTURE RESEARCH DIRECTIONS 

1) There is a tradeoff between precision and recall, i.e.  if 

more optimizations can be done on precision, recall gets 

lower, oppositely if recall can be improved, precision value 

becomes lower. So, this research recommends to balance at 

the point of fixing threshold point for IoU. 

2) Design of experiments should cover practical 3D 

domain adaptation scenarios mentioned below: 

a) Adaptation from label rich domains to label 

insufficient domains, 

b) Adaptation across domains with different data 

collection locations and time (e.g., Waymo → KITTI, 

nuScenes → KITTI), and 

c) Adaptation across domains with a different number 

of the LiDAR beams (i.e., Waymo → nuScenes and nuScenes 

→ KITTI). Therefore, domain adaptive evaluation needs to be 

done for validating 3D object detection models on the 

following four adaptation tasks: Waymo → KITTI, Waymo 

→ Lyft, Waymo → nuScenes and nuScenes → KITTI. 

3) Some ill-posed settings that is not suitable for 

evaluation needs to rule out. For example, KITTI datasets 

lacks in ring view annotations (less practical) and Lyft uses 

very different annotation rules (i.e., many objects outside the 

road are not annotated). 

4) Comparing with stereo images, monocular images lose 

multiview visual characteristic and spatial structure 

characteristic causes significant information loss demands for 

robust depth construction for 3D object detection which can 

lead to 3D localization. 

5) Due to the significant visual gap between object-centric 

images (various texture with complex background) and 

multiview images of 3-D models (gray model appearance with 

clean background), monocular and stereo image-based 3D 

object detection toward localization or tacking domain 

adaptation is a challenging task requires further investigation. 

In lieu of current existing datasets, development of novel 

dataset for object centric monocular and stereo image based is 

required to advocate the use of 3D object detection towards 

3D localization for real world applications. In this context, 

few possible query images should be the primary key which 

can be the significant implication for domain adaptation for 

overall 3D object detection pipeline. 

6) To choose the appropriate backbone network 

depending on problem specific 3D object detection, 

appropriate fusion strategies need to be designed in lieu of 

robust loss function to ensure efficient similarity measurement 

for final classification tasks of 3D object detection. 

VI. CONCLUSION 

3D object detection is the basis of many autonomous 
intelligent applications. This research demonstrates 
comprehensive and critical reviews on existing 3D object 
detection methods using RGB images and other fusion based 
detection methodology based on LiDAR and Pseudo-LiDAR. 
Some existing methods detected objects with 2D bounding 
box to recognize position of the objects which is not sufficient 
for perfect autonomous system. Therefore, predicting 3D 
object’s position is similarly important as determining the 2D 
position of object in the image. In this research, sensor 
modality for the overall review is categorized in four types, 
i.e., monocular image, stereo image, point clouds obtained 
from LiDAR and Pseudo-LiDAR and fusion of both where 
advantages and disadvantages were addressed for each type. 
Depth summary with relative challenges for eight datasets are 
critically highlighted by this research. In this context, KITTI 
benchmark are not suitable for monocular methods for 3D 
object detection due to lack of depth information and prevents 
accurate 3D positioning which encourages to use maximum 
number of datasets to ensure robustness for any 3D object 
detection method. Besides, comprehensive details for eight 
evaluation metrics are illustrated to evaluate 3D object 
detection methods. This research observed that 3D object 
detection is not matured as 2D object due to large gap existing 
between them. Existing methods still did not achieve the 
benchmark performance for real time autonomous applications 
initiates the need for fast and reliable 3D object detection 
system for wide range of real time applications. Besides, 
recent trend for using point cloud processing was observed by 
this research provides effective solution for 3D object 
detection but LiDAR is an expensive sensor and further 
geometrical relationship needs to be discovered among points. 
Besides, some fusion based methods, i.e., RGB images either 
with LiDAR point cloud or depth images from RGB-D data 
could not confirm their superiority than other methods in 
multimodal datasets to ensure robust validation which 
indicates that more focus is needed to develop multimodal 
methods for 3D object detection. In addition, lack of large 
scale annoted training data, more datasets and fusion methods 
are expected in near future for indoor and outdoor scenarios to 
form a unified 3D object detection framework. From this 
study, this research remarks that 3D object detection has 
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gained many successes, but remains as potential and fertile 
research problem which requires more exploration. 
Demonstrated critical review by this research is expected to 
serve as a supportive significant reference and forms an 
important endorsement to the related research community. 
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