
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

241 | P a g e

www.ijacsa.thesai.org

A Fast Multicore-based Window Entropy Algorithm

Suha S.A. Shokr, Hazem M. Bahig

Information and Computer Science Department, College of Computer Science and Engineering

University of Ha’il, Ha’il 81481, Saudi Arabia

Abstract—Malware analysis is a major challenge in

cybersecurity due to the regular appearance of new malware and

its effect in cyberspace. The existing tools for malware analysis

enable reverse engineering to understand the origin, purpose,

attributes, and potential consequences of malicious software. An

entropy method is one of the techniques used to analyze and

detect malware, which is defined as a measure of information

encoded in a series of values based upon the probability of those

values appearing. The window entropy algorithm is one of the

methods that can be applied to calculate entropy values in an

effective manner. However, it requires a significant amount of

time when the size of the file is large. In this paper, we solve this

problem in two ways. The first way of improvement is

determining the best window size that leads to minimizing the

running time of the window entropy algorithm. The second way

of improvement is by parallelizing the window entropy algorithm

on a multicore system. The experimental studies using artificial

data show that the improved sequential algorithm can reduce the

window entropy method’s running time by 79% on an average.

Also, the proposed parallel algorithm outperforms the modified

sequential algorithm by 77% and has super-linear speed up.

Keywords—Entropy; window method; malware analysis;

parallel algorithm; multicore

I. INTRODUCTION

With increased internet use, social media, and data
sharing, users must better secure themselves to protect
vulnerable information. One of the dangerous software that
faces the user is malware.

Malware is a set of instructions that run on a computer,
specifically designed to harm the user or the target system by
making the system do something that an attacker wants it to
do, like steal personal information, delete files, commit fraud,
or steal software serial numbers. Moreover, new malware is
registered periodically, posing a challenge to cybersecurity
efforts. Malware remains one of the most potent threats in
cyberspace, despite significant advances in cyber security
mechanisms and their ongoing evolution.

Different kinds of malware (e.g., viruses, bots, rootkit,
backdoors) can be distributed via various channels,
transmitted, and used in various techniques to perform
malicious operations [1].

The process of analyzing the malware (with and without
execution) is called malware analysis. The main objectives of
analyzing malware are to study malicious software’s origin,
purpose, attributes, and potential impact.

A large number of malware analysis techniques have been
proposed. These techniques can be classified into two main
categories [2]: static and dynamic. The main difference

between static and dynamic analysis is the examination of the
malware with or without running it. The two categories
contain many malware detection techniques such as signature-
based, specification-based, behavioral-based, and heuristic-
based [3]. One of the techniques used in malware analysis is
the running window entropy (RWE) method, where the
entropy is a measure of information encoded in a series of
values based upon the probability of those values appearing
[1].

The entropy method has been used in many applications
such that malware detection [4], lung sound classification [5],
gender violence classification [6], Arabic text classification
[7], image steganography [8], and sediments quality
evaluation [9].

For analyzing malware using entropy algorithm, there are
many research papers have been proposed such as [10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

Lyda and Hamrock [15] analyzed malware utilizing
structural entropy, which employs a skip value to ignore the
entropy calculation at each index. McMillan and Garman [21]
obtained the same result utilizing a statistical decision concept
using malware entropy information.

Sorokin [26] proposed a method based on dividing the file
into segments and then applying a discrete wavelet transform
(DWT) to the structural entropy to compare the segments of
the input file. Baysa et al. [11] used the same strategy to
identify the malware changes. The method was implemented
on binary files, and there was no need to perform any
preprocessing to detect the malware.

Bat-Erdene et al. [12] used the entropy method to detect
unknown packers. The method is based on representing the
entropy value as a symbolic aggregate approximation (SAX)
and measuring the symbol’s similarity in the SAX sequence.
The accuracy of this method on the tested data is 95%.
Radkani et al. [25] suggested a new method to detect
metamorphic malware based on entropy and dissimilarity
measures. The drawback of this method is the measurement
limitation, which is based on the opcode (operation code)
frequency.

Jones and Wang [19] suggested a method to reduce the
running time of the RWE algorithm. The method is based on
removing a nested "for" loop from the old version of the
algorithm. The same authors [20] used the entropy concept to
extract the feature set used in machine learning algorithms.

Menéndez et al. [22] introduced a new concept called
entropy time series to detect malware. The technique uses a
time series to represent an entropy signature. Then, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

242 | P a g e

www.ijacsa.thesai.org

technique applies wavelet analysis to a file's entropy to obtain
a simplified signature. The main advantage of this strategy is
reducing the running time of malware analysis.

In light of the previous discussions about the use of
entropy in malware analysis, the main question of the research
is: how to reduce the running time of the entropy method
when the size of the file is large?

This paper has focus on the RWE algorithm because the
window method is one of the strategies used in different
fields, such as [29, 30], to reduce the running time. This study
aims to demonstrate the effect of changing the window size on
the RWE algorithm in terms of running time. In addition, the
paper explores if there is a common window size that reduces
the running time of the RWE algorithm for all malware
samples and look at ways to optimize the RWE algorithm's
running time. Finally, how to parallelize the sequential
algorithm to reduce the running time.

The remainder of this paper is organized as follows.
Section II gives briefly the foundation concepts of the RWE
algorithm. In Section III, the modified RWE algorithm in
terms of execution time is given. The second improvement for
RWE algorithm using a multicore system is given in Section
IV. The experiments and their analysis for the proposed
algorithms on artificial data are given in Section V. Finally,
the conclusion and open question are given in Section VI.

II. RUNNING WINDOW ENTROPY METHOD

In this section, we briefly give the main concept of entropy
in subsection A. In subsection B, we give the main idea and
steps of the RWE method that are used to calculate the
entropy values of the malware sample.

A. Entropy Concept

Shannon [1] introduced the concept of entropy in
information theory to measure the degree of randomness in a
data set. The general formula for Shannon entropy is given by

H(X)= -∑ x p(x) log p(x) (1)

where

 X is a discrete random variable and has values

belonging to the alphabet ,

 is the alphabetic domain of the malware sample, and

 p(x) is the probability distribution of the value x and
has a value belonging to the range [0, 1].

In information theory, it is essential to recognize that more
relevant information is present in the data when the entropy
value is higher than when it is lower. This means that a higher
entropy value denotes more randomness and useful,
unpredictable information.

B. Running Window Entropy Method

Given a malware sample D of size n as D=(d1, d2, d3, … ,
dn). The RWE algorithm, is a method based on dividing
sample D as continuous overlap windows, each window of
size w. A window of size w that starts at index i in the data D
represents as follows.

Wi =(di, di+1, di+2, … , di+w-1), (2)

where 1≤i≤n-w+1.

Since the malware sample represents a sequence of bytes,
each byte ranges from 0 to 255. Therefore, the entropy for Wi
can be calculated as follows:

Hi=H(Wi)= -∑ 0≤k≤255 p(k) log p(k) (3)

where p(k) is the probability of byte k within Wi and is
equal to the total number of the byte k (symbol) within Wi , tk ,
to the size of the window; i.e. p(k)=tk/w.

In the case of the byte, k, does not appear in the window
Wi, then tk =0 and the method ignores the log p(k) value
because the logarithm of zero value is undefined.

Therefore, the malware sample after applying the RWE
algorithm represents a sequence of values.

H =(H1, H2, H3, … , Hn-w+1) (4)

The algorithm uses two arrays:

 H is an array of size n-w+1 and the value of Hi
represents the entropy value for the window number i,
1≤i≤n-w+1.

 t is an array of size 256 and the value of t(j) represents
the total number of the byte j in a certain window.

The RWE algorithm consists of n-w+1 iterations, 1≤i≤n-
w+1, as follows:

Step 1: Initialize the array t with zero.

Step 2: Compute t(j) for each symbol in the window Wi by
incrementing t(j) with 1, where 0≤j≤w-1.

Step 3: Calculate the entropy, e, of the window Wi using
(3) if t(j)≠0 and 0<j<256.

Step 4: Calculate Hi=e/K, where K=8.

The reason for taking the value of K equal to 8 is the
values of (3) between 0 and 8.

III. IMPROVED RWE METHOD

In this section, we introduce two comments on the RWE
algorithm, then modify the RWE algorithm.

The first comment on the RWE algorithm is that the
window size was selected experimentally from 256 to 2048 as
in [19]. No experimental studies have addressed the effect of
window size when w<256 or w>2048. What is the effect of
these values of w on the RWE algorithm? Does the same
behavior occur if we start from a window size equal to 4?

The second comment on the RWE algorithm is that when
the size of window is less than 256, why do we take the
summation of (3) from 0 to 255? Can we propose a fast
method to calculate Hi?

For the second comment, we propose a modification on
RWE algorithm as follows. If the value of w is less than 256,
then we can compute (3) as follows.

Hi=H(Wi)= -∑ kWi p(k) log p(k) (5)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

243 | P a g e

www.ijacsa.thesai.org

The difference between (3) and (5) is the boundaries of the
summation that are taken over the term p(k) log p(k).

The following steps computes the value of Hi as follows.

 Compute t(j) for each symbol in the window Wi by
increment t(j) with 1, where 1≤j≤w.

 For each symbol (byte) in the window Wi do the
following: if t(j) ≠0 then update the value of the
entropy, e, for the j-th symbol of window Wi and set
t(j) equal to 0.

The reason for setting t(j)=0 after updating the entropy is
that the symbol (byte) j may exist many times in the window
Wi. Setting the value of t(j)=0, will remove the step of
initializing the array t for each new iteration.

The steps of the modified window entropy method,
MRWE, are given in Algorithm 1.

Algorithm 1: Modified Running Window Entropy (MRWE)

Input: Malware sample D of size n, window size w, K=8

1. If w<256 then

2. Initialize t with 0

3. For i=1 to n-w+1 do

4. For j=0 to w-1 do

5. t(di+j)= t(di+j)+1

6. End for

7. e=0

8. For j=0 to w-1 do

9. If t(di+j)≠0 then

10. e=e-(t(di+j)/w*log(t(di+j)/w))

11. t(di+j)=0

12. End if

13. End for

14. H(i)=e/K

15. End for

16. Else

17. For i=1 to n-w+1 do

18. For j=0 to w-1 do

19. t(di+j)= t(di+j)+1

20. End for

21. e=0

22. For j=0 to 256 do

23. If t(j)≠0 then

24. e=e-(t(j)/w*log(t(j)/w))

25. End if

26. End for

27. H(i)=e/K

28. End for

29. End if

Output: Entropy values H=(H1,H2,…,Hn-w+1)

Note that the first comment will be discussed in the
experimental section.

IV. PARALLELIZING MRWE ALGORITHM

In this section, the parallelization of the MRWE algorithm
(similarly RWE algorithm) on a parallel shared memory
model is discussed. The parallel model consists of multi-

processors/multi-threads that can be communicate via a global
memory.

The idea of parallelizing MRWE, PMRWE, is based on
dividing the input array D into t subarrays. Each subarray,

Di=(d(i-1)+1, d(i-1)+2, d(i-1)+3,…, di), consists of elements

approximately, where =)n-w+1)/t and 1≤i≤n/t. The value of

numerator of represents the number of windows in D. Then
each thread, ti, works on the subarray Di to compute the

entropy of this part. Each thread generates entropy values,
each value represents the entropy value for a window in Di.

All the threads work on their subarray simultaneously.
This means that no shared data between the threads. The
complete pseudocode for PMRWE algorithm is given in
Algorithm 2.

Algorithm 2: Parallel MRWE (PMRWE)

Input: Malware sample D of size n, window size w, K=8, and t

threads.

1. =)n-w+1)/t

2. If w<256 then

3. Initialize t with 0

4. For b=1 to t Do Parallel

5. For i=1 to do

6. For j=0 to w-1 do

7. t(d(b-1)+i+j)= t(d(b-1)+i+j)+1

8. End for

9. e=0

10. For j=0 to w-1 do

11. If t(d(b-1)+i+j)≠0 then

12. e=e-(t(d(b-1)+i+j)/w*log(t(d(b-1)+i+j)/w))

13. t(d(b-1)+i+j)=0

14. End if

15. End for

16. H((b-1)+i)=e/K

17. End for

18. End for parallel

19. Else

20. For b=1 to t Do Parallel

21. For i=1 to n-w+1 do

22. For j=0 to w-1 do

23. t(d(b-1)+i+j)= t(d(b-1)+i+j)+1

24. End for

25. e=0

26. For j=0 to 256 do

27. If t(j)≠0 then

28. e=e-(t(j)/w*log(t(j)/w))

29. End if

30. End for

31. H(i)=e/K

32. End for

33. End for parallel

Output: Entropy values H=(H1,H2,…,Hn-w+1)

V. EXPERIMENTAL STUDIES

The aim of this section is to study experimentally all
proposed algorithms, sequential and parallel, and compare
them with the original algorithm. The section consists of three

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

244 | P a g e

www.ijacsa.thesai.org

subsections. In the first subsection, we describe briefly the
platform specifications and data set used in the
implementation. The sequential and parallel comparisons are
providing in the second and third subsections, respectively.

A. Platform Specifications and Data

All algorithms, RWE, MRWE, PRWE, and PMRWE, have
been implemented using the programming language Python.
The Python code for the RWE algorithm exist in [17]. All
methods run on a machine of type Intel Core i7 with 8 logical
processors speeds 3.1 GHz. The machine is able to run eight
threads concurrently. The machine worked under the
Windows operating system.

For sequential comparison, the running time of each
sequential algorithm is measured by fixing n and w first. Then,
generate a malware sample of size n and run the algorithms
ten times on the malware sample. This process is repeated 20
times for different malware samples. Finally, the average time
for all instances, i.e., the average of 200 runs, is calculated.
The running time is measured in seconds.

The data sizes of malware samples are 1k, 2k, 4k, 8k, 16k,
and 32k, whereas the window size is w=4, 8, 16, 32, …., and
n/2.

For parallel comparison, the number of threads used in the
comparison are 2, 4, and 8. The data sizes for malware
samples are ½ MB, 1 MB, 2 MB, 4 MB, and 8 MB. The value
of w is equal to wmin, where wmin is the size of window that
minimize MRWE algorithm. The value of wmin is calculated
experimentally in the second subsection.

B. Sequential Comparison

In this subsection, we study the two algorithms, RWE and
MRWE, experimentally for two goals. The first goal is to
answer the first comment mentioned in the previous section:
what is the effect of changing the value of the window, w, on
the RWE and MRWE? The second goal is: which value of w
leads to minimal time for the method?

The results of running the two methods are shown in Fig.
1. From the analysis of the subfigures in Fig. 1, the behaviors
of the two methods is divided into three ranges based on w as
follows.

Case 1: w in the range [4,32]. In this case, the following
observation were made.

 The running time for the MRWE is less time than the
RWE in the case of w=4, 8, 16, and 32 for all values of
n.

 The difference between the two running times for
MRWE and RWE decreases with increasing the value
of w.

 The improvement percentages of MRWE compared to
RWE are shown in Table I. The average percentage of

improvements are 79%, 66%, 45%, and 20% for w=4,
8, 16, 32, respectively.

Case 2: w in the range [64,256[. In this case, the following
observation were made.

 The running time for the RWE is less than the MRWE
algorithm in the case of w=64 and 128 for all values of
n.

 The difference between the two methods when w=64 is
very small and approximately equal to 5%.

 When w=128, the RWE algorithm improves the
MRWE algorithm by 25% on average.

Case 3: w in the range [256, n]. In this case, the two
methods are equal because the two methods use the same
strategy.

From the observations of the three cases, we conclude that
the MRWE algorithm can be achieve the minimal time when
the window size is small.

TABLE I. PERCENTAGE OF IMPROVEMENTS FOR MRWE

n
w

4 8 16 32

1k 79.49% 66.14% 44.95% 20.05%

2k 79.19% 66.79% 45.83% 19.57%

4k 79.86% 66.45% 45.84% 20.29%

8k 79.29% 65.77% 45.77% 20.02%

16k 79.75% 66.06% 45.75% 20.57%

32k 79.06% 65.40% 45.83% 19.52%

C. Parallel Comparison
The results of running the two parallel algorithms, PRWE

and PMRWE, on a multicore system using 2, 4, and 8 threads
are shown in Fig. 2. The results show that the running time for
PMRWE algorithm outperforms the PRWE algorithm when
wmin=4. For example, the running times for PRWE and
PMRWE algorithms are 39 and 17.6 seconds, respectively,
when n=1 MB and t=2; see Fig. 2(a). From the experimental
results, the percentage of improvements for the PMRWE
algorithm over the PRWE algorithm using threads two, four
and eight are 79.3%, 77.2%, and 77.8%, respectively, on
average; see Table II.

Also, we can compute the speed up of the PMRWE
algorithm by computing the ratio between the running time of
MRWE algorithm and PMRWE algorithm. The results of
speed up of PMRWE algorithm is given in Fig. 3. The value
of speed up when t=2 is linear and this value increase to be
super-linear speed up when t=4 and 8. The increasing in the
speed up came from the size of file is divided into small
segment when t>2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

245 | P a g e

www.ijacsa.thesai.org

Fig. 1. Running Time Comparison between RWE and MRWE Algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

246 | P a g e

www.ijacsa.thesai.org

Fig. 2. Time Comparisons between PRWE and PMRWE Algorithms.

TABLE II. PERCENTAGE OF IMPROVEMENT FOR PMRWE ALGORITHM

n
Number of threads

2 4 8

0.5M 79.6% 76.9% 75.0%

1M 80.2% 80.0% 80.0%

2M 79.3% 74.0% 81.4%

4M 79.0% 75.8% 75.0%

8M 78.4% 79.4% 77.7%

Avg. 79.3% 77.2% 77.8%

Fig. 3. Speed up of PMRWE Algorithm.

VI. CONCLUSION

Malware analysis is important to study malicious
software’s functionality, purpose, origin, and potential impact.
The running window entropy method is one of the methods
used to find the entropy values of the malware sample. The
main drawback of this method is the amount of time when the
size of file is large. In this paper, two improved algorithms are
given. The first improved algorithm is based on determining
the best window size to minimize the running time of the
window entropy method. The second improved algorithm is
the parallelization of the improved sequential algorithm.

The experimental studies for different malware sizes and
best window size show that the improved sequential and
parallel methods outperform the original and the improved
sequential methods, with 79% and 77% faster time,
respectively.

There are many open questions related to improve the
entropy method for malware analysis as follows: (1) How to
use other high-performance systems, such as distributed
system, GPU (graphic processing unit) and cloud, to speed up
the execution time? (2) How to extend this work to other
method for window entropy?

ACKNOWLEDGMENT

This research has been funded by Scientific Research
Deanship at University of Ha’il - Saudi Arabia through project
number GR-22 031.

REFERENCES

[1] Panda Security, “2017 Cybersecurity Predictions,” 2017.

[2] E. Gandotra, D. Bansal, S. Sofat, “ Malware analysis and classification:
a survey,” J. of Inf. Security, 5, pp. 56-64, 2014.

[3] I. Kara, “A basic malware analysis method,” Computer Fraud &
Security, vol. 2019, Issue 6, pp. 11-19, 2019.

[4] Mafaz Mohsin Khalil Al-Anezi, “Generic Packing Detection Using
Several Complexity Analysis for Accurate Malware Detection”
International Journal of Advanced Computer Science and Applications,
5(1), 2014.

4
.9

1

1
0
.1

2

1
8
.8

3
.9

3
9

8
.2

8
1
.5

1
7
.6

0

20

40

60

80

100

PRWE PMRWE

R
u
n
n
in

g
 t

im
e

in
 s

ec
o
n
d
s

(a) t=2

0.5M

1M

2M

4M

8M

1
.3

0
.3

 2
.5

0
.5

5

1
.3

9
.5

2
.3

2
1
.8

4
.5

0

5

10

15

20

25

PRWE PMRWE

R
u
n
n
in

g
 t

im
e

in
 s

ec
o
n
d
s

(b) t=4

0.5M
1M
2M
4M
8M

0
.2

0
.0

5

0
.3

0
.0

6

0
.7

0
.1

3

1
.2

0
.3

2
.6

0
.5

8

0

0.5

1

1.5

2

2.5

3

PRWE PMRWE

R
u
n
n
in

g
 t

im
e

in
 s

ec
o
n
d
s

(c) t=8

0.5M
1M
2M
4M
8M

0

10

20

30

40

50

60

70

80

2 4 8

S
p
ee

d
 u

p

Threads, t

0.5MB

1MB

2MB

4MB

8MB

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

247 | P a g e

www.ijacsa.thesai.org

[5] Achmad Rizal, Risanuri Hidayat and Hanung Adi Nugroho,
“Comparison of Multilevel Wavelet Packet Entropy using Various
Entropy Measurement for Lung Sound Classification” International
Journal of Advanced Computer Science and Applications(IJACSA),
10(2), 2019.

[6] Abdul Azim Ismail and Marina Yusoff, “An Efficient Hybrid LSTM-
CNN and CNN-LSTM with GloVe for Text Multi-class Sentiment
Classification in Gender Violence” International Journal of Advanced
Computer Science and Applications, 13(9), 2022.

[7] Ibrahim S Alkhazi and William J. Teahan, “Classifying and Segmenting
Classical and Modern Standard Arabic using Minimum Cross-Entropy”
International Journal of Advanced Computer Science and
Applications(IJACSA), 8(4), 2017.

[8] Ke-Huey Ng, Siau-Chuin Liew and Ferda Ernawan, “An Improved
RDWT-based Image Steganography Scheme with QR Decomposition
and Double Entropy” International Journal of Advanced Computer
Science and Applications(IJACSA), 11(3), 2020.

[9] Alexi Delgado, Betsy Vilchez, Fabian Chipana, Gerson Trejo, Renato
Acari, Rony Camarena, Víctor Galicia and Chiara Carbajal, “Applying
Grey Clustering and Shannon’s Entropy to Assess Sediment Quality
from a Watershed” International Journal of Advanced Computer Science
and Applications(IJACSA), 12(9), 2021.

[10] D. Baysa, “Structural entropy and metamorphic malware,” J. Comput.
Virol. Hacking Tech., vol. 9, no. 4, pp. 179–192, 2013.

[11] M. Bat-Erdene, H. Park, H. Li, H. Lee, M. Choi, “Entropy analysis to
classify unknown packing algorithms for malware detection,” Int. J. Inf.
Secur. 16, pp. 227–248, 2017.

[12] M. Bat-Erdene, T. Kim, H. Li, and H. Lee, “Dynamic classification of
packing algorithms for inspecting executables using entropy analysis,”
Proc. 8th Int. Conf. Malicious Unwanted Softw. "The Am.
MALWARE, pp. 19–26, 2019.

[13] A. Chakrabarti, G. Cormode, and A. Mcgregor, “A near-optimal
algorithm for estimating the entropy of a stream,” ACM Trans.
Algorithms, vol. 6, no. 3, pp. 1–21, 2020.

[14] K. Han, J. H. Lim, and E. G. Im, “Malware analysis method using
visualization of binary files,” Proceedings of the Research in Adaptive
and Convergent Systems. ACM, Montreal, Quebec, Canada, 2019.

[15] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and
packed malware,” IEEE Security & Privacy, vol. 5, no. 2. pp. 40–45,
2021.

[16] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data streaming
algorithms for estimating entropy of network traffic,” SIGMETRICS
Perform. Eval. Rev., vol. 34, no. 1, pp. 145–156, 2006.

[17] K. Jones, “Algorithms #1 python source code,” 2017. [Online].
Available: https://github.com/keithjjones/csc705-alg1.

[18] K. Jones, “malgazer,” 2017. [Online]. Available:
https://github.com/keithjjones/malgazer.

[19] K. Jones , Y. Wang, “An optimized running window entropy algorithm,”
National Cyber Summit (NCS), 5-7 June 2018, pp. 72-77, 2018.

[20] K. Jones , Y. Wang, “Malgazer: An automated malware classifier with
running window entropy and machine learning,” 2020 Sixth
International Conference on Mobile And Secure Services
(MobiSecServ), 22-23 Feb., pp 1-6, 2020.

[21] C. Mcmillan, J. Garman, “System and method for determining data
entropy to identify malware,” Application PCT/US2008/051383.

[22] H. Menéndez, S. Bhattacharya, D. Clark, E. Barr, “The arms race:
adversarial search defeats entropy used to detect malware,” Expert
Systems With Applications, 118: pp 246–260, 2019.

[23] S. Naval, V. Laxmi, M. S. Gaur, and P. Vinod, “ESCAPE: entropy score
analysis of packed executable,” Proc. Fifth Int. Conf. Secur. Inf.
Networks, pp. 197–200, 2017.

[24] M. Paavola, “An efficient entropy estimation approach,” Universtity of
Oulu, 2011.

[25] E. Radkani, S. Hashemi, A. Keshavarz-Haddad, M. Haeri, “An entropy-
based distance measure for analysing and detecting metamorphic
malware,” Appl Intell, 48, pp. 536–1546, 2018.

[26] I. Sorokin, “Comparing files using structural entropy,” J. Comput.
Virol., vol. 7, no. 4, pp. 259–265, 2011.

[27] S. Treadwell and M. Zhou, “A heuristic approach for detection of
obfuscated malware,” in 2009 IEEE International Conference on
Intelligence and Security Informatics, 2009, pp. 291–299.

[28] M. Weber, M. Schmid, M. Schatz, and D. Geyer, “A toolkit for
detecting and analyzing malicious software,” in Computer Security
Applications Conference, 2002. Proceedings. 18th Annual, 2002, pp.
423–431.

[29] H. M. Bahig, K.A. Fathy. An efficient parallel strategy for high-cost
prefix operation. J Supercomput 77, pp. 5267–5288, 2021.

[30] H. M. Bahig, H. M Bahig, K. A. Fathy, “Fast and scalable algorithm for
product large data on multicore system,” Concurrency and Computation:
Practice and Experience, vol. 33, Issue 2, 2021 Wiley.

https://github.com/keithjjones/malgazer

