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Abstract—Malware analysis is a major challenge in 

cybersecurity due to the regular appearance of new malware and 

its effect in cyberspace.  The existing tools for malware analysis 

enable reverse engineering to understand the origin, purpose, 

attributes, and potential consequences of malicious software.  An 

entropy method is one of the techniques used to analyze and 

detect malware, which is defined as a measure of information 

encoded in a series of values based upon the probability of those 

values appearing. The window entropy algorithm is one of the 

methods that can be applied to calculate entropy values in an 

effective manner. However, it requires a significant amount of 

time when the size of the file is large. In this paper, we solve this 

problem in two ways. The first way of improvement is 

determining the best window size that leads to minimizing the 

running time of the window entropy algorithm. The second way 

of improvement is by parallelizing the window entropy algorithm 

on a multicore system.  The experimental studies using artificial 

data show that the improved sequential algorithm can reduce the 

window entropy method’s running time by 79% on an average.  

Also, the proposed parallel algorithm outperforms the modified 

sequential algorithm by 77% and has super-linear speed up. 

Keywords—Entropy; window method; malware analysis; 

parallel algorithm; multicore 

I. INTRODUCTION 

With increased internet use, social media, and data 
sharing, users must better secure themselves to protect 
vulnerable information. One of the dangerous software that 
faces the user is malware. 

Malware is a set of instructions that run on a computer, 
specifically designed to harm the user or the target system by 
making the system do something that an attacker wants it to 
do, like steal personal information, delete files, commit fraud, 
or steal software serial numbers. Moreover, new malware is 
registered periodically, posing a challenge to cybersecurity 
efforts. Malware remains one of the most potent threats in 
cyberspace, despite significant advances in cyber security 
mechanisms and their ongoing evolution. 

Different kinds of malware (e.g., viruses, bots, rootkit, 
backdoors) can be distributed via various channels, 
transmitted, and used in various techniques to perform 
malicious operations [1]. 

The process of analyzing the malware (with and without 
execution) is called malware analysis. The main objectives of 
analyzing malware are to study malicious software’s origin, 
purpose, attributes, and potential impact. 

A large number of malware analysis techniques have been 
proposed. These techniques can be classified into two main 
categories [2]: static and dynamic. The main difference 

between static and dynamic analysis is the examination of the 
malware with or without running it. The two categories 
contain many malware detection techniques such as signature-
based, specification-based, behavioral-based, and heuristic-
based [3]. One of the techniques used in malware analysis is 
the running window entropy (RWE) method, where the 
entropy is a measure of information encoded in a series of 
values based upon the probability of those values appearing 
[1]. 

The entropy method has been used in many applications 
such that malware detection [4], lung sound classification [5], 
gender violence classification [6], Arabic text classification 
[7], image steganography [8], and sediments quality 
evaluation [9]. 

For analyzing malware using entropy algorithm, there are 
many research papers have been proposed such as [10, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. 

Lyda and Hamrock [15] analyzed malware utilizing 
structural entropy, which employs a skip value to ignore the 
entropy calculation at each index. McMillan and Garman [21] 
obtained the same result utilizing a statistical decision concept 
using malware entropy information. 

Sorokin [26] proposed a method based on dividing the file 
into segments and then applying a discrete wavelet transform 
(DWT) to the structural entropy to compare the segments of 
the input file. Baysa et al. [11] used the same strategy to 
identify the malware changes. The method was implemented 
on binary files, and there was no need to perform any 
preprocessing to detect the malware. 

Bat-Erdene et al. [12] used the entropy method to detect 
unknown packers. The method is based on representing the 
entropy value as a symbolic aggregate approximation (SAX) 
and measuring the symbol’s similarity in the SAX sequence. 
The accuracy of this method on the tested data is 95%. 
Radkani et al. [25] suggested a new method to detect 
metamorphic malware based on entropy and dissimilarity 
measures. The drawback of this method is the measurement 
limitation, which is based on the opcode (operation code) 
frequency. 

Jones and Wang [19] suggested a method to reduce the 
running time of the RWE algorithm. The method is based on 
removing a nested "for" loop from the old version of the 
algorithm. The same authors [20] used the entropy concept to 
extract the feature set used in machine learning algorithms. 

Menéndez et al. [22] introduced a new concept called 
entropy time series to detect malware. The technique uses a 
time series to represent an entropy signature. Then, the 
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technique applies wavelet analysis to a file's entropy to obtain 
a simplified signature. The main advantage of this strategy is 
reducing the running time of malware analysis. 

In light of the previous discussions about the use of 
entropy in malware analysis, the main question of the research 
is: how to reduce the running time of the entropy method 
when the size of the file is large? 

This paper has focus on the RWE algorithm because the 
window method is one of the strategies used in different 
fields, such as [29, 30], to reduce the running time. This study 
aims to demonstrate the effect of changing the window size on 
the RWE algorithm in terms of running time. In addition, the 
paper explores if there is a common window size that reduces 
the running time of the RWE algorithm for all malware 
samples and look at ways to optimize the RWE algorithm's 
running time. Finally, how to parallelize the sequential 
algorithm to reduce the running time. 

The remainder of this paper is organized as follows. 
Section II gives briefly the foundation concepts of the RWE 
algorithm. In Section III, the modified RWE algorithm in 
terms of execution time is given. The second improvement for 
RWE algorithm using a multicore system is given in Section 
IV. The experiments and their analysis for the proposed 
algorithms on artificial data are given in Section V. Finally, 
the conclusion and open question are given in Section VI. 

II. RUNNING WINDOW ENTROPY METHOD 

In this section, we briefly give the main concept of entropy 
in subsection A. In subsection B, we give the main idea and 
steps of the RWE method that are used to calculate the 
entropy values of the malware sample. 

A. Entropy Concept 

Shannon [1] introduced the concept of entropy in 
information theory to measure the degree of randomness in a 
data set. The general formula for Shannon entropy is given by 

H(X)= -∑ x  p(x) log p(x)                         (1) 

where  

 X is a discrete random variable and has values 

belonging to the alphabet , 

  is the alphabetic domain of the malware sample, and 

 p(x) is the probability distribution of the value x and 
has a value belonging to the range [0, 1]. 

In information theory, it is essential to recognize that more 
relevant information is present in the data when the entropy 
value is higher than when it is lower. This means that a higher 
entropy value denotes more randomness and useful, 
unpredictable information. 

B. Running Window Entropy Method 

Given a malware sample D of size n as D=(d1, d2, d3, … , 
dn). The RWE algorithm, is a method based on dividing 
sample D as continuous overlap windows, each window of 
size w.  A window of size w that starts at index i in the data D 
represents as follows. 

Wi =(di, di+1, di+2, … , di+w-1),            (2) 

where 1≤i≤n-w+1. 

Since the malware sample represents a sequence of bytes, 
each byte ranges from 0 to 255. Therefore, the entropy for Wi 
can be calculated as follows: 

Hi=H(Wi)= -∑ 0≤k≤255  p(k) log p(k)            (3) 

where p(k) is the probability of byte k within Wi and is 
equal to the total number of the byte k (symbol) within Wi , tk , 
to the size of the window; i.e. p(k)=tk/w. 

In the case of the byte, k, does not appear in the window 
Wi, then tk =0 and the method ignores the log p(k) value 
because the logarithm of zero value is undefined. 

Therefore, the malware sample after applying the RWE 
algorithm represents a sequence of values. 

H =(H1, H2, H3, … , Hn-w+1)            (4) 

The algorithm uses two arrays: 

 H is an array of size n-w+1 and the value of Hi 
represents the entropy value for the window number i, 
1≤i≤n-w+1. 

 t is an array of size 256 and the value of t(j) represents 
the total number of the byte j in a certain window. 

The RWE algorithm consists of n-w+1 iterations, 1≤i≤n-
w+1, as follows: 

Step 1: Initialize the array t with zero. 

Step 2: Compute t(j) for each symbol in the window Wi by 
incrementing t(j) with 1, where 0≤j≤w-1. 

Step 3: Calculate the entropy, e, of the window Wi using 
(3) if t(j)≠0 and 0<j<256. 

Step 4: Calculate Hi=e/K, where K=8. 

The reason for taking the value of K equal to 8 is the 
values of (3) between 0 and 8. 

III. IMPROVED RWE METHOD 

In this section, we introduce two comments on the RWE 
algorithm, then modify the RWE algorithm. 

The first comment on the RWE algorithm is that the 
window size was selected experimentally from 256 to 2048 as 
in [19]. No experimental studies have addressed the effect of 
window size when w<256 or w>2048.  What is the effect of 
these values of w on the RWE algorithm? Does the same 
behavior occur if we start from a window size equal to 4? 

The second comment on the RWE algorithm is that when 
the size of window is less than 256, why do we take the 
summation of (3) from 0 to 255? Can we propose a fast 
method to calculate Hi? 

For the second comment, we propose a modification on 
RWE algorithm as follows. If the value of w is less than 256, 
then we can compute (3) as follows. 

Hi=H(Wi)= -∑ kWi   p(k) log p(k)            (5) 
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The difference between (3) and (5) is the boundaries of the 
summation that are taken over the term p(k) log p(k). 

The following steps computes the value of Hi as follows. 

 Compute t(j) for each symbol in the window Wi by 
increment t(j) with 1, where 1≤j≤w. 

 For each symbol (byte) in the window Wi do the 
following: if t(j) ≠0 then update the value of the 
entropy, e, for the j-th symbol of window Wi and set 
t(j) equal to 0. 

The reason for setting t(j)=0 after updating the entropy is 
that the symbol (byte) j may exist many times in the window 
Wi. Setting the value of t(j)=0, will remove the step of 
initializing the array t for each new iteration. 

The steps of the modified window entropy method, 
MRWE, are given in Algorithm 1. 

Algorithm 1: Modified Running Window Entropy (MRWE) 

Input: Malware sample D of size n, window size w, K=8 

1. If w<256 then 

2. Initialize t with 0 

3. For i=1 to n-w+1 do 

4. For j=0 to w-1 do 

5. t(di+j)= t(di+j)+1 

6. End for 

7. e=0 

8. For j=0 to w-1 do 

9. If t(di+j)≠0 then 

10. e=e-( t(di+j)/w*log(t(di+j)/w)) 

11. t(di+j)=0 

12. End if 

13. End for 

14. H(i)=e/K 

15. End for 

16. Else 

17. For i=1 to n-w+1 do 

18. For j=0 to w-1 do 

19. t(di+j)= t(di+j)+1 

20. End for 

21. e=0 

22. For j=0 to 256 do 

23. If t(j)≠0 then 

24. e=e-( t(j)/w*log(t(j)/w)) 

25. End if 

26. End for 

27. H(i)=e/K 

28. End for 

29. End if 

Output: Entropy values H=(H1,H2,…,Hn-w+1) 

Note that the first comment will be discussed in the 
experimental section. 

IV. PARALLELIZING MRWE ALGORITHM 

In this section, the parallelization of the MRWE algorithm 
(similarly RWE algorithm) on a parallel shared memory 
model is discussed. The parallel model consists of multi-

processors/multi-threads that can be communicate via a global 
memory. 

The idea of parallelizing MRWE, PMRWE, is based on 
dividing the input array D into t subarrays. Each subarray, 

Di=(d(i-1)+1, d(i-1)+2, d(i-1)+3,…, di), consists of  elements 

approximately, where = )n-w+1)/t and 1≤i≤n/t.  The value of 

numerator of  represents the number of windows in D. Then 
each thread, ti, works on the subarray Di to compute the 

entropy of this part. Each thread generates  entropy values, 
each value represents the entropy value for a window in Di. 

All the threads work on their subarray simultaneously. 
This means that no shared data between the threads. The 
complete pseudocode for PMRWE algorithm is given in 
Algorithm 2. 

Algorithm 2: Parallel MRWE (PMRWE) 

Input: Malware sample D of size n, window size w, K=8, and t 

threads. 

1. = )n-w+1)/t 

2. If w<256 then 

3. Initialize t with 0 

4. For b=1 to t Do Parallel 

5. For i=1 to  do 

6. For j=0 to w-1 do 

7. t(d(b-1)+i+j)= t(d(b-1)+i+j)+1 

8. End for 

9. e=0 

10. For j=0 to w-1 do 

11. If t(d(b-1)+i+j)≠0 then 

12. e=e-( t(d(b-1)+i+j)/w*log(t(d(b-1)+i+j)/w)) 

13. t(d(b-1)+i+j)=0 

14. End if 

15. End for 

16. H((b-1)+i)=e/K 

17. End for 

18. End for parallel 

19. Else 

20. For b=1 to t Do Parallel 

21. For i=1 to n-w+1 do 

22. For j=0 to w-1 do 

23. t(d(b-1)+i+j)= t(d(b-1)+i+j)+1 

24. End for 

25. e=0 

26. For j=0 to 256 do 

27. If t(j)≠0 then 

28. e=e-( t(j)/w*log(t(j)/w)) 

29. End if 

30. End for 

31. H(i)=e/K 

32. End for 

33. End for parallel 

Output: Entropy values H=(H1,H2,…,Hn-w+1) 

V. EXPERIMENTAL STUDIES 

The aim of this section is to study experimentally all 
proposed algorithms, sequential and parallel, and compare 
them with the original algorithm. The section consists of three 
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subsections. In the first subsection, we describe briefly the 
platform specifications and data set used in the 
implementation. The sequential and parallel comparisons are 
providing in the second and third subsections, respectively. 

A. Platform Specifications and Data 

All algorithms, RWE, MRWE, PRWE, and PMRWE, have 
been implemented using the programming language Python.  
The Python code for the RWE algorithm exist in [17].  All 
methods run on a machine of type Intel Core i7 with 8 logical 
processors speeds 3.1 GHz. The machine is able to run eight 
threads concurrently. The machine worked under the 
Windows operating system. 

For sequential comparison, the running time of each 
sequential algorithm is measured by fixing n and w first. Then, 
generate a malware sample of size n and run the algorithms 
ten times on the malware sample. This process is repeated 20 
times for different malware samples. Finally, the average time 
for all instances, i.e., the average of 200 runs, is calculated.  
The running time is measured in seconds. 

The data sizes of malware samples are 1k, 2k, 4k, 8k, 16k, 
and 32k, whereas the window size is w=4, 8, 16, 32, …., and 
n/2. 

For parallel comparison, the number of threads used in the 
comparison are 2, 4, and 8. The data sizes for malware 
samples are ½ MB, 1 MB, 2 MB, 4 MB, and 8 MB. The value 
of w is equal to wmin, where wmin  is the size of window that 
minimize MRWE algorithm. The value of  wmin is calculated 
experimentally in the second subsection. 

B. Sequential Comparison 

In this subsection, we study the two algorithms, RWE and 
MRWE, experimentally for two goals. The first goal is to 
answer the first comment mentioned in the previous section: 
what is the effect of changing the value of the window, w, on 
the RWE and MRWE? The second goal is: which value of w 
leads to minimal time for the method? 

The results of running the two methods are shown in Fig. 
1. From the analysis of the subfigures in Fig. 1, the behaviors 
of the two methods is divided into three ranges based on w as 
follows. 

Case 1: w in the range [4,32]. In this case, the following 
observation were made. 

 The running time for the MRWE is less time than the 
RWE in the case of w=4, 8, 16, and 32 for all values of 
n. 

 The difference between the two running times for 
MRWE and RWE decreases with increasing the value 
of w. 

 The improvement percentages of MRWE compared to 
RWE are shown in Table I. The average percentage of 

improvements are 79%, 66%, 45%, and 20% for w=4, 
8, 16, 32, respectively. 

Case 2: w in the range [64,256[. In this case, the following 
observation were made. 

 The running time for the RWE is less than the MRWE 
algorithm in the case of w=64 and 128 for all values of 
n. 

 The difference between the two methods when w=64 is 
very small and approximately equal to 5%. 

 When w=128, the RWE algorithm improves the 
MRWE algorithm by 25% on average. 

Case 3: w in the range [256, n]. In this case, the two 
methods are equal because the two methods use the same 
strategy. 

From the observations of the three cases, we conclude that 
the MRWE algorithm can be achieve the minimal time when 
the window size is small. 

TABLE I. PERCENTAGE OF IMPROVEMENTS FOR MRWE 

n 
w 

4 8 16 32 

1k 79.49% 66.14% 44.95% 20.05% 

2k 79.19% 66.79% 45.83% 19.57% 

4k 79.86% 66.45% 45.84% 20.29% 

8k 79.29% 65.77% 45.77% 20.02% 

16k 79.75% 66.06% 45.75% 20.57% 

32k 79.06% 65.40% 45.83% 19.52% 

C. Parallel Comparison 
The results of running the two parallel algorithms, PRWE 

and PMRWE, on a multicore system using 2, 4, and 8 threads 
are shown in Fig. 2. The results show that the running time for 
PMRWE algorithm outperforms the PRWE algorithm when 
wmin=4. For example, the running times for PRWE and 
PMRWE algorithms are 39 and 17.6 seconds, respectively, 
when n=1 MB and t=2; see Fig. 2(a). From the experimental 
results, the percentage of improvements for the PMRWE 
algorithm over the PRWE algorithm using threads two, four 
and eight are 79.3%, 77.2%, and 77.8%, respectively, on 
average; see Table II. 

Also, we can compute the speed up of the PMRWE 
algorithm by computing the ratio between the running time of 
MRWE algorithm and PMRWE algorithm. The results of 
speed up of PMRWE algorithm is given in Fig. 3. The value 
of speed up when t=2 is linear and this value increase to be 
super-linear speed up when t=4 and 8. The increasing in the 
speed up came from the size of file is divided into small 
segment when t>2. 
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Fig. 1. Running Time Comparison between RWE and MRWE Algorithms. 
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Fig. 2. Time Comparisons between PRWE and PMRWE Algorithms. 

TABLE II. PERCENTAGE OF IMPROVEMENT FOR PMRWE ALGORITHM 

n 
Number of threads 

2 4 8 

0.5M 79.6% 76.9% 75.0% 

1M 80.2% 80.0% 80.0% 

2M 79.3% 74.0% 81.4% 

4M 79.0% 75.8% 75.0% 

8M 78.4% 79.4% 77.7% 

Avg. 79.3% 77.2% 77.8% 

 

Fig. 3. Speed up of PMRWE Algorithm. 

VI. CONCLUSION 

Malware analysis is important to study malicious 
software’s functionality, purpose, origin, and potential impact. 
The running window entropy method is one of the methods 
used to find the entropy values of the malware sample. The 
main drawback of this method is the amount of time when the 
size of file is large. In this paper, two improved algorithms are 
given. The first improved algorithm is based on determining 
the best window size to minimize the running time of the 
window entropy method. The second improved algorithm is 
the parallelization of the improved sequential algorithm. 

The experimental studies for different malware sizes and 
best window size show that the improved sequential and 
parallel methods outperform the original and the improved 
sequential methods, with 79% and 77% faster time, 
respectively. 

There are many open questions related to improve the 
entropy method for malware analysis as follows: (1) How to 
use other high-performance systems, such as distributed 
system, GPU (graphic processing unit) and cloud, to speed up 
the execution time? (2) How to extend this work to other 
method for window entropy? 
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