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Abstract—A collection of metabolic conditions known as
diabetes mellitus (DM) is defined by hyperglycemia brought on
by deficiencies in insulin secretion, action, or both. In terms of
mortality rate, type-2 diabetes is 20 times higher when compared
with type-1. Based on the earlier research, there is still scope to
identify different risk levels of type-2 diabetes complications. To
achieve this, we have proposed a T2DC machine learning-based
prediction system using a decision tree as a base estimator with
random forest to identify the severity of T2-DM complications
at an early stage. Our proposed model achieved accuracies of
95.43%, 94.62%, 96.25%, 97.55%, and 97.83% for Nephropa-
thy, Neuropathy, Retinopathy, Cardio Vascular and Peripheral
Vascular complications in T2-DM patients. The proposed model
has the potential to improve clinical outcomes by promoting the
delivery of early and personalized care to T2-DM patients.
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I. INTRODUCTION

One of the most widespread health problems affecting all
age groups is diabetes mellitus (DM). According to WHO
(World Health Organization) statistics, nearly 180 million
people worldwide have type 2 diabetes mellitus (T2-DM),
with 95 percent having DM in this structure [1]. The number
of people having this T2-DM is estimated to rise drastically
by 2030. As per the highest cases recorded in the world,
India ranked in 2nd place with 60 million DM records and
is estimated to rise by 109 million people with DM by 2035
[2]. It is a condition that is identified when the pancreas fails to
produce insulin in the required amount needed for the body, or
due to damage to tissues and cells in the human body. T2-DM
is a condition that is strongly connected to both micro vascular
(MIV) and macro vascular (MAV) problems, which include
nephropathy, retinopathy, neuropathy (MIV), and peripheral
vascular disease (MAV), contributing to the effect on internal
organs and blood vessel-related complications [3]. DM can
be identified in three different forms, namely: type 1 diabetes
mellitus (T1-DM) affects the pancreas by producing insulin in
a lower amount than needed by the entire human body [4].
To keep the body’s insulin level at the right level, it needs
supplements from outside the body. T2-DM is a condition
characterized by a significant increase in blood sugar levels.
In this structure of DM, the insulin levels are disturbed, and
the body fails to utilize and produce [5]. It is a type of

hormone developed in the pancreas that aids in maintaining
sugar levels in the blood. In particular, this hormone maintains
the amount of glucose that flows through the cells. In general,
after the consumption of food, blood sugar levels in the blood
are identified in the high range [6]. The extra glucose in
the blood is transferred into the cells when the pancreas
secretes insulin, which diminishes the quantity of glucose in
the bloodstream [7]. When this abnormality is not identified at
an early stage using proper diagnosis, this T2-DM can lead to
severe chronic health disorders. Chronic hyperglycemia, a side
effect of diabetes, can damage, weaken, or kill many organs
over time, especially the kidneys, eyes, heart, nerves, and blood
vessels [8].

A. MIV and MAV Complications

Based on the research on DM, it is evident that the
following are the damaging factors for human health:

• latent loss of eyesight with Retinopathy (RET).

• fluid accumulation causes Nephropathy (NEP), which
in turn leads to hyperglycemia.

• Neuropathy (NEU) is a condition that affects the sup-
ply of blood by causing late healing in the functioning
of nerves, shortening the sensation in the feet, and
ulcers.

• the obstruction and shortened flow of oxygenated
blood to the bladder and kidneys are caused due to
cardio vascular disease (CVD).

• the internal layers of large and small arteries are
the complications caused due to peripheral vascular
diseases (PVD).

B. Role of Machine Learning in Diabetes Detection

Machine Learning (ML) models [9] have been developed
in most medical implementations as an encouraging tool to
help in taking spontaneous conclusions related to various
infections, along with DM, which produces favorable results.
With ML algorithms, vast amounts of data are processed by
minimizing the effort [10]. This data is used to train models,
which then generate the most appropriate results associated
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Fig. 1. Machine Learning Classification.

with the input data [11]. It is possible to train the models using
any characteristics that are feasible and medically necessary.
These parameters differ in accordance with the wide range of
symptoms. Some of the learning models used for classification
purposes are decision trees, support vector machines, and
regression analysis [12]. The approaches are often embedded
in statistical analysis to extract useful information from the
core data. A combination of these approaches can be used to
build a predictive model that identifies the risk complications
of T2-DM based on the deciding risk prediction calculator. A
scenario of disease prediction with machine learning models
is depicted in Fig. 1.

This research study focuses on identifying the risk levels
of MIV and MAV complications in T2-DM using different ML
algorithms. Accurate prediction of MIV and MAV complica-
tions could aid in more targeted measures that would prevent
or slow their progression.

The rest of this paper has the following structure. Section
II discusses related research and its limitations. Section III
presents the proposed methodology. Section IV discusses the
experimental results, and Section V concludes the study with
potential future work.

II. RELATED WORK

Allen A. et al. [13] trained two ML algorithms to predict
DKD severity stages. To assess performance, they compared
them to the Centers for Disease Control and Prevention (CDC)
risk score. The algorithms were validated using both a hold-out
test set and an external dataset obtained from different facili-
ties. In both the hold-out and external datasets, their proposed
algorithms outperformed the CDC risk score, achieving an area
under the receiver operating characteristic curve (AUROC)
of 0.75 on the hold-out set for the prediction of any-stage
DKD and an AUROC of over 0.82 for more severe endpoints,
compared to the CDC risk score, which had an AUROC of
less than 0.70 on all test sets and endpoints. Lu H. et al.

[14] suggested that the perception of acute infection changes
and predicting people inculcating the threat of treatment-
resistant infection are mainly considered. For chronic disease
identification, an ensemble of original patient-channel and
ML techniques is proposed. This proposed method is used
in networks with health scenarios. T2-DM is identified in a
subset of patients for this purpose. This method identified
the factors in identifying the acute infection threat using
eight ML techniques. The significant observations show that
the advanced structure with ML classifiers achieved an AUC
ranging from 0.79 to 0.91. Rashid, M. et al. [15] identified
a root cause of death among T2-DM patients due to micro
vascular problems. Their study aims to examine the use of
the entire ML procedure in identifying issues using people’s
medical, clinical, and statistical examinations. The records of
96 people from Bangladesh were examined with T2-DM. They
are examined through a chi-squared examination to demo-
graphically represent the major key points in identifying the
micro vascular problems like CAN, DPN, and RET. Various
ML models like LR, RF, and SVM were used for the exam-
ination of micro vascular problems. The exact outcomes are
determined through the random forest through hypertension,
gender, micro albuminuria, and smoking habit. The authors
showed ML represents accurate results in identifying micro
vascular problems in T2-DM patients. Based on their records,
which aid in controlling these people by later micro vascular
problems that lead to early death. Deberneh, H. et al. [16]
considered factors like FPG, triglycerides, HbA1c, gamma-
GTP, BMI, family history, physical activity, smoking, drinking,
gender, age, and uric acid in their study. Then the engaged
LR, RF, SVM, XGBoost and ensemble ML procedures relied
on these attributes to identify the result as normal, diabetic,
or pre-diabetic. Depending on the hypothetical outcomes, the
execution of the identified method strives to preferably better
in predicting the circumstance of type 2 diabetes. This method
also helps doctors and patients with required forecasting data
on the probability of occurring type 2 diabetes. Fazakis et
al. [17] proposed a worker-centric, IoT-enabled, unobtrusive
health, well-being, and functional ability monitoring frame-
work with AI tools for the early detection of T2-DM. Their
diabetes risk prediction system used several ML models to ap-
ply, evaluate, and incorporate KDD components. The ensemble
WeightedVotingLRRFs ML model’s AUC of 0.884 improves
diabetes prediction. Jian, Y. et al. [18] proposed multiple ML
algorithms to predict and classify eight diabetes complications.
Metabolic syndrome, dyslipidemia, neuropathy, nephropathy,
diabetic foot, hypertension, obesity, and retinopathy are among
the complications. The authors used a dataset with 884 cases
and 79 features. The models’ performance was evaluated using
accuracy and F1-score metrics, which reached a maximum
of 97.8% and 97.7%, respectively. Neha Prerna et al. [19]
proposed a research study that uses different ML algorithms to
predict the risk of type 2 diabetes among individuals based on
their lifestyle and family history. The experiment was carried
out with 952 instances collected via an online and offline ques-
tionnaire, which included 18 questions about health, lifestyle,
and family background. The proposed ML algorithms were
also tested on the ”Pima Indian Diabetes database.” Their
experimental results revealed that the random forest classifier
performed the best in terms of accuracy. Jung, L. C et al. [20]
described a method for identifying subtle effects of genetic
variants using whole genome sequencing data and improving
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the prediction accuracy of T2-DM at the population level. The
method entailed first performing sparse principal component
analysis to genotype data to obtain orthogonal features, then
creating a new classifier with single nucleotide polymorphism
(SNP)-specific regularization parameters to reduce the false
positive rate of feature selection, and finally verifying feature
relevance with penalized logistic regression. The researchers
used a dataset containing 625597 SNPs and 23 environmental
variables from 3326 people. The method identified 271 genetic
variants with minor effects on T2DM prediction. It is also
more than 15 times faster than random forest and extreme
gradient boosting (XGBoost) classifiers. Hasan, M.K. et al.
[21] proposed a method for DM identification for the metadata,
involving 768 women, 268 of who had high blood sugar levels
and 500 of whom were normal. In their study, initialization is
critical for maintaining cutting-edge results. This includes edge
elimination, replacement with the average for lost numbers,
data stabilization, factor alternative, and five-fold validation. K-
Nearest Neighbor, Decision Trees, Random Forest, AdaBoost,
and other Different ML models were used. The authors also
proposed a weighted ensembling of different ML models.
AUC was chosen as the performance metric. The experiments
demonstrated that the ensembling classifier outperforms all
others, with sensitivity, specificity, false omission rate, diag-
nostic odds ratio, and AUC values of 0.789, 0.934, 0.092,
66.234, and 0.950, respectively. Islam, M.S. et al. [22] pro-
posed a study to predict the Hemoglobin Alc (HbAlc) levels in
advance using ML methods in order to enable early diagnosis
and prevent diabetes complications. The fractional derivative,
glucose variability, time in range, and wavelet decomposition
methods were used to extract features from continuous glucose
monitoring (CGM) data. The CGM data from the Diabetes
Research in Children Network (DirecNet) was utilized. Ac-
cording to the results, the ensembling of the random forest
and extreme gradient boosting algorithms, combined with the
feature fusion, produced the best performance with a low mean
absolute error (MAE) of 3.39 mmol/mol and a high coefficient
of determination (R-squared) score of 0.81. Kopitar, L. et al.
[23] compared ML models for the prediction of T2-DM by
using various regression techniques on undiagnosed patient
data. Fasting plasma samples are measured over a six-month
period using 100 computational iterations. These iterations
were examined using various data subsets. According to the
study analysis, the linear regression model had the lowest
average RMSE of 0.838, followed by random forest with
0.842 and Xgboost with 0.881. Dagliati et al. [24] proposed
a data mining pipeline to derive a set of predictive models
of T2DM complications from nearly 1000 patients’ electronic
health record data. Clinical center profiling, predictive model
targeting, predictive model construction, and model validation
are all part of the pipeline. The logistic regression-based
method with stepwise feature selection was used to predict
the onset of retinopathy, neuropathy, or nephropathy at three
different time intervals: three, five, and seven years after the
initial visit to the Hospital Center for Diabetes. Gender, age,
time since diagnosis, BMI, hypertension, HbA1c, and smoking
habit were all factors considered in the study. The final models,
customized for the complications, had an accuracy of up to
0.838. For each complication and time scenario, different
attributes were chosen. This led to specialized models that
are easy to use in clinical practice. Wei, S. et al. [25] used
a variety of machine learning techniques, i.e., Neural Net-

works, Support Vector Machines, and Decision Trees to detect
diabetes. The best accuracy acquired was 77.86% through
the 10-fold cross-validation approach. Fan Yuting et al. [26]
proposed an effective ML model for identifying the problem of
blood sugar levels in non-adherent T2-DM. The authors looked
at people who had not had glycosylated hemoglobin in the
previous month to identify the risk in blood sugar levels. Seven
different ML procedures are utilized to implement eighteen
identification methods. Identification achievement is majorly
analyzed through the AUC of the examining group. Based
on 800 patients’ data, 20.6% could meet the insertion range,
of which 78.2% had poor glycemic guide. The greater AUC
of the analysis set for nephropathy, peripheral neuropathy,
angiopathy, retinopathy, and glycosylated hemoglobin is de-
termined as 0.902 ± 0.040, 0.859 ± 0.050, 0.889 ± 0.059,
0.832 ± 0.086, and 0.825 ± 0.092 accordingly. Both the ML
models and univariate testing attained an equal outcome. Fiarni
et al. [27] proposed Naive Bayes and C4.5 classification ap-
proaches, as well as k-means clustering, for identifying the risk
complications of T2-DM patients. The authors analyzed each
technique’s reliability and identified the associated elements
and sub-features as clinical contributing factors. As a result,
the most major risk factor for retinopathy is a female patient
who is now experiencing a hypertensive problem. In terms of
nephrotic syndrome, the most major risk factor is a history
of diabetes lasting over four years. Furthermore, it was more
prevalent in female patients with a BMI over 25. There is no
clear association between the duration of diabetes and certain
complications. The overall accuracy of the suggested model is
68%, which means that it could be used as an alternative way
to find diabetes complications early. Sudharsan, B. et al. [28]
proposed a reducing phenomenon of blood sugars in people
having T2-DM. The authors analyzed the risk of complications
through different data sets. The quantity of self-regulation of
blood sugar levels required by the method is nearly ten per
week. The vulnerability of the method for identifying blood
sugar levels in the coming 24 hours is 92%, and the selectivity
is 70%. In their work, the identification group was four hours
of blood sugar, and the selectivity advanced to 90%. The
advanced ML methods can identify blood sugar levels with
an accurate level of vulnerability and selectivity.

After taking earlier research work into consideration, we
observed that the majority of the work concentrated on identi-
fying the T2-DM with limited complications. To overcome this
limitation and to identify the severity levels, in this proposed
work, we concentrated on predicting the risk levels at an early
stage, falling under low, medium, and high categories. These
levels are discriminated against among the T2-DM patients
with MIV and MAV complications such as Nephropathy, Neu-
ropathy, Retinopathy, cardio vascular and Peripheral vascular.

III. METHODOLOGY

This section goes into more detail about the statistical
analysis of the dataset used for this study, the T2-DM patient
network, data preprocessing approaches, ML methods, and the
proposed model.

A. Statistical Analysis of the Dataset

For this study, 3068 records are considered, particularly
with subjects between 30 and 80 years of age, of which 1565

www.ijacsa.thesai.org 21 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

are males, and 1503 are females. The mean, standard deviation,
error rate, and P-value of primary attributes that are available
in the dataset are displayed in Table I. These attributes are
mainly considered in identifying the risk levels of MIV and
MAV complications in T2-DM patients collected from various
multi-specialty hospitals in India [29].

The distribution of samples depends on the parameters
in a dataset and can be represented using frequency tables.
These are useful in making decisions that appear more or less
within the dataset. Every parameter and its selection range can
be easily identified. From this, basic charts like histograms
and bar charts can be generated for data visualization. The
representation of some primary attributes in the dataset is
depicted using a histogram, shown in Fig. 2.

B. T2-DM Complications Network

In this work, the graph theory concepts are used to con-
struct the T2-DM complications network. This network repre-
sents the common complications among different patients. For
this, four different patients with MIV and MAV complications
are considered from the dataset. The relation among patients
and various complications are determined by Eq. (1).

G = (V,E) (1)

where ‘V’ represents the nodes that indicate the patient’s
complications. The common complications for these patients
are connected through ‘edges’ (E). Hence, these sets of nodes
and edges are combined together to form a complication
network (G).

Fig. 3. represents the complication network among T2-DM
patients to identify the relationship between patients and their
common health complications. The left-hand side of this figure
shows three male and one female patients’ data along with their
disease complications, respectively. The middle part represents
the edge relation between patients connected through nodes.
For instance, patients p1, p2, and p4 all have T2-DM in
common. Due to this, ”neuropathy” is a common complica-
tion. Also, patients p2 and p4 show a common complication
of ”nephropathy”. Hence, by considering this scenario, the
patient’s p1, p2, and p4 are connected through nodes, and
their common health comorbidities are interlinked with edges,
thereby forming a subgraph to construct a complications net-
work. By constructing this network, the classification between
T2-DM and non-T2-DM becomes easier through ML models.

C. Data Preprocessing

When developing ML models, data preprocessing is the
first step in the process. Real-world data is tainted and con-
taminated by inconsistencies, noise, incomplete information,
missing values, inaccurate (containing errors or outliers), and
lack of specific attribute values [31]. This is where data prepro-
cessing comes into play; it helps to clean, format, and organize
raw data, preparing it to build ML models. Simply put, data
preprocessing helps improve data quality and promotes the
extraction of meaningful insights from data to train more
accurate prediction models. The data preprocessing procedure
in ML includes the following steps [32].

• Missing Values: This step involves identifying and
appropriately handling missing values; failing to do
so could lead to inaccurate and erroneous conclusions
and inferences drawn from the data. There are two
methods for dealing with missing data: (a) deleting
a specific row, in which we remove a particular row
that contains a null value for a feature or a particular
column where more than 70% of the values are miss-
ing; and (b) calculating the mean, median, or mode
of a specific feature, column, or row that contains
a missing value and replacing the outcome with the
missing value. This method is helpful for features with
numeric data, such as salary, year, and so on, and it can
add variance to the dataset while efficiently negating
any data loss. As a result, it produces better results
than the first method.

• Removing Duplicates: This step includes deleting
duplicate entries. During model training, an entry
that appears more than once is given disproportionate
weight. Where identical entries are not all in the same
set, duplicate entries can ruin the split between train-
ing, validation, and test sets. This can lead to biased
estimates of how well the model will perform, which
can cause the model to underperform in production.

• Removing irrelevant data: This step involves re-
moving irrelevant entries from the dataset. Data often
comes from a variety of sources, and a given set of
data is likely to have entries that don’t belong.

• Detecting Outliers: This step entails detecting out-
liers by exploring the ranges and possibilities for
categorical and numerical data entries. For instance,
a negative price for a vehicle is an outlier. Outlier
detection or anomaly detection algorithms, such as
Isolation Fores or KNN, can also be used to detect
and remove outliers automatically.

• Categorical Data Encoding: This step includes trans-
forming categorical data (i.e., a patient’s gender) into
numerical values. ML models are built on mathemat-
ical equations that can only work with numbers. As
a result, the categorical values of the features must
be converted into numerical values, which can then
be fed into ML models to learn from and improve
performance.

• Feature Selection: This step always plays an im-
portant role in machine learning, where we will have
several features in the dataset and have to select the
best ones when building a model. The inclusion of
irrelevant features reduces the model’s generalization
capability and may reduce a classifier’s overall ac-
curacy. In addition, the model’s overall complexity
grows as more features are added. Feature selection
methods in machine learning can be broadly classified
as Wrapper, Embedded, and Filter. Wrapper methods
use a greedy search approach, evaluating all possible
feature combinations against the evaluation criterion.
Embedded methods are iterative in the sense that they
handle each iteration of the model training process
and extract those features which contribute the most
to the training for that iteration. Filter methods pick
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TABLE I. SUMMARY OF PRIMARY ATTRIBUTES OF THE DATASET [29]

Parameter Description Range Population Size (n) Mean Standard Deviation Standard Error Mean P-value

Age Life span of patient

30 to 49 1222

54.92 14.494 0.262 0.01150 to 59 600
60 to 69 598
70 to 80 648

Sex Identity of patient Male 1565 0.51 0.500 0.009 0.048Female 1503

BMI Determines the level of fat

18.5 155

28.823 6.3138 0.1140 0.02518.5 to 24.9 779
25.0 to 29.9 736
30.0 1398

SBP Pressure in arteries when heart beats
120 462

139.32 20.008 0.361 0.015120 to 139 891
140 1715

DBP Pressure in arteries when heart rest among the beats
80 822

84.67 11.348 0.205 0.03780 to 89 755
90 1491

HbA1C Blood pressure attached to hemoglobin
5.7% 127

11.1308 2.671 0.4823 0.016=5.7% to 6.4% 617
=6.5% 2324

FBS Blood sugar level after fasting
=100 mg/dL 40

230.19 76.879 1.388 0.006100 to =125 mg/dL 288
=126 mg/dL 2740

PPBS Determine type of sugar
180 mg/dL 447

334.67 123.539 2.230 0.001=180 to 250 mg/dL 492
=250 mg/dL 2129

DIA LIFE Span of diabetes in months
40 1350

43.14 12.367 0.223 0.038=40 to 60 1388
=60 330

Smoking -

No 847

1.44 1.129 0.020 0.017Ex-smoker 752
Occasionally 740
Current 729

Medical Usage Medicine usage No 1498 0.51 1.141 0.009 0.019Yes 1570

Medical adherence Medicine usage pertained to time
Low 1083

0.97 0.822 0.015 0.001Medium 994
High 991

TABLE II. PERFORMANCE OF MICRO VASCULAR AND MACRO VASCULAR MODULES

Module Model Accuracy Precision Sensitivity Specificity F1-Score

Nephropathy
(NEP)

RF with base DT 95.43% 96.57% 94.0% 96.81% 95.27%
RF with base LR 94.78% 97.80% 91.13% 98.12% 94.35%
RF with base AB 92.91% 93.85% 90.73% 94.81% 92.26%

Neuropathy
(NEU)

RF with base DT 94.62% 96.84% 92.0% 97.13% 94.35%
RF with base LR 93.05%% 94.57% 91.26% 94.81% 92.88%
RF with base AB 91.12% 93.52% 88.54% 93.75% 90.96%

Retinopathy
(RET)

RF with base DT 96.25% 96.78% 95.85% 96.66% 96.32%
RF with base LR 93.37% 94.83% 92.25% 94.58% 93.53%
RF with base AB 90.78% 92.65% 88.94% 92.71% 90.76%

Cardio Vascular
(CVD)

RF with base DT 97.55% 96.0% 98.96% 96.28% 97.46%
RF with base LR 93.91% 93.54% 93.95% 93.88% 93.75%
RF with base AB 91.04% 92.91% 88.63% 93.39% 90.72%

Peripheral Vascular
(PVD)

RF with base DT 97.83% 98.0% 86.88% 98.0% 92.11%
RF with base LR 97.56% 97.9% 71.42% 98.0% 83.33%
RF with base AB 97.67% 98.0% 78.94% 98.0% 88.23%

up the intrinsic properties of the features measured
using univariate statistics. Information Gain and the
Chi-square Test are two of the Filter methods. In
this research, we have used the Chi-square Test to
select the features related to T2-DM. The Chi-square
between each feature and the target is calculated, and
the number of features with the best Chi-square scores
is selected. The Formula for Chi-square is given in
Eq. (2), where c is the degrees of freedom, O is the

observed value(s), and E is the expected value(s).

χ2
c =

n∑
i=1

(Oi − Ei)
2

Ei
(2)

• Data Split: This step includes splitting the dataset
for the ML model into two or more separate sets.
Typically, with a two-part split, one part (training
dataset) is used to train the ML model, and the other
(test dataset) is used to evaluate or test the model. The
testing data set is used following training. Usually, the
dataset is split into an 80:20 ratio or 70:30 ratio. This

www.ijacsa.thesai.org 23 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 2. A Histogram of Some Primary Features in the Dataset.

TABLE III. EXISTING COMPLICATIONS

Patient Existing Complications
NEP NEU RET CVD PVD

A 0 1 0 0 0
B 1 0 1 0 0
C 0 0 0 0 0
D 1 0 1 0 0
E 1 1 0 0 0

Fig. 3. MIV and MAV Complication Network.

means that 80% or 70% of the data is used for training
the model, while the remaining 20% or 30%, is used

Fig. 4. The Sigmoid Function.
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Fig. 5. Basic DT Algorithm [30].

TABLE IV. PREDICTED COMPLICATIONS

Patient Proposed model risk predictions
NEP NEU RET CVD PVD

A Low Medium No No No
B Medium No Medium Low No
C Low No No No No
D Medium No Medium Low No
E Medium Medium No Low No

for testing. Most often, data is separated into three or
more sets. With three sets, the additional set is the
validation set, which is used to modify the parameters
of the learning process.

• Data Scaling: This crucial step concludes the data
preprocessing phase in ML. It is a technique for
converting all independent features of a dataset to the
same scale. This allows for faster learning conver-
gence and more uniform influence across all weights.
Normalization and Standardization are two commonly
used methods for feature scaling.

◦ Normalization: This technique is known as
Min-Max scaling, in which all independent

feature values are changed between 0 and 1,
as defined below:

X ′ =
X −Xmin

Xmax −Xmin
(3)

where Xmin and Xmax are the minimum and
the maximum values of the feature, respec-
tively.

◦ Standardization: In this technique, the indepen-
dent feature values are standardized by remov-
ing the mean and scaling to unit variance. The
standard score of a sample X is calculated as:

X ′ =
X − µ

σ
(4)
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Fig. 6. Proposed Framework.

where µ is the mean of the feature values,
and σ is the standard deviation of the feature
values.

The data preprocessing procedure can vary slightly accord-
ing to each dataset, but many of the aforementioned steps are
applicable to all situations.

D. ML Models

1) Logistic Regression: Logistic Regression (LR) is a pow-
erful ML algorithm commonly used to solve binary classifica-
tion problems. It is called after the core function of the method,

the logistic function. The logistic function (a.k.a. sigmoid
function) has an S-shaped curve that can map any real-valued
number to a value between 0 and 1 [33]. The sigmoid function,
usually denoted by σ(x) is defined as follows:

σ(x) =
1

1 + e−x
(5)

where e is Euler’s number and x is the actual numerical
value to be transformed. Fig. 4 shows a plot of the numbers
between -10 and 10 transformed into the range 0 and 1
using the sigmoid function. LR, like linear regression, uses an
equation as its representation. To predict an output value (y),

www.ijacsa.thesai.org 26 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 7. Confusion Matrix for a Binary Classifier.

Fig. 8. Feature Importance Scores for Neuropathy.

Fig. 9. Feature Importance Scores for Nephropathy.

Fig. 10. Feature Importance Scores for Retinopathy.
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Fig. 11. Feature Importance Scores for Cardio Vascular.

Fig. 12. Feature Importance Scores for Peripheral Vascular.

Fig. 13. Accuracy Results for All Complication Modules.

input values (x) are linearly combined using weights values.
The output value being modeled is a binary value (0 or 1)

rather than a numeric value, which distinguishes it from linear
regression. An example LR equation is shown below:
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y =
1

1 + e−(w0+w1×x)
(6)

Where y is the predicted output, w0 is the bias and w1

is the weight for the single input value (x). Each column in
the dataset has an associated w weight that must be learned
from the training dataset. LR predicts the probability of the
positive class (e.g., a patient has diabetes). For example, if
we’re predicting whether or not a patient has diabetes or not
based on their age, then the positive class could be diabetic,
and the LR model could be written as the probability of being
diabetic given a patient’s age, or more formally:

P (x) = P (y = diabetic | x) (7)

To get a clear answer, we can snap the probabilities to a
binary class value, such as:

prediction = 0 (non-diabetic) IF p( diabetic ) < 0.5

prediction = 1 (diabetic) IF p( diabetic ) ≥ 0.5
(8)

2) Decision Tree: Decision Tree (DT) algorithm is another
popular supervised ML algorithm used for solving both clas-
sification and regression problems. The goal of using a DT
is to learn simple decision rules from training data to create
an efficient model that predicts the class of the target variable
[34]. DT is a flowchart-like tree structure in which each leaf
node corresponds to a class label, and features are represented
on the internal node of the tree. The root node is the topmost
node in a tree. The DT can be better understood with the help
of the algorithm summarized in Fig. 5.

By adopting the above algorithm to the problem of de-
termining whether an instance belongs to class-0 or class-1,
we can construct a decision tree by selecting a root node,
internal nodes, and leaf nodes, and then defining the class’s
splitting criteria. For example, we can select the ”glucose”
feature to be the root node and based on it and other features
such as ”systolic BP,” ”Diastolic BP,” ”Age,” and ”BMI,” we
can construct our tree.

The most challenging aspect of the DT algorithm is se-
lecting The root node or first test attribute based on what we
will start splitting the data. It is selected based on statistical
measures like Information Gain (IG), Gain Ratio, or Gini
Index. In this paper, we used the IG measure. IG helps to
measure the reduction of uncertainty of a certain feature. It
also helps decide which feature is good as a root node. The
calculation of IG(a) shows us the formula for the gain in the
general case. Let S denote the dataset to be split by creating a
new node. Let’s suppose that the attribute a can take m values:
a1, a2, . . . , am, and that pi is the fraction of the objects in S
with a = ai. Then, the information gain of a is:

IG(a) = H(S)−
m∑
i=1

piH (S | a = ai) (9)

Here H(s) is the Entropy of the dataset, is a function H
of probabilities p1, p2, . . . , pn. Entropy can be thought of as

the amount of variance in the data. For binary classification
problems, the following formula is used to compute Entropy.

H(S) = −
n∑

i=1

pi log2 pi (10)

3) Random Forest: Random Forest (RF) is another popular
ML technique used to solve regression and classification
problems. RF consists of many decision trees. The ’forest’
generated by the random forest algorithm is trained using an
ensemble method known as bootstrap aggregation (or bagging
for short) [35]. Bagging is a technique that combines the
predictions from multiple decision trees to make more accurate
predictions than any single model. The model’s final output is
based on the majority of the predictions if the problem is a
classification, or the mean of the predictions if the problem is
a regression.

4) AdaBoost: Boosting is an ensemble technique for con-
structing a strong classifier from a collection of weak classi-
fiers. This is accomplished by first creating a model from the
training data, followed by the creation of a second model that
attempts to correct the errors in the first model. Models are
added until the training dataset is perfectly predicted or until
the maximum number of models is reached [36]. AdaBoost,
shortened for Adaptive Boosting [37], was the first successful
boosting algorithm developed for binary classification prob-
lems. Decision trees with one level are the most appropriate
and widely used algorithm with AdaBoost because these trees
are so short and only have one classification decision. They are
commonly known as ”decision stumps.” Weights are assigned
to each instance in the training dataset. The initial weight is
set as follows:

weight (xi) =
1

M
(11)

where xi is the i’th training instance and M is the number
of training instances. To train a single model, a weak classifier
is prepared on the training data using the weighted samples.
Only binary classification tasks are supported, so each decision
stump makes one decision on one input variable and outputs
a +1.0 or −1.0 value for the first and second class value.

The misclassification rate (E) for the trained model can be
calculated as follows:

E =
r −M

M
(12)

where r is the number of training instances predicted
correctly by the model and M is the total number of the
training instances. The opposite of misclassification rate would
be accuracy, calculated as:

Accuracy = 1− E (13)

To take into account the weighting of the training instances,
the weighted sum of the misclassification rate is computed as:

E =

∑n
i=1 (wi × pi)∑n

i=1 w
(14)

where w is the weight for training instance i and pi
is the prediction error for training instance i, which is 1
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if misclassified and 0 if correctly classified. For the trained
model, a stage value is calculated, which provides a weighting
for any predictions made by the model. A trained model’s stage
value sv is calculated as follows:

sv = ln

(
1− E

E

)
(15)

The stage weight has the effect of giving more weight or
contribution to the final prediction to more accurate models.
The training weights are adjusted so that incorrectly predicted
instances receive more weight and correctly predicted instances
receive less weight. For instance, the weight w of one training
instance is updated as follows:

w = w × e(sv×p) (16)

E. Proposed T2DC Prediction Model

The proposed framework for predicting the risk levels of
MIV and MAV complications among T2-DM patients using
the RF-based method is shown in Fig. 6. It is broken down
into six major steps: a) gathering data from reliable sources;
b) cleaning and preprocessing the data; c) dividing the cleaned
data into two sets—a training set (80%) and a testing set
(20%); d) training the model with the training set; e) evaluating
the model performance of the trained model with various base
estimators such as DT, LR, and Adaboost models; and f) tuning
the model’s hyperparameters to see if its accuracy can be
improved.

IV. RESULTS AND DISCUSSIONS

This section presents all of the results obtained by the
proposed framework, as well as related discussions.

A. Model Performance Evaluation Metrics

Evaluation of the performance of a classification model
is based on the number of test samples that the model cor-
rectly and incorrectly predicts. The confusion matrix extracts
additional information about the performance of a predictive
model. It demonstrates which classes are correctly and in-
correctly predicted and what types of errors are made. Fig.
7 shows an illustration of a confusion matrix for a binary
classifier. The four classification metrics (TP, FP, FN, TN)
are calculated, and the confusion matrix compares the model’s
predicted value to the actual value. The confusion matrix is
not exactly a performance metric, but it is used to calculate
important classification metrics like accuracy, precision, recall,
specificity, and, most importantly, the f1-score, which are used
to evaluate the results.

1) Accuracy: It is the fraction of correct predictions
made by the model.

Accuracy =
TP+ TN

TP+ TN+ FP + FN
× 100% (17)

2) Precision: It is the proportion of true positives to all
positive predictions made by the model.

Precision =
TP

TP + FP
× 100% (18)

3) Recall: It is the proportion of actual positives cor-
rectly identified by the model.

Recall =
TP

TP + FN
× 100% (19)

4) Specificity: It is the proportion of actual negatives
correctly identified by the model.

Specificity =
TN

TN+ FP
× 100% (20)

5) F1-score: It is the proportion of actual positives
correctly identified by the model.

F1−score =
2 ∗ precision ∗ recall

precision + recall
×100% (21)

B. Feature Importance Score

Feature importance is a process that involves calculating
the score for the input features for a given model — the scores
simply represent the “importance” of each feature. A higher
score indicates that the specific feature will have a greater
impact on the model used to predict a specific class. This
can enhance a predictive model’s efficiency and effectiveness
on the problem. The feature importance scores on T2-DM
complications such as nephropathy, neuropathy, retinopathy,
cardio vascular, and peripheral vascular modules of the RF
model with different base estimators, DT, AdaBoost, and LR,
are shown in Fig. 8 to 12, respectively. It is evident from the
figures that BMI and HbA1c are the most significant features
in the dataset.

C. Model Evaluation Discussion

Table II represents the evaluation of MIV and MAV compli-
cations in T2-DM patients. After evaluating the proposed ML
models, the decision tree as a base model with RF provides the
best performance in all evaluation metrics. The visualization
of the accuracy metric for all complication modules is shown
in Fig. 13.

D. Risk Prediction Identification

Table III shows the results of T2-DM patients with existing
complications, and Table IV shows the predicted complications
of the same patients. The existing complications only represent
True (1) or False (0) in regard to NEP, NEU, RET, CVD, and
PVD. This type of result is not sufficient to assist doctors
in identifying further complications. To overcome this, our
proposed model can automatically identify the risk levels with
respect to low, medium, and high depending upon the severity
of T2-DM complications among patients. For instance, T2-
DM patient-A has only one NEU complication in existing
data. In contrast, the same instance, when evaluated on the
proposed risk prediction model, shows a ”low” risk in NEP
and a ”medium” risk in NEU. This helps healthcare providers
make accurate treatment plans for T2-DM patients so they can
give them good clinical care.
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V. CONCLUSION

AI and its applications, such as machine learning (ML)
in medical diagnosis and healthcare, have shown enormous
promise in recent years, both in terms of improving care
and alleviating the enormous strains on the healthcare sys-
tem. ML-based solutions are revolutionizing diabetes care
and helping the medical community gain ground in the fight
against the disease. The number of people with diabetes
who go undiagnosed can be lowered with the help of ML
algorithms that allow for accurate early diagnosis. In this
research, we have identified MIV and MAV risk levels of T2-
DM complications by proposing a T2DC ML-based prediction
model. We have used a decision tree as a base estimator with
random forest and obtained better accuracy when compared
to other base models. The proposed model achieves 95.43%,
94.62%, 96.25%, 97.55%, and 97.83% accuracies for NEP,
NEU, RET, CVD, and PVD complications, respectively. The
model can be used as a viable aid in clinical decision-making
for practitioners and diabetes educators to improve the quality
of life of patients. In the future, we will study how T2-DM
and related complications affect pregnant women.
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