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Abstract—Falling is a major health issue that can lead to both 

physical and mental injuries. Detecting falls accurately can 

reduce the severe effects and improve the quality of life for 

disabled people. Therefore, it is critical to develop a smart fall 

detection system. Many approaches have been proposed in 

wearable-based systems. In these approaches, machine learning 

techniques have been conducted to provide automatic 

classification and to improve accuracy. One of the most 

commonly used algorithms is Support Vector Machine (SVM). 

However, classical SVM can neither use prior knowledge to 

process accurate classifications nor solve problems characterized 

by ambiguity. More specifically, some values of falls are 

inaccurate and similar to the features of normal activities, which 

can also greatly impact the performance of the learning ability of 

SVMs. Hence, it became necessary to look for an effective fall 

detection method based on a combination of Fuzzy Logic (FL) 

and SVM algorithms so as to reduce false positive alarms and 

improve accuracy. In this paper, various training data are 

assigned to the corresponding membership degrees. Some data 

points with a high chance of falling are assigned a high degree of 

membership, yielding a high contribution for SVM decision-

making. This does not only achieve accurate fall detection, but 

also reduces the hesitation in labeling the outcomes and improves 

the heuristic transparency of the SVM. The experimental results 

achieved 100% specificity and precision, with an overall 

accuracy of 99.96%. Consequently, the experiment proved to be 

effective and yielded better results than the conventional 

approaches. 

Keywords—Fall detection; fuzzy logic; SVM; traumatic brain 

injuries; wearable sensor 

I. INTRODUCTION 

The main goal of this paper is to introduce and propose a 
new fall detection method for traumatically brain-injured 
people. The goal is to suggest a highly accurate method that 
uses the advantages of both Fuzzy Logic and SVM. The main 
reasons behind the idea of integrating these two latter methods 
are their well-known limitations as standalone techniques, 
with SVM considered a "black box" and Fuzzy logic being 
especially limited for nonlinear problem solving. Falling is 
one of the major life-threatening problems faced by people 
with physical disabilities. According to World Health 
Organization research, falls are the second most common 
cause of injury-related death worldwide. Nationally, there was 

a 53% increase in the number of total deaths due to falls from 
2000 to 2019 [1]. Health systems are significantly impacted by 
falls. The quality of life of elderly persons can also be 
significantly impacted out of the fear of falling. 

An Ambient Intelligent (AI) environment can improve the 
lifestyle of the disabled by using different sensor technologies. 
With such technologies, environments might become 
sensitive, adaptive, and responsive to people’s presence for the 
sake of supporting them to live independently in the 
environment they prefer. One important aim of assistive 
technology is to allow disabled people to stay in their homes 
as long as possible without changing their lifestyles. Smart fall 
detection can offer support to people with special needs, 
enabling them to live actively and independently both at home 
and in their communities. This improves the quality of their 
lives on the one hand, and reduces costs for their families and 
the entire society on the other hand. 

Currently, available techniques that are used to design fall 
detection systems are classified into two main categories 
based on their sensor type: one is an ambient-based fall 
detection system whereas the other relies on a wearable-based 
fall detection system [2]. Ambient-based approaches use 
ambiance sensors, including acoustic sensors, vibration 
sensors, pressure sensors, and infrared sensors for detecting a 
fall event [3,4,5]. They also use single or multiple cameras in 
an indoor environment to track a person’s movements and 
body shape while falling [6,7,8]. One main drawback of 
ambient sensors is that they limit falls to only those detected 
in a pre-set area, and this does not seem suitable for people’s 
mobility. 

Wearable sensor-based fall detection methods track the 
user's body motion using embedded sensors such as 
accelerometers. These methods can detect a fall when the 
person is wearing the sensor anywhere and at any time. 
Wearable sensors have several advantages, including low cost, 
low power consumption, and ease of use. As a result, they are 
commonly used to detect human falls. However, those with a 
single accelerometer are insufficient to offer a robust system 
and are susceptible to false positive fall detection; which 
reduces system accuracy [9]. 

*Corresponding Author. 
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Recently, a fusion system in which the process of 
combining multiple data sources can produce more robust 
measurement and accurate detection was developed. In this 
context, fall detection based on Inertial Measurement Units 
(IMUs) sensors, which are composed of an accelerometer, 
gyroscope, and magnetometer can be attached to the body. 
This fall detection technique is of special interest due to the 
fact that it is undetectable, widely available, inexpensive, and 
has a low power consumption [10,11]. Additionally, this 
technique can offer complementary information about the 
activity performed [12]. The IMU has been widely used for 
data collection and for differentiating a fall event from 
Activities of Daily Living (ADLs) based on two main 
approaches which are threshold-based or machine learning 
classification algorithms. 

In a threshold-based approach, the system notifies that a 
fall happens if the real-time sensor data surpasses the given 
threshold values after comparing them. In particular, a low 
threshold value brings out false alarms whereas a high 
threshold value causes large fall missing issues. The authors in 
[13] show that machine learning algorithms can effectively 
enhance the system’s performance in comparison to the 
threshold-based method. In machine learning approach, 
impressive results can be obtained using various classifiers 
[12]. An SVM is one of the most popular algorithms used in 
supervised machine learning for activities of recognition and 
classification [5]. However, labels for the dataset are needed 
for the employment of SVM algorithms for fall detection. In 
more detail, some training points of falls that are uneven and 
similar to being mixed with the features of ADLs can 
significantly impact the performance of the learning ability of 
SVMs. Here, it is worth mentioning that classical SVMs can 
never solve inaccurate and ambiguous problems. FL has the 
ability to mimic the human way of thinking to productively 
use reasoning methods that are uneven and not precise, and it 
has been verified to be effective in reducing the false fall 
detection rate [9]. 

SVM as a standalone algorithm, just like FL, has its own 
advantages and disadvantages. Merging both methods by 
making use of the best traits of each algorithm will certainly 
yield outstanding results in some applications, as in the case of 
fall detection. The specific contributions of this study could be 
summarized as follows: 

 Identifying the types of disabilities that require smart 
fall detection as this can help in developing the desired 
device. 

 Proposing a new fall detection method that takes 
advantage of both FL and classical SVM. Our 
proposed method uses the logical reasoning of FL by 
Fuzzification of all input values of the training data 
into fuzzy membership functions to obtain the 
intermediate output. Different memberships reflect 
various contributions to the learning of decision-
making. A high degree of membership of data points, 
which have a significantly high chance of falling, 
provides a significant contribution to SVM decision-
making. As a result of the functions of the fuzzy 
membership, an SVM output is properly produced for 

modeling data and driving training. This network 
combination reduces false positive alarms to obtain 
more accurate fall detection and it achieves better 
generalization ability that was motivated to perform 
much better than conventional SVM methods on smart 
fall detection. 

The rest of this paper is structured as follows: Section II 
provides a review of existing papers related to fall detection 
systems. Section III presents a brief review of classical SVM 
and Fuzzy SVM basic theory. Section IV identifies the types 
of disabilities that require smart fall detection. Section V 
describes the hardware design to collect data and highlights 
the proposed fall detection method with a classification 
process. Section VI details the experimental settings, the 
performance evaluation, the experimental results, and the 
analysis for the various scenarios. Section VII summarizes the 
conclusion with a comment on future work. 

II. RELATED WORK 

Generally, the framework of automatic fall detection 
systems using wearable sensors consists of the collection of 
sensor data, a fall detection algorithm, and an emergency 
alarm. Data collected by the accelerometer and gyroscope are 
transmitted to a microcontroller to be processed to 
differentiate a fall from an ADL. Recently, there has been a 
growing interest in identifying and detecting fall events using 
IMU sensors [14]. The fusion of inertial sensor-based 
wearable systems can be effectively used to recognize fall 
events by examining the impact of the body on the ground as 
well as the body orientation before, during, and following the 
fall. Nevertheless, the location of the sensor can influence the 
performance of the system. Thus, numerous studies related to 
the topic of optimal sensor placement were conducted. The 
waist, wrist, trunk, thigh, back, ankle, foot, neck, and head 
represent the most common wearing positions. The authors in 
[15] studied fall detection by placing accelerometers on the 
subject’s head, waist, and wrist. They reported that the most 
efficient positions are the waist and the head in contrast to the 
wrist which is not. The authors in [16] placed sensors on the 
trunk and thigh and reported the trunk as a better position. The 
authors in [17] identified that the waist location utilizing a 
single sensor was a suitable placement after evaluating single 
IMU sensors deployed at several places in the body. In 
conclusion, sensor location is an important factor in 
developing wearable sensor-based fall detection systems. 
Furthermore, the waist could be the best option for a wearable 
sensor-based fall detection system. 

The classification algorithm is applied to classify ADL and 
several fall events. A wearable-based fall detection algorithm 
can be categorized into two approaches, namely: threshold-
based and machine learning. Threshold-based approaches use 
single or multiple threshold values that can be adjusted 
automatically depending on motion history to classify events 
[15,16,18]. Due to the low computational complexity, current 
fall detection studies have widely used the threshold-based 
method. However, a high threshold must be set in order to 
obtain a highly accurate system. Hence, with a high threshold, 
there will be some lags in the system and, subsequently, some 
missed falls. In contrast, with an excessively low threshold, 
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there will be some misjudgments and frequent false alarms. 
This is why a suitable threshold should be set to avoid any 
problems. 

Machine learning is a field of Artificial Intelligence. It 
explores how to use computers to imitate human learning 
activities [19]. It uses learning algorithms to extract features 
from raw data in order to gain new abilities, recognize current 
knowledge, and constantly improve performance and 
achievement [20]. Data processing includes pre-processing, 
smoothing data, and data reduction methods where the data 
are acquired from the sensor and then processed. This is 
followed by the classification stage, which either provides a 
prediction or a decision at the end of the process. Learning 
methods can be categorized into two main groups: supervised 
and unsupervised learning. The algorithm in supervised 
learning is trained using a labeled input dataset. In the case of 
unsupervised algorithms, there are no explicit labels 
associated with the training dataset, which saves time during 
processing [21]. Examples of algorithms used in fall detection 
experiments include Hidden Markov Model (HMM), K-
Nearest Neighbors (K-NN), Random Forest (RF), SVM, 
Decision Tree, Linear Regression, Naïve Bayes, Fuzzy 
Inference System (FIS), and Artificial Neural Network 
(ANN), which have achieved significant success in detecting 
falls and classifying fall events from ADLs [22]. 

Based on the preceding, [23] successfully differentiate 
falls from ADLs using six machine learning classifiers, which 
are the K-NN classifier, Least Squares Method (LSM), SVM, 
Bayesian decision making (BDM), Dynamic Time Warping 
(DTW), and ANNs. They achieved the greatest results with 
the K-NN classifier and LSM; with sensitivity, specificity, and 
accuracy all above 99%. The authors in [24] attained the best 
accuracy in fall detection using the K-NNs classifier and the 
highest accuracy in distinguishing various falling activities 
using the RF classifier. However, [25] compared the 
applicability of RF and SVM in the development of wearable 
intelligent devices. The obtained results show that SVM is 
more suitable for the development of wearable intelligent 
devices. The authors in [26] used the K-NN and SVM 
algorithms for classifying the fused accelerometer and 
gyroscope data collected from smartphone sensors. They 
reported a classification performance of 98.32% for SVM and 
97.42% for K-NN. ANNs have been greatly improved in 
recent times [27]. This method regularly outperforms classic 
machine learning algorithms in terms of learning ability. 
However, the model of the Neural Network is highly 
dependent on the quality and quantity of the training datasets 
and can be affected by too much disorienting information. 

Study [13] evaluated the accuracy of these two 
approaches, which are threshold values and five machine 
learning algorithms. In fact, they concluded that five machine 
learning algorithms’ gross production was greater than the 
overall performance of five algorithms based on the threshold. 
In addition, SVM-based classification has outperformed the 
five machine learning in terms of sensitivity and specificity. 
Since they are highly accurate in comparison with threshold-
based fall detection methods, machine learning based fall 
detection algorithms are nowadays being widely used. The 
authors in [28] achieved the best accuracy performance of 

99%, indicating that the system’s performance in comparison 
to the threshold-based method can be effectively enhanced. 
Decision-making based on machine learning algorithms, on 
the other hand ensures high rates of true positives. 

A. SVM-Based Fall Detection 

SVM is a powerful tool in machine learning for classifying 
data with good generalization ability that is less 
computationally intensive than other algorithms like artificial 
neural networks, decision trees, and Bayesian networks due to 
their high accuracy, elegance, mathematical practicability, and 
simple geometric interpretation. In addition, they do not 
require a lot of training data to prevent overfitting [29,30]. 

In SVM-based fall detection, distinguishing between 
falling activities and non-falling ADLs is possible. For 
instance, [31] used a hyperplane of SVM as the separating 
plane to replace the traditional threshold method for the 
detection of falling ADLs. They used the Gaussian radial basis 
function to construct the kernel function with the cost 
parameter tuned where the constant     is the regularization 
parameter in the SVM. When adjusted, a balance between 
margin maximization and classification is realized [32]. The 
results showed that the SVM method is better than the 
threshold-based algorithm when the parameters of falling and 
non-falling ADLs are very close. The authors in [33] extracted 
features from data collected by the Kinect sensor followed by 
fall recognition by using an SVM algorithm. In [3], the 
authors proposed a Multi-Feature Semi-Supervised SVM 
framework for human fall detection to specifically handle the 
human fall classification problem where the Radial Basis 
Function (RBF) classifier is selected in SVM training on 
extracted features from the training samples. The authors in 
[34] proposed a system that detects human falls by using the 
audio signal from a microphone. Their system was designed in 
a way that models each fall or noise segment by means of a 
Gaussian Mixture Model (GMM). Then, the SVM classifier 
would be employed to classify audio segments into falls and 
different types of noise. Study [35] collected the body’s 
acceleration and rotational angle data in the wearable terminal 
to execute the SVM algorithm. As such, the hyperplane, which 
separates fall events from ADL events, was introduced. RBF 
kernel function which allows nonlinear mapping in this model 
was selected with a penalty parameter factor     that was 
adjustable to obtain the largest gap distance. The authors in 
[36] employ multiple kernels of learning to distinguish 
difficult fall-like events. The classification performance kept 
improving until it became constant at a certain point when the 
tuned parameter     was increased. Nonetheless, the number 
of selected kernels also expanded with    , which raised the 
computational cost. Another model proposed by [10] showed 
that an SVM classifier provides the best performance metrics 
when trained on a fall dataset containing simulated falls and 
when cross-validated with real-world falls. The classifier 
appears to be appropriate for further evaluation concerning 
real-world applications due to robust results and high 
accuracy, sensitivity, and specificity. The authors in [25] 
found that SVM is more suitable for fall detection algorithm 
based on multi-sensor data fusion. 
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The SVM can accomplish great performance in the 
classification and calculation processes. This can be achieved 
through the use of a relatively low amount of the provided 
learning data. However, they cannot give a comprehensible 
representation of where a produced output has been attained. 
They are similar to black-box models due to their complex 
structure, numerous parameters, and excessive abstraction 
[37]. With classical SVMs, the experimenters can never 
depend on their prior knowledge to process accurate 
classifications or solve inaccurate and ambiguous problems, 
which can also greatly impact the performance of the learning 
ability of SVMs. 

B. Fuzzy Logic-based Fall Detection 

Fuzzy systems are systems in which the variables have 
domain fuzzy sets. Such systems allow the encoding of 
structured, empirical, heuristic, or linguistic knowledge in a 
numerical framework. As opposed to conventional logic, FL is 
based on the mathematical theory of fuzzy sets, which mimics 
human thought and tries to reflect reality while taking into 
account all outcomes between 0 and 1 [38], where 1 means 
absolute truth and 0 means absolute falsehood. The FL 
consists of three main parts. The first part is Fuzzification 
which allows the conversion of crisp values into fuzzy 
membership functions. The second part is the fuzzy inference 
aggregation which contains all the rules and if-then conditions 
to control the decision-making system. In this phase, the 
Mamdani method, which requires finding the centroid of a 
two-dimensional shape by integrating it across a continuously 
varying function, is the most commonly used technique. The 
third part is the defuzzification process that converts the fuzzy 
sets into crisp values. Despite the availability of several 
defuzzification methods, the centroid technique remains the 
most popular among all of them [39,40]. 

In Fuzzy Logic-based fall detection, [41] confirmed that 
Fuzzy is capable of detecting a fall from real-time data as it 
requires minimum hardware and software specifications. 
Reusing the existing data, balancing the load amongst FLS 
devices, and cost-efficiency are some of the advantages 
offered by the FLS architecture to introduce flexible and 
smooth decisions. In their proposed method, they “fuzzify” 
each input value as a function of fuzzy membership, where 
each input contains three linguistic values: low, medium, and 
high. Every membership is classified as a turning point with 
different values. To perform their experiment, the researchers 
created nine rules to identify whether a fall occurred or not. 
Finally, they transformed a fuzzy output set into a crisp value 
in the defuzzification phase. The authors in [42] used FL to 
identify the range and type of fall, which can include the 
position before fall, fall direction, fall velocity, and post-fall 
inactivity. The authors in [43] looked beyond the traditional 
threshold-based approaches and implemented a fuzzy 
inference technique for precise decision making. They fused 
the data from multiple sensors and generated a value between 
0 and 1, which implies the chance of a fall; thus reducing the 
number of false alarms. The authors in [44] initiated a new FL 
algorithm, which is worn on wrists to detect falls and reduce 
the number of false alarms. The fall detection system has three 
major phases which are data sampling, data processing, and 
fuzzy classification. In the three stages, a typical FL procedure 

is followed by fuzzily setting all input values into fuzzy 
membership functions, executing all relevant rules to calculate 
the fuzzy output functions, and “defuzzifying” the fuzzy 
output functions to get output values. They used Mamdani's 
minimum operation and the AND-output rule in their fall 
detection algorithm and a weighted average formula in 
defuzzification. Furthermore, since the Mamdani approach is 
generally accepted for the development of expert knowledge, 
this helps one to explain the ability in a more perceptive, 
human-like manner. However, this technique is not 
computationally effective and can be expensive due to 
calculating a two-dimensional form by adding it up or 
combining it more accurately through a function that change 
continuously. 

III. SVM AND FUZZY SVM BASIC THEORY 

In this section, we briefly review the basics of the theory 
of SVM in classification problems and fuzzy support vector 
machines, which are discussed by [45,46,47.48]. 

A. SVMs Theory 

SVM is a robust classification method that was developed 
by Vladimir Vapnik and aims to construct a decision function 
that separates the data in the input space into different classes. 
The basis of this method is minimizing the structural risk 
method in order to reduce the error [32]. An optimal 
hyperplane must be found through maximizing the margin 
between classes in input space. Nonetheless, the samples close 
to the hyperplane are called support vectors [49]. 

In the input space, it is assumed that the patterns are drawn 
by the training points {        }. If this input data are linearly 
separable, the hyperplane that produces the separation could 

be described as:          where   is an input vector, 
                 is a weight vector,   is the number of the 
input variables, and   is a bias that will determine the distance 
between the hyperplane and the origin. It can classify the 
points using the following equation: 

{
                   

                   
            (1) 

where      {     } is the binary class label for a new 
point   , this output enables    to be classified as belonging to 
one of the two classes. 

The goal of the support vector machine is to build the 
optimal hyperplane that maximizes the distance between the 
closest points of each class and the separation [50]. This is 
presented by solving the linear problem: 

{
    

 

 
 ‖ ‖  

                       
            (2) 

To deal with data that are not separable cases, slack 
variables    are introduced. This represents the misclassified 
sample of the corresponding margin hyperplane, where 
  {          } is an upper bound of the number of error 
[48]. Thus, the optimal hyperplane in a nonlinear space can be 
determined by: 
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subject to: 

{

 
    

                          
                  

            (3) 

In this sense, the adjustable parameter     plays a major 
role in maximizing the margin and carefully tuning the 
number of misclassifications. If     is bigger, it makes the 
training of SVM fewer misclassifications and it narrows the 
margin. In contrast, if     decreases, it makes SVM disregard 
more training points and it widens the margin. 

However, the search for a suitable hyperplane in an input 
space is too restrictive to be of practical use when the samples 
are linearly non-separable. Thus, SVM techniques utilize a 
group of mathematical functions known as the kernel that 
satisfies Mercer’s theorem [51]. This can be applied to map 
data relevant to the feature of higher dimensions, hence 
seeking an optimal separating hyperplane in the feature space 
[29]. 

The main approach is to find the function that performs the 
mapping from the input to the feature space. By introducing 
the vector of Lagrange multipliers [31], the nonlinear 
separating hyperplane can be found as the solution of: 

   ∑  

 

   

  
 

 
∑   

 

     

       (     ) 

subject to: 

{
∑     

 
         
           

             (4) 

where           〈          〉 is the dot products of the 
corresponding feature vectors into high dimensional space 
[51]. 

Four common types in kernel at the SVM algorithm are 
linear, polynomial, Gaussian RBF, and sigmoid kernel where 
each kernel function has a particular parameter that must be 
optimized to obtain the best result performance [49]. Three 
kernel types will be used in the experiments to compare their 
results to those of our proposed method. These kernel types 
are: 

 Linear kernel:          〈    〉. 

 Polynomial kernel:           〈    〉       with 
degree  . 

 RBF kernel:           
  ‖ ⃗⃗    ⃗⃗⃗⃗ ‖  

    with adjustable 
width parameter  . 

B. Fuzzy SVMs Theory 

SVM is a powerful tool for classifying data points that are 
assumed to belong to the one and only class [52]. However, as 
discussed previously, the effects of the training points are 
different. Especially for fall detection, classical SVM can 

neither use prior knowledge to process accurate classifications 
nor solve problems characterized by inaccuracy and 
ambiguity. In more specific terms, some values of falls are 
inaccurate and similar to the features of normal activities, 
which can also greatly impact the performance of the learning 
ability of SVMs. Furthermore, some training points no longer 
exactly belong to one of the two classes. For example, 80% 
belong to the class of falls and 20% to the class of ADLs. 
These points are critical and may cause false positive alarms 
which reduce the accuracy of the system. 

To do that, the points that have a low potential for falling 
or normal activity will be assigned to lower membership 
functions. Otherwise, a high chance of falls will be assigned 
with a high degree of membership function. In this sense, each 
training point is fuzzified into a membership function. This 
fuzzy membership    {   } is considered to be the attitude 
of the corresponding training point toward one class in the 
classification problem whereas the value (      ) is 
considered to be the attitude of meaninglessness. So, the idea 
of SVM will be expanded and combined with a fuzzy 
membership function to make it a Fuzzy SVM. 

The term    is introduced as a membership vector for each 
training point   . Thus, the optimal hyperplane problem is 
then regarded as the solution to: 

       ‖ ‖   ∑     

 

   

 

subject to: 

{
    

                          
                  

           (5) 

where the term       is a measure of error with different 
weighting. Hence, it can be noticed that the effect of 
misclassified parameter    will be reduced when the 
membership functions    are smaller. In this case, the training 
point    is treated as less important in the training. By 
applying Lagrange multipliers, the above problem is 
reformulated as: 

         ∑  

 

   

  
 

 
∑   

 

     

       (     ) 

subject to: 

{
∑     

 
         
             

             (6) 

Solving problem (6), dual of (5), is the same for classical 
SVM with a slight difference. As a consequence, this is the 
basic theory of Fuzzy SVM. 

IV. CLINICAL STUDY 

A clinical study was conducted to identify the disabled 
group that needs fall detection. Patients and specialists in 
healthcare centers were interviewed to collect data on health 
and welfare. The interviewer was a physiotherapy officer in 
Lebanon, and the interviewees were people with special needs 
living in the sample households. A survey was distributed to a 
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group of physically disabled people who suffered traumatic 
brain injuries. Each case had a different kind of disability, 
such as Cerebral Vascular Accident (CVA), Cerebral Palsy 
(CP), Meningitis, or Guillain-Barre. This survey included 
information on the installation of sensors based on the 
preference of disabled people. As a result, patients with brain 
injuries were asked to fill out a survey with a special focus on 
the duration of their disability, the reason for disability, and 
the number of falls in the last 6–12 months. 

In Fig. 1, it is illustrated that 65% of the studied cases were 
patients with CVA, 25% were patients with CP, 6% were 
patients with Meningitis, and 4% were patients with Guillain-
Barre. In Fig. 2, which studies the number of falls in each 
case, it is revealed that CVA cases aged above 55 ran into 83 
falls, which is 37%, while CVA cases aged under 55 ran into 
60 falls, ranking a lower percentage, which is 27%. In general, 
CVAs ranked 64%, indicating the highest percentage of falls. 
In addition, CP cases marked 59 falls, indicating the second-
highest percentage of falls, which is 26%, whereas other cases 
marked 24 falls, showing the lowest percentage of falls, which 
is 10%. Thus, it was noticed that people with disabilities 
related to traumatic brain injuries such as CVA, CP, Guillain-
Barre, and Meningitis have a high frequency of falls. Each 
respondent gave a different answer regarding the position of 
the fall detection sensor. 

 

Fig. 1. Percentage of Participants with Traumatic Brain Injuries. 

 

Fig. 2. Percentage of Falling for Participants with Traumatic Brain Injuries. 

 

Fig. 3. Preferred Position of the Sensor. 

Fig. 3 shows that 37% of the CP, Meningitis, and Guillain-
Barre cases suggested placing the sensor on the waist in a way 
that allows it to be balanced right between the upper part of 
the body and its lower part. On the other hand, CVA cases had 
different answers, each according to their age. Those aged 55 
and above (33% of the CVA cases) wanted to install the 
sensor on the wrist to quickly detect a fall, while people under 
the age of 55 (30%) wanted to install it on the shoulder. 

In this paper, we are going to install a sensor for brain 
injury cases on the waist since it is the most fixed point of the 
body and is needed to maintain joint stability. Thus, it can 
track any movement easily. 

V. PROPOSED METHOD 

A prototype of the wearable device is designed using 
hardware in the form of a small-sized IMU sensor. The digital 
output of a 9-axis motion tracker by the IMU module is 
accessible by the I2C communication protocol (Inter-
Integrated Circuit). This module is based on the MPU-9250, 
which assists in detecting activity changes, determining the 
slope of the object on which the sensor is mounted, generating 
acceleration, and expressing the angle and rotation about each 
axis in 3D space. It also achieves targets with low power 
consumption and robustness during the short duration of 
dynamic accelerations. Data gathered by the sensor are 
defined by an Arduino Uno microcontroller that operates at a 
voltage of 3.3/5 volts and is used to read the accelerometer, 
the gyroscope, and the magnetometer, as well as the internal 
temperature and the Tait Bryan angle-like pitch roll and yaw. 
The Baud rate is set to 9600 bits per second for serial 
communication between the Arduino board and the MPU-
9250. The acquired data are transferred via a low-energy 
Bluetooth interface to the classification part. The Bluetooth 
module HC-05 is used for wireless communication between 
the Arduino Uno and MPU-9250. Bluetooth technology is a 
suitable choice for a lot of applications in daily life as it 
provides a reliable connection and low power consumption 
[53]. 

This paper suggests a new method to detect falls through 
the effective combination of FL and SVM (Fuzzy SVM). The 
input matrix consists of a 9-axis accelerometer, gyroscope, 
and magnetometer to collect multiple human body data points 
at the same time, including human body acceleration, 
rotational velocity, and displacement along the three 
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directions. The next step involves smoothing the data 
collected and computing the standard deviation of each of the 
nine axes from the IMU sensor in 3D space. After that, the 
magnitude of standard deviation features is extracted to 
indicate abnormal activity in the preprocessing phase. The 
building of the FL model is formed by using a trapezoidal 
membership function along with the input dataset to obtain the 
intermediate output. SVM, with selected kernels, will use the 
high degree of membership function of the three inputs to 
determine whether a fall has occurred or not and to obtain a 
confidential decision. Additionally, and to summarize, 
hyperparameters, including sensitivity, specificity, accuracy, 
and precision, were monitored during the methods’ 
evaluations. As for the 9-axis sensor, all nine parameters 
(projections of acceleration, gyroscope, and magnetometer 
into three-dimensional space) were included in the model’s 
inputs with different correlation indices. 

A. Data Smoothing 

A simple moving average filtering method is used for 
smoothing noisy raw data in order to obtain clearer data and 
state estimation of signals from human activities [25]. This 
can be obtained in (7) from the mathematical definition of a 
vector  : 

      
 

                                              
         (7) 

where,      is the current output,      is the current 
input,         is the previous input, etc.; noting that   is the 
length of the window size. 

In Fig. 4, the signal in the original data is a pulse buried in 
random noise. In Fig. 5, this signal is filtered with       
point moving average filters. The noise level becomes lower 
when the number of points in the filter increases. The optimal 
solution for this problem is the moving average filter, which 
gives the lowest noise possible for a given edge sharpness. 
The smoothing action of the moving average filter reduces the 
amplitude of the random noise when      . Averaging the 
raw data leads to smoothing out the incidental peaks. 

B. Feature Extraction 

The acceleration value of human movement for specifying 
the changing rate of human motion can be calculated by using 
standard deviation. This function is sensitive to fall detection 
and can detect sudden tilt changes [54]. Standard deviation is 
useful for distinguishing static from dynamic activity and for 
identifying dynamic activity. Assumingly, a human fall is of 
high acceleration whereas walking is regarded as a low-
acceleration activity [55,56]. 

The standard deviation is an index of how near the 
individual data points cluster around the mean. If we called 
each data point   , an index of dispersion, it would be 
represented in (8): 

  √
 

   
∑      ̅     

                (8) 

where          is an index of data sample,   is the 
number of data sample, and  ̅ represents the sample mean. 

 

Fig. 4. Original Data by Moving Average Filter. 

 

Fig. 5. Smoothing Raw Data by Moving Average Filter. 

We computed the standard deviation of each of the nine 
axes depending on whether they were an accelerometer, a 
gyroscope, or a magnetometer raw data. After that, three 
features were extracted from the IMU sensor, which are: 

The norm of a standard deviation of the acceleration |  | 
is calculated in (9): 

|  |   √   
     

     
              (9) 

where    ,    , and     are the standard deviation along 

the directions of      and   axes of the acceleration raw data 
that are represented by   ,     and    respectively. 

The norm of a standard deviation of the rotation |  | is 
calculated in (10): 

|  |   √   
     

     
            (10) 

where    ,    , and     are the standard deviation along 

the directions of      and   axes of the rotation raw data that 
are represented by   ,     and    respectively. 

The norm of a standard deviation of the magnetometer 
|  |is calculated in (11): 

|  |   √   
     

     
            (11) 

where    ,    , and     are the standard deviation along 

the directions of      and   axes of the magnetometer raw data 
that are represented by   ,     and    respectively. 

Thus, when a standard deviation method is applied, it can 
differentiate between an actual fall and other activities. 
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This method can compute a sudden change in acceleration 
in zero gravity. If this standard deviation value has a high 
changing trend, it indicates unusual activity. In Fig. 6, a fall 
might be shown to arise if this value has a high changing rate. 
As a result, the human motion after this is re-examined to 
check if the human body has no movement. In this way, it can 
be ensured that it is the actual fall. 

 

Fig. 6. Example of Standard Deviation for Accelerating Raw Data. 

C. Generate Fuzzy Membership Function 

A membership function is a function that is responsible for 
defining how each point in the input space is mapped to a 
membership value (or degree of membership). A fuzzy set   
in   will be explained as a group of ordered pairs, as 
expressed below:  

   {       |    }           (12) 

In particular: 

       is the degree of membership of   in  . 

 The boundaries of a fuzzy set   is the set of all    
  such that             . 

   is the input space and its elements are denoted by  . 

In this paper, an MPU–9250 sensor device in an IoT-
enabled environment is used to effectively recognize fall 
events by examining the impact of the body on the ground in 
addition to the body orientation prior to, during, and following 
the fall. Next, the proposed method fuzzily analyses these 
inputs and produces an output as a crisp value between 0 and 
1, which signifies the possibility of a fall. FL is used to solve 
such classification and decision problems without a clear 
threshold boundary. When a specific value does not 
completely belong to a certain category, the membership 
function is used to measure it. The process of converting the 
logical input value into the membership of each set (normal, 
medium, high) is called fuzzification. 

Three input features, |  |, |  |, and |  |, are introduced 
to build the suggested approach in order to get the 
intermediate output. These three linguistic variables for every 
three inputs are represented in (13): 

 |  |    |  |    |  |   {                  }    (13) 

In this paper, trapezoidal Membership Function (MF) was 
considered as this type is most frequently used, very flexible, 

and a small amount of data is needed to define it. The 
trapezoidal function guarantees the existence of a certainty 
interval in the fuzzification [40]. 

Each membership is configured with specific values as 
specification points based on our experimental test to balance 
sensitivity and specificity. An FL model will be built based on 
selectable membership functions of the input datasets to get 
the intermediate output. 

The general form of high trapezoidal MF for the fuzzy set 
|  |, in terms of the degree of membership, could be defined 
in (14): 

     
|  |

  {

            
     

       
               

           

         (14) 

The general form of high trapezoidal MF for the fuzzy set 
|  |  in terms of the degree of membership, could be defined 
in (15): 

     
|  |

  {

           
    

     
             

          

          (15) 

The general form of high trapezoidal MF for the fuzzy set 
|  |, in terms of the degree of membership, could be defined 
in (16): 

     
|  |

  {

           
    

     
             

          

          (16) 

Fig. 7 illustrates the membership of the magnitude of a 
standard deviation of the acceleration in a plan. The normal 
magnitude is assigned to 80, the medium magnitude is 
distributed between 95 and 145, and the maximum is defined 
as 160. Therefore, we put a minimum value that a fall can 
happen at 145 and consider it as the medium acceleration 
value. 

Fig. 8 depicts memberships of the magnitude of a standard 
deviation of the rotation in a plan. The normal magnitude is 
assigned to 6, the medium magnitude is distributed between 9 
and 12, and the maximum is defined as 15. Therefore, we put 
the minimum value that a fall can happen at 12 and consider it 
the medium angle value. 

Fig. 9 represents memberships of the magnitude of a 
standard deviation of the displacement in a plan. The normal 
magnitude is assigned to 20, the medium magnitude is 
distributed between 25 and 30, and the maximum is defined as 
35. Therefore, we put a minimum value that a fall can happen 
at 30 and consider it the medium magnetometer value. 

 

Fig. 7. Membership Function for the Input 1: |  |. 
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Fig. 8. Membership Function for the Input 2: |  |. 

 

Fig. 9. Membership Function for the Input 3: |  |. 

The output of such FL analysis is a block formed from a 
high degree of membership based on these three inputs. This 
means that the event will be considered to have a high degree 
of membership if the magnitude of the standard deviation of 
the acceleration is greater than 145, if the magnitude of the 
standard deviation of the rotation is greater than 12, and if the 
magnitude of the standard deviation of the magnetometer is 
greater than 30. The intermediate output will be used as an 
SVM input with selectable kernels to reach the decision. This 
will help provide an initial decision bias on whether an event 
of falling likelihood is high. SVM will use the high degree of 
membership function of the three inputs to determine whether 
a fall has occurred or not. However, data points that have a 
potential normal or medium chance of falling are assigned 
lower membership degrees. 

VI. EXPERIMENTAL SCENARIO 

The prototype was attached at the waist to collect real-time 
motion data since this is the most fixed position of the body 
and is needed to provide joint stability and efficiently track 
any movement. Unlike wired systems, wireless data collection 
allows users to perform movements more fluently. Four 
volunteers were chosen to participate in a simulated falling 
event where they implemented the fall activities on 30 cm 
thick mats to prevent injuries. These volunteers have a healthy 
body, are aged between 25 and 35 years, weigh between 70 
and 100 kg, and are 1.68 to 1.94 m tall. In this paper, different 
subcategories and characteristics of falls in five directions 
(forward, backward, left, right, and vertical falls) and normal 
activities including (walking, sitting, and stumbling while 
walking) were examined in the experiments to achieve our 
goal. The average duration of each trial was about 40 seconds. 
Each fall type was repeated more than ten times in a total of 
100 trials. 

The dataset was read from the CSV file and was 
implemented with the assistance of the LIBSVM library for 
MATLAB (version R2018a). Three predictors were 
introduced where they showed the value of each nine-axis of 
the trapezoidal membership function of the magnetometer, 
accelerometer, and gyroscope. Two classes of responses, -1 
and 1, were designated to sort the non-falling and falling 
events, respectively. To make model predictions and estimate 
how accurate a predictive model will be when implemented, a 

cross-validation model was used. The default option is 5-fold 
cross-validation to partition the data set into 5 folds. This 
helps protect against overfitting and examines the predictive 
accuracy of the fitted models. We trained an SVM classifier in 
the supervised machine learning model. This was done by 
providing a known input data set (2250 observations) in 
addition to known replies to the data that comprise two 
classes: -1 indicating data points of the non-falling type, and 
+1 indicating data points of the falling type. We used linear, 
cubic, quadratic, and RBF SVM kernel functions and 
standardized the features. 

In this paper, the kernel function will be specified as a 
Medium Gaussian or RBF kernel, a Quadratic kernel, and a 
Cubic kernel. In order to tune the SVM classifier, the kernel 
scale was picked by different scales. Next, we adjusted the 
box constraint level with diverse values for every kernel scale 

to reach the self-confidential decision. The adjustable 
parameter     usually plays a vital role between cautiously 
tuning the number of mistakes and maximizing the margin. 
Therefore, the increase in the box constraint level might 
decrease the number of support vectors, but it can also 
increase the time of training, make the training of SVM have 
fewer misclassifications, and narrow the margin. On the other 
hand, it allows the SVM to discount more training points and 
it widens the margin. The evaluation of the Fuzzy SVM 
network included dividing the datasets from model training 
(75%) and real-time data for testing new data (25%). 

A. Experimental Results Metrics 

In the final phase, to show the effectiveness of the 
proposed method, the confusion matrix plot was calculated 
between the model predictions and the ground truth labels in 
order to check each class's performance and to know how the 
current classifier performed in every class [57]. Classification 
algorithm performance has traditionally been evaluated using 
a range of performance criteria, which are presented in 
Table I. 

TABLE I. DESCRIPTIONS OF PARAMETRIC EVALUATION 

 Detected Fall Undetected Fall 

Fall Occurrence  True Positive (TP) False Negative (FN) 

Fall Unoccurence False Positive (FP) True Negative (TN) 

In this paper, we compute the following common machine 
learning classification metrics to assess the classifier's 
effectiveness in our evaluation. Sensitivity and specificity are 
calculated by (17) and (18), respectively. Accuracy could be 
defined by (19), which is the ratio of all samples that the 
classifier correctly classified [58]. The precision metric could 
be described by (20), which evaluates the number of correct 
positive predictions made. Hence, low precision might be an 
indication of a large number of FP. 

             
  

       
           (17) 

             
  

      
           (18) 

          
      

             
          (19) 
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           (20) 

B. Experimental Results of Proposed Method without Fuzzy 

MFs 

This section reports the preliminary results of the fall 
detection system. We used the Gaussian RBF kernel for 
training and adjusted the optimal regularization parameter 
with diverse values for every kernel scale. The box constraint 
level, denoted as the soft margin penalty    , was varied with 
different values for each kernel scale in this experiment to 
provide increased flexibility. 

Table II shows the experimental results of the proposed 
method without employing Fuzzy MFs with RBF kernel 
function. The percentage of accuracy ranges between 97.78 
and 97.96, the percentage of sensitivity ranges between 93.39 
and 95.21, whereas the percentage of specificity ranges 
between 98.91 and 99.45; with precision between 96.96 and 
98.43. The boldfaced numbers reveal the best-obtained results 
in the current classifier that were used later to compare with 
employed Fuzzy MFs to show the improvement of the 
proposed method. 

In Table III, the experimental results indicate that the best 
model was selected in the Quadratic kernel, where the 
percentages of accuracy and sensitivity are 97.78 and 94.71, 
respectively. As for specificity and precision, the best results 
were obtained in the cubic kernel, which reached 99.03 and 
97.26, respectively. 

TABLE II. EXPERIMENTAL RESULTS OF THE PROPOSED METHOD 

WITHOUT FUZZY MFS FOR GAUSSIAN RBF KERNEL FUNCTION 

K=3 
Accuracy 

% 

Sensitivity 

% 

Specificity  

% 

Precision 

% 

C = 1 97.82 93.39 99.45 98.43 

C = 2 97.82 94.38 99.09 97.44 

C = 3 97.87 94.71 99.03 97.28 

C = 4 97.91 94.88 99.03 97.29 

C = 5 97.91 94.88 99.03 97.29 

C = 6 97.87 94.71 99.03 97.28 

C = 7 97.87 94.71 99.03 97.28 

C = 8 97.91 94.88 99.03 97.29 

C = 9 97.82 94.88 98.91 96.96 

C = 10 97.82 94.88 98.91 96.96 

K=2 
Accuracy 

% 

Sensitivity 

% 

Specificity  

% 

Precision 

% 

C = 1 97.78 94.38 99.03 97.27 

C = 2 97.82 94.71 98.97 97.12 

C = 3 97.91 95.04 98.97 97.13 

C = 4 97.87 94.88 98.97 97.12 

C = 5 97.78 94.71 98.91 96.95 

C = 6 97.82 94.88 98.91 96.96 

C = 7 97.91 95.04 98.97 97.13 

C = 8 97.96 95.21 98.97 97.13 

C = 9 97.91 95.21 98.91 96.97 

C = 10 97.87 95.04 98.91 96.96 

TABLE III. EXPERIMENTAL RESULTS WITHOUT FUZZY MFS FOR LINEAR, 
CUBIC, AND QUADRATIC KERNEL FUNCTIONS 

Kernel 

function 

Accuracy 

% 

Sensitivity 

% 

Specificity  

% 

Precision 

% 

Linear  

SVM 
97.47 93.88 98.78 96.6 

Cubic  

SVM 
97.64 93.88 99.03 97.26 

Quadratic  

SVM 
97.78 94.71 98.91 96.95 

C. Experimental Results of Proposed Method with Fuzzy MFs 

Table IV shows the experimental results of the proposed 
method by employing Fuzzy MFs with RBF kernel function. 
The percentage of accuracy ranges between 99.82 and 99.96, 
the percentage of sensitivity ranges between 99.63 and 99.81, 
whereas the percentage of specificity ranges between 99.88 
and 100; with precision between 99.63 and 100. The 
boldfaced numbers reveal the best-obtained results in the 
current classifier by employing Fuzzy MFs to show the 
improvement of the proposed method. 

In Table V, the experimental results of Fuzzy SVM with 
Cubic and Quadratic Kernel Function indicate that the 
percentage of accuracy is 99.96, the percentage of sensitivity 
is 99.81, whereas the percentage of precision and specificity is 
100 for both types of the kernel function. An overall score of 
100% for specificity and precision and 99.81% for sensitivity 
was obtained by using the new method. 

TABLE IV. EXPERIMENTAL RESULTS OF THE PROPOSED METHOD WITH 

FUZZY MFS FOR GAUSSIAN RBF KERNEL FUNCTION 

K=3 
Accuracy 

% 

Sensitivity 

% 

Specificity  

% 

Precision 

% 

C = 1 99.91 99.63 100 100 

C = 2 99.87 99.81 99.88 99.63 

C = 3 99.82 99.63 99.88 99.63 

C = 4 99.82 99.63 99.88 99.63 

C = 5 99.82 99.63 99.88 99.63 

C = 6 99.87 99.63 99.94 99.81 

C = 7 99.91 99.63 100 100 

C = 8 99.96 99.81 100 100 

C = 9 99.96 99.81 100 100 

C = 10 99.96 99.81 100 100 

K=2 
Accuracy 

% 

Sensitivity 

% 

Specificity  

% 

Precision 

% 

C = 1 99.91 99.63 100 100 

C = 2 99.91 99.63 100 100 

C = 3 99.91 99.63 100 100 

C = 4 99.96 99.81 100 100 

C = 5 99.96 99.81 100 100 

C = 6 99.96 99.81 100 100 

C = 7 99.96 99.81 100 100 

C = 8 99.96 99.81 100 100 

C = 9 99.96 99.81 100 100 

C = 10 99.96 99.81 100 100 
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TABLE V. EXPERIMENTAL RESULTS OF THE PROPOSED METHOD WITH 

FUZZY MFS FOR LINEAR, CUBIC, AND QUADRATIC KERNEL FUNCTIONS 

Kernel 

function 

Accuracy 

% 

Sensitivity 

% 

Specificity  

% 

Precision 

% 

Linear  

SVM 
99.56 99.44 99.59 89.70 

Cubic  

SVM 
99.96 99.81 100 100 

Quadratic  

SVM 
99.96 99.81 100 100 

In Table VI, we compared the effectiveness of our 
proposed fall detection method when we employed the Fuzzy 
MFs. The overall performance in terms of accuracy, 
sensitivity, specificity, and precision was increased by 2%, 
4.6%, 0.55%, and 1.57%, respectively. 

A fall detection system should avoid acquiring FP and FN 
results to obtain more reliable results. The experimental 
results demonstrate that the proposed method with fuzzy 
membership reduced false alarms and achieved accurate fall 
detection with better performance than traditional SVM. 

TABLE VI. EXPERIMENTAL RESULTS OF THE PROPOSED FUZZY SVM VS. 
CONVENTIONAL METHOD 

Proposed method SVM WITH FUZZY MFs 

Kernel function 
Accuracy 

% 

Sensitivity 

% 

Specificity  

% 

Precision 

% 

Linear SVM 99.56 99.44 99.59 89.70 

Cubic SVM 99.96 99.81 100 100 

Quadratic SVM 99.96 99.81 100 100 

Gaussian RBF 99.96 99.81 100 100 

Proposed method SVM WITHOUT FUZZY MFs 

Kernel function 
Accuracy 

% 

Sensitivity 

% 

Specificity  

% 

Precision 

% 

Linear SVM 97.47 93.88 98.78 96.6 

Cubic SVM 97.64 93.88 99.03 97.26 

Quadratic SVM 97.78 94.71 98.91 96.95 

Gaussian RBF 97.96 95.21 99.45 98.43 

VII. CONCLUSION 

In this paper, we introduced a new hybrid method 
integrating FL and SVM as a powerful technique for fall 
detection. The obtained results based on the defined 
environment showed a significant improvement in the 
accuracy of detection as compared to standalone, independent 
methods. Moreover, this paper examined the ways of 
identifying, expressing, and inspecting the relationship 
between disabled people suffering from traumatic brain 
injuries and falling events. Detecting falls accurately in time 
can reduce the severe consequences, especially since it can 
improve the quality of life of people with disabilities by 
promoting their independence. Besides, the prototype we 
examined was based on the Arduino platform, with the MPU-
9250 sensor forming the part that was fixed on the patient’s 
body and that wirelessly connects over the IoT platform via a 
low-energy Bluetooth interface. Thus, a 9-axis of 

accelerometer, gyroscope, and magnetometer data formed the 
input matrix. The data were then smoothed using the moving 
average method to obtain clearer data and reduce the 
amplitude of the random noise. The standard deviation of each 
of the nine axes from the IMU sensor, depending on whether it 
was an accelerometer, gyroscope, or magnetometer, raw data 
in the x, y, and z planes in 3D space, was then computed. 
After that, the magnitude of standard deviation features was 
extracted in a way that makes it possible to differentiate 
between an actual fall and other activities, and thus to indicate 
abnormal activity in the pre-processing phase. Our proposed 
fall detection method is based on the effective combination of 
FL and SVM algorithms. In Fuzzy SVM, a fuzzy membership 
is given to each data point and set by expert experience. 
Different memberships reflect various contributions made to 
the decision-making learning process. SVM uses a high 
degree of membership functions extracted from selected 
features to automatically generate a model of the data and 
drive training, which enhances generalization ability and 
makes the heuristic obviousness of the traditional SVM 
efficient. The overall performance of the proposed fall 
detection system in terms of sensitivity and accuracy were 
99.81% and 99.96%, respectively. This experiment achieved 
the maximum specificity and precision of 100% and, 
accordingly, proved to be effective and yielded better results 
than the conventionally used approaches. In other words, there 
was clear evidence that combining FL and SVM detects falls 
more accurately and performs better in reducing the effects of 
false positive alarms. This type of work is common abroad, 
yet it is still novel in Lebanon. So this study is considered a 
pioneering experience in fall detection systems for disabled 
patients. Furthermore, knowing that fall event datasets for this 
type of patients are not currently available in the literature, 
further trials must be conducted to simulate and refine the fall 
detection system and evaluate it outside the workplace. The 
application can be tested in real-world scenarios involving 
various types of disability. Our continuing research includes 
integrating fall detection algorithms into a smartphone that 
would be worn around the waist. This will be very useful to 
improve the robustness of our proposed method. 
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