
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

315 | P a g e

www.ijacsa.thesai.org

An Effective Ensemble-based Framework for Outlier

Detection in Evolving Data Streams

Asmaa F. Hassan, Sherif Barakat, Amira Rezk

Department of Information Systems

Faculty of Computers and Information

Mansoura University

Cairo, Egypt

Abstract—In the last few years, data streams have drawn lots

of researchers’ attention due to their various applications, such

as healthcare monitoring systems, fraud and intrusion detection,

the internet of things (IoT), and financial market applications. A

data stream is an unbounded sequence of data continually

generated over time and is prone to evolution. Outliers in

streaming data are the elements that significantly deviate from

the majority of elements and then have to be detected as they

may be error values or events of interest. Detection of outliers is a

challenging issue in streaming data and is one of the most crucial

tasks in data stream mining. Existing outlier detection methods

for static data are unsuitable for use in data stream settings due

to the unique characteristics of streaming data such as

unpredictability, uncertainty, high-dimensionality, and changes

in data distribution. Thus, in this paper, a novel ensemble

learning framework called Ensemble-based Streaming Outlier

Detection (ESOD) is presented to perfectly detect outliers over

streaming data using a sliding window technique that is updated

in response to the incoming events from the data streaming

environment to overcome the concept evolution nature of

streaming data. The proposed framework has three phases,

namely the training phase, testing/offline phase, and outlier

detection/online phase. A detection weighted vote technique is

used to determine the final decisions for potential outliers. In the

extensive experimental study, which was conducted on 11 real-

world benchmark datasets, the proposed framework was

assessed using many accuracy metrics. The experiment results

showed that the proposed framework beats many other state-of-

the-art methods.

Keywords—Outlier detection; data streams; data stream

mining; ensemble learning; concept evolution

I. INTRODUCTION

Due to the recent advances in both software and hardware,
many applications are generating streaming data, such as
sensor networks, financial markets, real-time video
monitoring, internet traffic, and medical data. The term "data
stream" refers to a collection of temporally ordered, massive,
usually arriving at a high rate, and potentially infinite data
objects. A data stream can be formalized as DSt = {x1,t, x2,t, x3,t,
..., xN,t}, where xi,t is the element number i at time t, and it has a
set of high-dimensionality attributes or features. Through its
large volume, it is therefore difficult to fully store data streams
in memory and scan them several times [1]. Data streams
differ from static data where they have some unique
characteristics such as concept-evolution, concept-drift, and
feature-evolution. In particular, concept-evolution happens

when new classes emerge in streams, concept-drift occurs
when the distribution of data points shifts over time, and
feature-evolution occurs when the feature set of data streams
changes over time [2]. Data Stream Mining (DSM) is a new
approach for extracting important information from data
streams [3]. Hence, the traditional data mining techniques are
not applicable to processing data streams because of the
special characteristics of streaming data as shown in Table I.

Data streams, like traditional data, may have outliers, or
data points that are considerably different from the bulk of
data points [4]. They can be noise data points or interesting
instances and have to be detected in many cases to achieve
better performance and accuracy. Outlier detection is one of
the most important data mining tasks for detecting unusual
and anomalous data points or sequences hidden in a dataset
[5]. However, outlier detection over data stream datasets
completely differs from traditional data ones because it must
be performed under only one pass, the available memory is
limited, real-time response, and the concept-evolution nature
of streaming data. In real life, outlier detection has a variety of
essential applications, such as detecting credit card fraud;
intrusion detection in computer networks or cybersecurity;
system fault diagnosis in industry; early disease detection in
the health care sector, etc. [6]. Outlier detection techniques
may be based on one of the following learning methods:
unsupervised, semi-supervised, supervised, or ensemble
learning. The unsupervised learning technique does not need
training data to build the model, while the semi-supervised
learning technique combines a small collection of labelled
data with a large dataset of unlabeled training data. In the
supervised learning approach, it requires labelled training data
availability [4]. On the other hand, the ensemble learning
approach requires a group of multiple trained classifiers
learning algorithms to detect outliers in order to improve the
detection accuracy. In particular, a number of different base
learners are used in an ensemble model, which is normally
much stronger than all standalone base learners because it has
the ability to improve the performance of weak learners [5].
For this purpose, this paper presents an effective outlier
detection approach based on the ensemble learning technique
where the iForestASD, decision tree, and Adaptive Random
Forest (ARF) classifiers are used as the base learners to build
an ensemble-based model over streaming data using the
sliding window fashion with the objective of improving
detection performance while decreasing detection time
consumption. In the data streams environment, the sliding

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

316 | P a g e

www.ijacsa.thesai.org

window is a time-based streaming model which is generally
used to effectively process the flow of streaming data through
dividing these streams into several windows, as shown in Fig.
1, where each window has an equal pre-defined size (w) in
time (t). The size of a window may be specified in terms of
time points or the number of recent objects. Hence, each
window maintains only recent objects, while older ones are
discarded, and all objects within the active sliding window
have the same importance.

TABLE I. COMPARISON BETWEEN STREAMING DATA AND STATIC DATA

 Characteristic Streaming Data Static Data

Volume Infinite Finite

Type of Data Heterogeneous Homogeneous

Scanning Time Single pass Multiple passes

Data Processing Real-time processing Offline processing

Data Storage
Aggregated and

summarized data only
Raw data

Concept Evolving Static

Type of Result Approximate result Accurate result

Temporal and Spatial

Contexts
Important aspects

May be considered for

certain applications

Space and Time

Complexity
Strict Not strict

Fig. 1. The Sliding Window Time-based Model.

To detect outlier values, a combination of different base
detectors; iForestASD, decision tree, and adaptive random
forest algorithms; were chosen to develop an ensemble-based
learning framework, which has never been explored before in
the literature. The iForestASD model can be retrained more
quickly than models trained with higher complexity like SVM.
IForestASD allows you to retrain the model with a sliding
window so that detection performance does not degrade even
with concept evolution. While the decision tree technique does
not need data normalization or scaling, and it has a shorter
training period. Furthermore, random forest has high learning
performance with good data visualization for high
dimensional data and does not require hyper-parameter tuning
or tree pruning. Moreover, it enables rapid detection model
training even with limited computational resources. This is the
main motivation for choosing this combination of base
learners to construct our ensemble-based learning model for
streaming outlier detection. In streaming data, the proposed
framework (ESOD) attempts to detect both outliers and new
class concepts. ESOD provides a more effective solution to
this problem by integrating active learning in a supervised
approach to detect any novel concepts and outliers in the

streaming environment. The main research contributions and
novelty are summarized in the following points:

 Proposing an effective Ensemble-based Streaming
Outlier Detection (ESOD) framework for accurately
detecting outliers in the context of streaming data
adapting to the concept drift nature of streaming data.

 Building an ensemble-based model for the proposed
framework using some heterogeneous machine
learning algorithms as base learners, such as
iForestASD, decision tree, and adaptive random forest,
and then selecting the best combination.

 Using the sliding window time-based technique in the
ESOD framework to process the flow of streaming
data.

 Reducing computation time by allowing parameter
tuning and comparing the outcomes of multiple
algorithms in a single trial.

 Providing a detection weighted vote technique to report
the potential outliers that outperforms the standalone
base learners and state-of-the-art techniques in terms of
accuracy, precision and other evaluation metrics.

The remainder of this paper is structured in the following
way: related work on outlier detection techniques in streaming
data is introduced section II. Section III explains the
preliminaries of the used base learners. Section IV introduces
the proposed framework. Section V discusses the experimental
evaluations and the model development details. Finally,
Section VI summarizes the proposed study and the next
directions are given.

II. RELATED WORK

Many attempts in the literature have been devoted to the
outlier detection problem over streaming data. Nevertheless,
many of these detection approaches work in batch mode, in
which all data points are stored and many passes can be made
over the data [7-9]. Several batch outlier detection algorithms
have been adapted for data stream outlier detection, according
to a review in [10]. These methods, while applicable to
streaming data, are inefficient because they do not take into
consideration the special features and characteristics of data
streams. The outlier detection approaches in the streaming
data context may be divided into three main categories, which
are statistical-based, clustering-based, and classification-based
methods [11, 12]. The first attempts at outlier detection were
statistical-based approaches based on defining a model to
represent the normal behavior of the data [13]. If an incoming
data point does not fit the model or has an extremely low
probability of fitting the model, it is termed an outlier. In [14],
The authors proposed an algorithm called UKOF for top-n
local outlier detection based on the kernel density estimation
(KDE) model over large-scale high-volume data streams, in
which they defined a KDE-based outlier factor (KOF) to
measure the local outlierness score, as well as upper bounds of
the KOF and an upper-bound-based pruning strategy to reduce
the search space. Although this method had a low
computational cost, it assumed a stable distribution of data,
which is inappropriate in a data stream setting. In recent

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

317 | P a g e

www.ijacsa.thesai.org

research [15], a maximal weighted frequent-pattern-based
outlier detection approach (MWFP-Outlier) was proposed to
detect potential outliers from uncertain data streams. This
approach had two phases, namely pattern mining phase and an
outlier detection phase. The MWFP-Mine approach was
proposed in the pattern mining phase to mine maximal
weighted frequent patterns using the list structure, tree
structure, and pruning strategies by fully considering the
existential probabilities and weights for each pattern. During
the outlier detection phase, four deviation indices were created
to measure the degree of deviation, and then the top k ranked
transactions were reported as potential outliers. It is unclear,
however, how it dealt with outliers and fast processing.

The clustering-based methods are one of the common
unsupervised methods used in outlier detection problems,
which creates data clusters that represent the underlying data
distribution [16]. Clustering-based methods divide the data
into some clusters according to the similarity between the data
points. Outliers are observations that are remote from clusters
or clusters with significantly fewer data points. The clustering
methods are categorized into distance-based and density-
based. In 2019 [17], Tran et al. proposed three distance-based
algorithms using the micro-clusters concept, and they claimed
that the proposed algorithms had a reasonable processing time
and a low space cost. Regarding the density-based methods,
there are some state-of-the-art methods developed to detect
outliers in data streams, such as [18–20]. Another notable
attempt was presented in [21], a method called LiCS was
introduced to detect outlier that classifies the samples using K-
nearest neighbors of each node. Most recently, [22] proposed
an incremental local density and cluster-based outlier factor
method for detecting outliers in streaming data called
iLDCBOF. The proposed method combined density-based
spatial clustering of applications with noise (DBSCAN) and
incremental versions of the local outlier factor (LOF), but it
suffered from excessive computations. On the other hand,
classification-based methods may either be incremental single
model or ensemble classifier techniques, where the
classification output is a function of the predictions from
different classifiers. In addition, streaming ensemble-based
methods have been developed to deal with the high
dimensionality of data streams, and these techniques have
great success in the outlier detection and prediction domains
because of their accurate results and higher efficiency in both
performance and resource consumption. Ensemble-based
techniques integrate the results of many base models to create
a more robust model that can detect outliers more effectively.
Masud et al. [23] proposed a hyper outlier detection model for
streaming data. They utilized the k-NN classifier first,
followed by the SVM polynomial kernel classifier, and a data
point is reported as an outlier if it is identified as an outlier by
at least one of the classifiers. Then, to distinguish between
novel and outlier data points, a neighborhood silhouette
coefficient is applied. This approach addresses the novelty
detection in multi-class underlying concepts, yet it requires all
data chunks to be labelled to define the new concept. Wang et
al. [24] proposed a model for detecting anomalies based on a
matrix of uncompressed data against a matrix of compressed
data, and this model utilized the original uncompressed data
while considerably reducing computing costs. In [25], a new

ensemble approach called RED-PSO was presented, which is
suited to the drift notion of a data stream in the classification
of non-stationary data streams. In [26], the authors proposed a
sliding window-based ensemble approach for streaming
outlier detection where a combination of clustering algorithms
were utilized to construct clusters, which were later used in a
one-class classification to identify outlier data. Togbe et al.
[12] afforded iForestASD, i.e., an alternative isolation forest
for streaming data implementation. They built the iForestASD
on the scikit-multiflow framework; it is a machine learning
framework for streaming data that is free and open source. In
2021 [27], they modified their implementation of iForestASD
to address the idea of data stream drift, proposing three
algorithms for drift detection: ADWIN, KSWIN, and finally
extending KSWIN to deal with n-dimensional data streams.
Another recent study was presented in [28], where the authors
proposed an ensemble-based outlier detection framework for
high-dimensional data named Average Selection and
Ensemble of Candidates for Outlier Detection (ASEC-OD).
The proposed framework selected the most effective base
outlier detectors, which have the highest performance. To
summarize, none of these approaches can detect outliers
accurately and efficiently in streaming data environments
while maintaining high performance rates. Our approach
differs from the aforementioned outlier methods in two ways.
First, the proposed framework integrates outlier detection and
the concept evolution phenomenon of streaming data by
considering concept evolution for new outlier or inlier
concepts that appear in incoming streams. It can sequentially
update the outlier detection model in the case of concept
evolution, resulting in a more robust outlier detection system
that is matched with a streaming scenario. Second, it takes
advantage of each heterogeneous base classifier in building an
ensemble model to achieve the highest rates of performance
metrics.

III. BASE LEARNERS

The outlier ensemble learning method will be very
effective when heterogeneous base classifiers of diverse types
are used. Thus, the distinct features of data can be identified or
learned due to the variation between classifiers [29]. To boost
efficiency, the proposed ensemble model constructs a set of
models from three heterogeneous base learners. The chosen
base learners (isolation forest, its variant iForestASD, decision
tree, random forest, and its variant adaptive random forest) of
the proposed framework are briefly introduced in this section.

A. Isolation Forest (iForest) and IForestASD

Isolation Forest (iForest) is a famous tree-based approach
to outlier detection to isolate outlier instances [30]. The
random selection of an attribute iteratively creates an isolation
tree (itree) until each data point is isolated. Isolation forest is
based on the notion that it is simple to isolate an outlier but
more complex to characterize an inlier data point.
Accordingly, the isolation forest consists of all the isolation
trees constructed from its training set subsampling. The outlier
score s(x, n), equation (1), is calculated by calculating the path
length h(x) from the root to an instance x in an isolation tree
constructed from n data instances [31].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

318 | P a g e

www.ijacsa.thesai.org

 ()

 (())

 () (1)

where E(h(x)); which is defined by equation (2); is the
average path length h(x) of x over an isolation trees collection,
i.e., itrees.

 (())
∑ ()

 (2)

where c(n) represents the average path length of the binary
search tree's unsuccessful search process. Finally, equation (3)
calculates c(n), which is used to normalize an outlier score.

() () (()) (3)

where H(i) is formulated by equation (4).

 () () , γ is the Euler’s constant (4)

Therefore, x is considered as outlier data if the outlier
score is close to 1, but it is considered as normal data if the
score is less than 0.5.

On the other hand, the iForestASD [32] is an alternative
version of the iForest method and is suitable for outlier
detection over streaming data. The phrase “iForestASD” is an
abbreviation for Isolation Forest Algorithm for Stream Data,
where it uses the sliding window mechanism to process
streaming data. In addition, iForestASD implemented the
standard isolation forest technique to build the random forest.
The IForestASD technique was developed to deal with the
concept drift of the data stream by keeping a pre-defined
anomaly rate threshold (u). Fig. 2 displays the workflow of the
iForestASD approach to updating the model. If the anomaly
rate in the active window is higher than u, then concept drift
has occurred. The iForestASD then deletes the current
detector and constructs another detector using all the data in
the active window. Otherwise, there was no concept drift. The
trained anomaly detector was then would not change.

Fig. 2. The iForestASD Workflow. The Image is Reproduced from [32].

B. Decision Tree (DT)

Decision trees are popular tree-based classification
methods where each non-leaf node represents an attribute,
whereas the edge links between its child nodes represent the
attribute values and the leaf node represents a class label. In
general, a decision tree is built in three main steps:

 Select the best features of the training dataset to build
the root node.

 Split the training dataset into nodes using the Gini
index.

 Loop until no further splitting can be done.

Information gain, gain ratio, and Gini index are used to
partition the training dataset [33]. In this research, the Gini
index is used as the DT splitting criterion, which is calculated
by equation (5).

 () ∑

 (5)

where pi is the proportion of the ith class samples of the
feature X.

C. Random Forest and Adaptive Random Forest

Firstly, the classical random forest (RF) [34] method is a
tree-based approach that can be used for both classification
and prediction tasks. The prediction of a new data point is
determined by aggregating the predictions of n trees in
classification tasks. Random predictors are chosen to split a
node in random forests; therefore, every tree is grown based
on a different random data sample. After multiple models have
been generated, the overall trees of the model contribute to a
weighted decision or vote to produce an overall determination.
Regarding randomness splitting of the data, RF has two main
sources of randomness which are bootstrap aggregating or
bagging and boosting. In bootstrap aggregating, each classifier
is trained on random sampling with replacement from the
original dataset. On the other hand, in boosting approach,
instead of evaluating all features at each tree split, only a
random set of samples is used to make the eventual decision.
RFs can model high dimensional data and they can handle
missing values.

Adaptive Random Forest (ARF) is one variant technique
that adapts the standard random forest algorithm [35]. It
produces decision trees by training them on resampled
varieties of the original data and by randomly picking up a
small number of features that can be inspected at each node
for splitting. ARF offers data visualization of high
dimensional data and it has a high accuracy and resistance to
overfitting.

IV. PROPOSED ENSEMBLE-BASED FRAMEWORK

In this section, a novel ensemble-based outlier detection
framework for data streams called Ensemble-based Streaming
Outlier Detection (ESOD) is introduced. The proposed
framework utilizes three heterogeneous machine learning
algorithms, which are iForestASD, decision tree (DT), and
adaptive random forest (ARF) as the base learners to build the
ensemble model for detecting outliers in streaming data based
on a weighted voting technique. To enhance efficiency, the
proposed framework employs various base learners to build an
ensemble-based model. Ensemble-based Streaming Outlier
Detection (ESOD) has three main phases, as shown in Fig. 3,
namely the training phase, testing/offline phase, and outlier
detection/online phase. These phases are detailed in depth in
the subsections that follow.

A. The Training Phase

The ESOD training phase is used to prepare data and tune
the hyper-parameters of each classifier for the finest outcome.
It consists of a series of steps that must be completed in the
following order:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

319 | P a g e

www.ijacsa.thesai.org

Fig. 3. The Ensemble-based Streaming Outlier Detection (ESOD) Block Diagram.

1) Data preprocessing step: Certain data preprocessing

techniques are done in order to turn raw data streams into

meaningful patterns. The preprocessing stage is a critical step

for the proper representation of streaming data. Hence, many

different preprocessing techniques are employed, such as the

removal of missing values, min-max scalar and one-hot

encoding, for a more efficient classification process. There are

three further phases in the ESOD's preprocessing stage, which

are the data cleaning, data scaling, and feature selection

phases. In the data cleaning phase, missing data is first

examined and eliminated if it exists. The data scaling phase

then employs the one-hot encoding approach on nominal or

non-binary categorical data, and the min-max scaler is

employed to scale values into the range of 0-1. Finally, the

feature selection phase, where the main goal is to extract the

set of relevant and non-redundant features, makes the learning

model more meaningful and quicker because not all features

are important for the model's learning process. In this study,

the Least Absolute Shrinkage and Selection Operator

(LASSO) technique is used to choose the most important and

correlated features from the feature space that have a strict

reflection on the target.

2) Data segmentation step: In the data segmentation step,

the preprocessed data D of n selected features is divided into

two groups: training set Xtrain with m data points of ratio 70%

where Xtrain ∈ Dm×n and testing set Xtest with r data points of

ration 30% where Xtest ∈ Dr×n. The testing set, in contrast to

the training set, should be unlabeled. Then, the K-fold cross

validation (CV) method is used, in which the training set is

divided into k equal non-overlapping subsets, determined by

random sampling or the bootstrap mechanism, and the model

is tested on different subsets of the dataset. Fig. 4 depicts the

K-fold cross validation process. If k = 10, for example, nine

groups of the sample data are used to train the model and only

one group is used to test the model at each fold, where the

model parameters with the lowest mean squared error from the

k training models are chosen for the final model. For each

fold, the outlier detection models are trained with only data

from the inlier class, so the model is trained k times. The k-

fold cross validation approach is used in this study to choose

the model hyper-parameters for setting each model as well as

the configured models.

Fig. 4. The K-Fold Cross Validation Process.

3) Ensemble-learning model step: The heterogeneous

base classifiers B = {β1, β2, …, βi}; iForestASD, decision tree,

and ARF classifiers are built in this step, employing many

hyper-parameter settings that are continually updated to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

320 | P a g e

www.ijacsa.thesai.org

acquire the optimal parameters of each classifier. All three

classifiers were trained using K random data samples (s1, s2,…

sK) and were then used to classify outliers of the test set Xtest

in the testing phase. Specifically, the outlier detection

approach ESOD uses similar insights as in the random forest

approach, where all these base learners are considered as trees

for the ensemble model. In more detail, the outlier detection

final decision is made by the weighted voting of these trees

where it is the class label that has the highest weighted vote of

classifiers predicted. After constructing the base learning

models, the ensemble learning model ψβ1, β2,.., βi tries to

combine their outlier results to declare the final decision by

estimating the weights of individual base learning models β1,

β2, … , βi. to aggregate their results with a weighted

combination. The ESOD weighted voting approach involves

assigning various weights to each classifier depending on its

performance accuracy [36], calculated by equation (6), and

voting on the classifiers based on this weight. After

calculating the weight for each classifier, the most votes of

classification results are selected as the ensemble's final

detection result.

∑

 (6)

where is the weight of classifier βi, is the classifier

βi accuracy, and is the accuracy summation of the three
base classifiers used in the ensemble model. The trained
ensemble model has been constructed at this point and can
classify a data point as an inlier or outlier.

B. The Testing/Offline Phase

The test set was made up of the remaining 30% of the
whole dataset. This test data is used as a final evaluation of an
unseen dataset in the offline phase to ensure that the trained
model was appropriately trained and predicts correctly. Hence,
any unseen test sample x is classified into inlier or outlier
instances using these trained base classifiers based on the
above detection voting technique.

C. The Outlier/Online Detection Phase

During the outlier detection phase, i.e., the online phase, a
flow of fresh unseen data streams is generated and processed
using the sliding-time window technique. As a result of the
ever-changing nature of stream data, detection mechanism
updates are frequently based on time intervals in the form of
sliding windows, where current items are given higher priority
during the detection phase than older ones. The trained model
can classify the known classes on which it was trained,
identify any novel classes, and finally update the model with
the most recent data to include any detected outliers. The
model, in particular, tries to classify incoming samples of
streaming data into known classes, which are outliers or
inliers, or novel patterns. Hence, it predicts class labels for
instances that belong to known classes, and the novel patterns
are identified as "concept evolution". Once the new class is
detected, it is integrated into the model for detecting repeated
patterns. Thus, the trained model is automatically updated to
handle the concept evolution by comparing the mean
difference of two adjacent sub-windows [37].

V. EXPERIMENTAL EVALUATION

This section presents the datasets, experimental setup, and
parameter fine-tunning process followed by the assessment
metrics and a brief discussion of the results.

A. Dataset Description

This research uses 11 publicly available outlier benchmark
datasets (http, Credit-card-fraud, smtp, Annthyroid, Thyroid,
Cardio, Pima Diabetes, Breast-cancer, Arrhythmia, Heart
Disease, Hepatitis) from the UC Irvine Machine Learning
Repository [38] for the evaluation of the base learner
classifiers, state-of-the-art methods, and proposed framework.
Description of these datasets is summarized in Table II by
name, number of points, dimensions, outlier samples, percent
of outliers, outlier class, and application domain of the
datasets.

TABLE II. DESCRIPTION OF THE BENCHMARK DATASETS USED IN THE PERFORMANCE EVALUATION

Dataset Samples (m) Features (n) Outliers (%) Outlier Class Application Domain

http 567,479 22 2,211 (0.39%) Attack Intrusion detection

Credit-card-fraud 284,807 30 492 (0.17%) Fraudulent Fraud detection

smtp 95,156 22 29 (0.03%) Attack Intrusion detection

Annthyroid 7,200 6 534 (7.42%)
Hyperfunction and

Subnormal functioning
Disease detection

Thyroid 3,772 6 93 (2.47%)
Hyperfunction and

Subnormal functioning
Disease detection

Cardio 1,831 21 176 (9.61%) Pathologic Disease detection

Pima Diabetes 768 9 193 (3.98%) Diabetes Disease detection

Breast-cancer 683 30 239 (34.99%) Malignant Disease detection

Arrhythmia 452 279 66 (14.60%)
The smallest classes

(3, 4, 5, 7, 8, 9, 14, 15)
Disease detection

Heart Disease 297 13 137 (46%) Class 0 Disease detection

Hepatitis 155 19 32 (20.65%) Die Disease detection

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

321 | P a g e

www.ijacsa.thesai.org

TABLE III. HYPER-PARAMETER SETTINGS FOR DIFFERENT BASE LEARNER CLASSIFIERS

Classifier Hyper-parameters Values

iForestASD

n_estimators = 100

contamination = 0.2

bootstrap = True

n_jobs = -1

random_state = 42

Decision Tree (DT)

criterion = gini

n_estimators = 100

Min_Samples_Split = 2

Splitter = best

max_features = log2

max_depth = 6

Adaptive Random Forest (ARF)

n_models = 100

max_features = sqrt

aggregation_method = mean

lambda_value = 6

drift_detector = ADWIN

warning_detector = ADWIN

δw (warning threshold) = 0.01

δd (drift threshold) = 0.001

K-nearest neighbors (K-NN)

n_neighbors = 7

weights = distance

metric = Euclidean

Logistic Regression (LR)

Penalty = l2

solver = saga

dual = True

tol = 0.01

random_state = 42

max_iter = 1000

SVM

Regularization parameter = 1

kernel = sigmoid

gamma = scale

shrinking = True

coef0 = 0.01

GaussianNB (GNB)
priors = none

var_smoothing = 0.001

Artificial Neural Network (ANN)

hidden_layer = 4

activation = relu

optimizer = adam

batch_size = 32

loss = binary_crossentropy

epochs = 100

Gradient Boosting (GB)

learning_rate = 0.1 n_estimators=100

min_samples_split = 500

min_samples_leaf = 50

max_depth = 5

max_features = sqrt

subsample = 0.8

Local Outlier Factor (LOF)

n_neighbors = 7

algorithm = ball_tree

leaf_size = 30

metric = minkowski

p = 2

B. Experimental Setup

All the developed models are implemented in the open-
source Python programming language using the Anaconda
distribution API. The main libraries and packages used
include pandas, NumPy, SciPy, matplotlib, and seaborn.
Furthermore, the scikit-learn library [39] is the most widely
used open-source Python machine learning package. Scikit-
learn structures various machine learning tasks such as
regression, classification, and clustering algorithms and
contains random forest, decision tree, K-NN classifiers, and
more. Finally, to develop algorithms and conduct experiments,

we used the Scikit-Multiflow framework [40], a Python-based
open-source machine learning framework for evolving data
streaming.

C. Hyper-parameter Tuning

The model hyper-parameters were tuned through a series
of loops that iterated through changes in each relevant
parameter of the given model based on the Grid Search
strategy, and the model performance was assessed using
stratified 10-fold cross-validation setting. Table III displays
the optimal hyper-parameter values for each classifier used in
the evaluation process after executing the hyper-parameter

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

322 | P a g e

www.ijacsa.thesai.org

fine-tuning method. In addition, the model performance is
assessed using several ranges of sliding window size settings
because of the relevance of this parameter in terms of
computation time and memory use. For small datasets (Pima
Diabetes, Breast-cancer, Arrhythmia, Heart Disease,
Hepatitis), we used the sliding window of sizes w = 100, 120,
140, 160, 180, and 200. Whereas w = 100, 200, 300, 400, 500,
600, and 700 are the window sizes chosen for huge datasets
(http, Credit-card-fraud, smtp, Annthyroid, Thyroid, Cardio).

D. Performance Metrics

To assess the effectiveness of the proposed framework, the
average scores of ten separate trials were used to construct the
most popular performance metrics in the outlier detection
area, which are accuracy, precision, sensitivity or recall, and
F1-score measures. All these metrics are calculated by the
following equations, equation (7) – (10). For the binary
classification, there are only four possible outcomes, which
are True Negative (TN), False Negative (FN), False Positive
(FP) and True Positive (TP).

Accuracy = (TP+TN)/(TP+TN+FP+FN) * 100 (7)

 () (8)

Precision = TP / (TP + FP) * 100 (9)

F1= 2*(Precision * Recall) / (Precision + Recall) (10)

E. Results and Discussion

The proposed framework is evaluated by comparing
results with its standalone base learners and other some
predictive machine learning techniques such as Logistic
Regression (LR), SVM, GaussianNB, K-NN, Artificial Neural
Network (ANN), Gradient Boosting, and Local Outlier Factor
(LOF). In addition, ESOD is compared with many state-of-
the-art methods found in [14], [15], [21], [22], [26], [27], and
[28]. We individually show the performance of the
comparisons on the aforementioned 11 datasets using the
accuracy, precision, recall, and F1-score metrics. The
performance results are the average of 30 trials of independent
experiments.

In the first experiments set, the efficiency of the proposed
framework is evaluated using the accuracy, precision, and
recall metrics with all baselines on the datasets. Table IV
compares performance results of all base learners with the
proposed model. From the results, it is clear that the linear
regression, K-NN, SVM, and LOF perform worse than other
algorithms in most cases. Although the base learners, i.e.,
iForestASD, decision tree, and adaptive random forest
classifiers, of the proposed model independently perform very
well, but the proposed framework performs better than these
three standalone base learners. On the other hand, the
experimental results reveal that the ESOD performs very well
on the large-scale datasets such as http, credit and smtp
datasets, beside its superior performance over other small
datasets. For instance, ESOD achieves 98.65% and 99.64% of

precision score on http and heart disease datasets, respectively.
Another notable issue is that ESOD gives the highest recall or
outlier detection rate, where it gets 99.78%, 99.05%, 99.66%,
and 99.54% rates on http, credit, smtp, and hepatitis datasets,
respectively.

Fig. 5 plots the performance comparison between different
machine learning algorithms, and ESOD method in terms of
F1-score. It should be noted that the K-NN, SVM, and LOF
methods exhibited very low performance rates compared to
ESOD and the others. On the http dataset, which is the biggest
dataset, the K-NN, SVM and LOF models exhibit poor recall
rates of 77.90%, 70.78%, and 61.58%, respectively,
demonstrating their inability to learn enough samples to
accurately classify outlier data, while ESOD achieves 99.21%
on the same dataset. Furthermore, all the K-NN, SVM and
LOF models get the lowest F1 rates on the Breast-cancer
dataset, which has the largest outlier ratio, with 77.34%,
75.25%, and 69.59%, respectively, while ESOD can achieve
the highest F1-score of 89.18%. In general, the proposed
model has the best F1-score rates on all datasets.

The next set of experiments is performed to compare the
proposed framework with some state-of-the-art methods for
streaming outlier detection presented in [14], [15], [21], [22],
[26], [27] and [28] and the results are shown in Fig 6. In more
detail, from Fig. 6(a)-(k), the performance of the proposed
model (ESOD) is better than its competitive methods on all
benchmark datasets, where it achieves higher rates than others.
For instance, ESOD has attained 97.37% accuracy, 98.65%
precision, a recall of 99.78% and finally F1-score of 99.21%
on the http dataset, Fig. 6(a). In contrast, other methods have
achieved lower rates, which are 71.87%, 70.63%, 73.22%,
88.03%, 90.16%, 93.81%, and 84.32% of the recall measure
for the methods UKOF [14], MWFP-Outlier [15], LiCS [21],
iLDCBOF [22], Method in [26], Method in [27], and ASEC-
OD [28], respectively. One thing is notable here is that the
MWFP-Outlier and LiCS methods have the lowest
performance rates on all datasets in most cases. However, the
model in [27] has a slightly high rates like our proposed
model, where it gains 93.81%, 91.75%, 91.83%, 91.75%,
92.43%, 91.31%, 81.82%, 87.33%, 90.27%, 93.50%, 90.70%
of recall on http, credit, smtp, Annthyroid, thyroid, cardio,
Pima, breast-cancer, arrhythmia, heart, and hepatitis datasets,
respectively. Overall, the precisions of the seven state-of-the-
art methods are also lower than the ESOD precision (61.86% -
93.52%). One can observe that the performance rates of our
proposed framework is more consistent with increasing
number of features on the dataset as compare to the other
seven state-of-the-art methods on all datasets. On Arrhythmia
dataset, which has 279 features, LiCS performs slightly better
than iLDCBOF, Method in [26] and ASEC-OD. Meanwhile,
UKOF obtains the lowest rates on breast-cancer dataset, which
has the highest outlier ratio, but method in [26] approximately
performs as good as ASEC-OD [28].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

323 | P a g e

www.ijacsa.thesai.org

TABLE IV. EVALUATION OF ACCURACY, PRECISION AND RECALL RATES ON DIFFERENT INDIVIDUAL MODELS VS. ESOD FRAMEWORK. THE BEST AVERAGE

SCORES PER EACH DATASET (COLUMN) AND MODEL (ROW) ARE SHOWN IN BOLD

h

tt
p

C
re

d
it

sm
tp

A
n

n
th

y
ro

id

T
h

y
ro

id

C
a

rd
io

P
im

a

B
re

a
st

-

ca
n

ce
r

A
rr

h
y

th
m

ia

H
ea

rt

D
is

ea
se

H
ep

a
ti

ti
s

Accuracy

iForestASD 95.68 93.05 95.17 94.15 95.66 94.33 86.62 74.89 83.64 88.60 87.54

DT 92.24 91.22 92.36 91.06 91.50 90.74 86.51 75.31 84.39 86.71 88.34

ARF 93.66 92.05 92.70 92.98 93.84 94.50 85.65 74.29 83.44 86.57 86.53

LR 71.07 85.15 85.66 85.70 86.01 86.30 84.28 70.99 83.16 85.72 86.11

K-NN 80.08 80.11 80.34 81.00 81.37 81.22 80.76 69.60 80.23 80.77 80.31

SVM 70.48 70.50 71.00 69.83 70.00 70.53 67.54 62.07 71.41 70.87 73.04

GNB 92.00 92.23 91.89 90.08 90.69 91.22 84.70 73.60 83.00 83.18 90.60

ANN 85.14 86.43 86.45 85.91 85.07 86.18 86.00 74.13 83.46 86.52 83.48

GB 90.06 90.20 89.04 92.00 91.25 90.24 85.16 73.36 80.33 85.15 86.02

LOF 75.09 76.00 75.35 76.48 74.08 76.63 75.62 77.09 76.32 76.36 76.08

ESOD 97.37 94.05 95.67 95.32 95.70 96.23 88.18 79.92 85.45 87.44 90.58

Precision

iForestASD 97.20 95.18 93.03 95.21 97.43 94.64 85.97 84.24 94.28 98.70 96.35

DT 94.90 91.57 91.53 93.90 94.42 94.54 84.08 83.81 92.21 93.29 92.80

ARF 96.26 92.71 97.36 94.46 95.55 95.10 84.76 85.94 92.42 97.26 93.98

LR 80.54 82.50 82.45 83.67 81.65 88.92 81.36 72.67 88.22 91.24 92.80

K-NN 70.20 71.56 72.19 72.77 74.37 75.58 79.31 79.71 76.47 88.96 89.34

SVM 70.19 70.60 70.66 71.06 71.80 72.71 73.20 73.71 74.02 72.96 71.57

GNB 78.42 76.66 75.60 74.30 78.69 79.24 81.21 86.62 84.78 82.54 82.66

ANN 90.04 89.90 91.26 90.65 91.15 93.28 83.38 80.75 91.02 91.33 92.14

GB 89.16 90.91 91.51 92.91 90.72 92.73 83.88 82.41 90.78 92.17 90.49

LOF 51.25 51.36 51.48 51.79 64.81 53.33 54.40 62.06 58.55 63.93 62.12

ESOD 98.65 96.70 97.92 96.33 97.46 98.30 87.57 88.59 95.06 99.64 96.54

Recall

iForestASD 98.68 98.09 94.83 95.44 94.26 92.30 89.65 86.23 95.43 97.55 98.63

DT 93.62 94.48 93.72 94.30 93.51 91.85 88.23 83.79 91.87 94.11 96.05

ARF 98.16 96.02 94.35 95.24 94.13 92.22 86.75 85.75 94.07 96.65 94.85

LR 80.25 80.51 81.76 81.78 81.80 81.94 81.88 82.33 82.43 83.60 83.54

K-NN 87.50 86.15 86.29 88.57 82.27 86.99 86.46 75.11 83.19 82.78 85.39

SVM 71.37 73.76 75.08 75.27 75.41 75.82 76.65 76.86 78.11 77.91 77.90

GNB 82.10 82.44 84.91 85.22 85.82 85.77 83.84 85.44 86.06 89.26 89.83

ANN 91.94 91.52 93.25 90.99 91.08 91.71 86.14 85.71 92.07 92.40 90.30

GB 81.81 82.04 86.74 82.46 89.60 85.26 75.06 82.23 83.94 88.31 87.39

LOF 77.14 78.55 78.16 76.99 76.55 78.71 71.09 79.19 73.42 76.77 72.80

ESOD 99.78 99.05 99.66 98.17 97.14 95.20 90.92 89.78 96.86 98.27 99.54

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

324 | P a g e

www.ijacsa.thesai.org

Fig. 5. F1-score Rates of different Algorithms on different Datasets.

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

U
K

O
F

 [
1

4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

U
K

O
F

 [
1

4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

U
K

O
F

 [
1

4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

(a) http (b) Credit-Card (c) smtp

Accuracy (%) Precision (%) Recall (%) F1-score (%)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

325 | P a g e

www.ijacsa.thesai.org

Fig. 6. Performance Comparison between State-of-the-Art Methods and the Proposed ESOD Model.

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

U
K

O
F

 [
1
4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

U
K

O
F

 [
1
4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

U
K

O
F

 [
1
4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

(d) Annthyroid (e) Thyroid (f) Cardio

Accuracy (%) Precision (%) Recall (%) F1-score (%)

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

U
K

O
F

 [
1
4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

U
K

O
F

 [
1
4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

U
K

O
F

 [
1
4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

(g) Pima (h) Breast-cancer (i) Arrhythmia

Accuracy (%) Precision (%) Recall (%) F1-score (%)

60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

100.00

U
K

O
F

 [
1

4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

U
K

O
F

 [
1

4
]

M
W

F
P

-O
u

tl
ie

r
[1

5
]

L
iC

S
 [

2
1

]

iL
D

C
B

O
F

 [
2

2
]

M
et

h
o
d

 i
n

 [
2
6

]

M
et

h
o
d

 i
n

 [
2
7

]

A
S

E
C

-O
D

 [
2
8

]

E
S

O
D

(j) Heart Disease (k) Hepatitis

Accuracy (%) Precision (%) Recall (%) F1-score (%)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

326 | P a g e

www.ijacsa.thesai.org

Another experiment was conducted to assess the impact of
changing the window size of streaming data on the proposed
framework. Table V compares the performance evaluation
metrics when the window sizes were varied (w). When the
window size is increased to w = 500 for the http, credit, smtp,
Annthyroid, thyroid, and cardio datasets, while w = 180 for
the Pima, breast-cancer, arrhythmia, heart, and hepatitis
datasets, the rates have improved as the F1-score grows for all
datasets. However, when the window size is greater than 500
for large datasets and greater than 180 for small datasets, the
F1-score falls dramatically. Furthermore, the model's
performance varies significantly depending on the dataset,
with ESOD earning a F1-score over 99% for the http dataset,
which is the largest dataset. As a result, we expect ESOD to
perform better on datasets with a high scale data.

The final experiments set is performed to evaluate the
average execution time of ESOD against the other methods.

Fig. 7 shows that on the http dataset, for instance, ESOD
performs with an execution time of 27.46 milliseconds
compared to the LiCS, which takes about 41.56 milliseconds
while the iLDCBOF method takes 37.89 milliseconds.
Furthermore, LiCS takes the longest time among all the
investigated methods, and the proposed method executes the
http dataset at almost half the execution time of LiCS. On the
other hand, comparison of execution time within the Hepatitis
dataset, for instance, displays that ESOD has the shortest
execution time of 11.40 milliseconds as compared to the
others. In addition, within the Pima dataset, the result indicates
that ESOD has an execution time of 19.64 milliseconds as
against UKOF which has resulted in 26.47 milliseconds of
execution time. In general, the results demonstrate that the
proposed method is significantly faster than all other methods
in every tested case on all datasets.

TABLE V. PERFORMANCE EVALUATION OF ESOD WHEN VARYING THE WINDOW SIZE W. THE BEST AVERAGE SCORES PER EACH DATASET ARE SHOWN IN

BOLD AND HIGHLIGHTED

D
a

ta
se

t

W
in

d
o

w

S
iz

e
(w

)

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

a
ll

F
1

-s
co

re

h
tt

p

100 95.63 95.34 95.88 95.61

200 95.72 95.72 96.12 95.92

300 95.89 95.94 96.69 96.31

400 96.71 96.06 96.64 96.35

500 97.37 98.65 99.78 99.21

600 97.11 97.41 97.83 97.62

700 97.00 96.88 97.20 97.04

C
re

d
it

100 89.69 95.19 94.69 94.94

200 90.61 95.27 94.21 94.74

300 91.49 96.21 97.70 96.95

400 92.99 96.57 97.82 97.19

500 94.05 96.70 99.05 97.86

600 93.79 96.66 98.42 97.53

700 92.014 95.83 96.39 96.11

sm
tp

100 92.38 94.47 94.46 94.46

200 93.47 95.35 95.24 95.29

300 94.06 96.37 95.26 95.81

400 95.36 96.78 98.00 97.39

500 95.67 97.92 99.66 98.78

600 95.28 97.50 99.58 98.53

700 94.22 95.50 98.70 97.07

A
n

n
th

y
ro

id

100 92.34 92.65 92.04 92.34

200 92.87 92.88 92.66 92.77

300 93.91 93.97 92.85 93.41

400 94.57 94.62 94.25 94.43

500 95.32 96.33 98.17 97.24

600 95.30 95.33 97.14 96.23

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

327 | P a g e

www.ijacsa.thesai.org

700 95.04 95.21 96.44 95.82

T
h

y
ro

id

100 92.44 95.98 94.08 95.02

200 92.78 96.03 96.00 96.01

300 93.65 96.14 96.20 96.17

400 94.40 96.60 97.01 96.80

500 95.70 97.46 97.14 97.30

600 95.51 97.00 96.45 96.72

700 94.43 97.00 96.19 96.59

C
a

rd
io

100 90.83 96.85 91.40 94.05

200 91.40 96.93 92.25 94.53

300 93.70 97.38 93.83 95.57

400 93.63 98.02 93.89 95.91

500 96.23 98.30 95.20 96.73

600 94.88 97.15 95.03 96.08

700 94.72 97.04 94.73 95.87

P
im

a

100 84.55 83.51 84.36 83.93

120 84.69 84.35 83.66 84.00

140 85.74 85.17 84.88 85.02

160 87.01 86.58 86.9 86.74

180 88.18 87.57 90.92 89.21

200 88.04 85 86.81 85.90

B
re

a
st

-c
a

n
ce

r

100 74.44 75.22 75.61 75.41

120 75.11 75.43 76.33 75.88

140 76.53 76.7 74.94 75.81

160 77.31 76.68 75.66 76.17

180 79.92 88.59 89.78 89.18

200 77.12 79.04 75.46 77.21

A
rr

h
y

th
m

ia

100 81.66 92.48 91.23 91.85

120 81.56 92.89 92.94 92.91

140 82.13 93.69 93.98 93.83

160 84.78 94.44 95.48 94.96

180 85.45 95.06 96.86 95.95

200 83.02 94.01 93.66 93.83

H
ea

rt
 D

is
ea

se

100 82.41 92.32 94.66 93.48

120 83.07 93.14 96.01 94.55

140 84.53 95.61 96.74 96.17

160 86.18 97.85 97.37 97.61

180 87.44 99.64 98.27 98.95

200 87.30 98.10 98.12 98.11

H
ep

a
ti

ti
s

100 84.42 92.77 95.59 94.16

120 85.61 92.81 95.62 94.19

140 89.09 94.32 97.20 95.74

160 89.35 95.05 98.20 96.60

180 90.58 96.54 99.54 98.02

200 86.27 96.29 97.86 97.07

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

328 | P a g e

www.ijacsa.thesai.org

Fig. 7. Execution Time Evaluation for ESOD Compared with different Methods on different Datasets.

VI. CONCLUSION AND FUTURE WORK

In this study, we propose a novel sliding window
ensemble-based framework for detecting outliers in data
streams called an Ensemble-base Streaming Outlier Detection
(ESOD). To improve outlier detection decisions, the proposed
framework was built with three machine learning algorithms
as base learners: iForestASD, decision tree, and adaptive
random forest (ARF) based on a weighted voting detection
technique. Furthermore, ESOD considered the concept
evolution nature of streaming data. Extensive empirical
evaluations on various real datasets demonstrate the
performance of our framework in comparison to that of
existing algorithms in the literature. The results showed that
the proposed framework beat existing algorithms in terms of
outlier detection rate, as well as overall performance. In the
future, we will look into how to adapt the framework to the
feature-evolution nature of data streams. Another option is to
use more optimization techniques and different feature
selection methods. Aside from improving execution
performance, we are also interested in implementing various
time-based techniques that may lead to improved detection
and accuracy rates.

REFERENCES

[1] M. Hahsler, M. Bolaños, and J. Forrest, “Introduction to stream: An
extensible framework for data stream clustering research with R,” J.
Stat. Softw., vol. 76, no. 1, 2017, doi: 10.18637/jss.v076.i14.

[2] S. Ramírez-Gallego, B. Krawczyk, S. García, Michał Wozniak, and F.
Herrera, “A survey on data preprocessing for data stream mining:

Current status and future directions,” Neurocomputing, vol. 239, pp. 39–
57, 2017, doi: 10.1016/j.neucom.2017.01.078.

[3] M. M. Gaber, “Advances in data stream mining,” Wiley Interdiscip.
Rev. Data Min. Knowl. Discov., vol. 2, no. 1, pp. 79–85, 2012, doi:
10.1002/widm.52.

[4] V. Chandola and V. KUMAR, “Anomaly Detection: A Survey,” ACM
Comput. Surv., no. September, pp. 1–72, 2009.

[5] C. C. Aggarwal, Outlier Analysis, vol. 24, no. 2. 2016.

[6] T. Kim and C. H. Park, “Anomaly pattern detection for streaming data,”
Expert Syst. Appl., vol. 149, p. 113252, Jul. 2020, doi:
10.1016/j.eswa.2020.113252.

[7] M. Sakr, W. Atwa, and A. Keshk, “Sub-Grid Partitioning Algorithm for
Distributed Outlier Detection on Big Data,” 2018 13th Int. Conf.
Comput. Eng. Syst., vol. IEEE, pp. 252–257, 2018.

[8] N. Paulauskas and A. Baskys, “Application of Histogram-Based Outlier
Scores to Detect Computer Network Anomalies,” electronics, vol. 8, pp.
1–8, 2019.

[9] M. E. Silva and I. Pereira, “Bayesian Outlier Detection in Non ‐
Gaussian Autoregressive Time Series Bayesian outlier detection in non-
Gaussian AutoRegressive time series ,” J. Time Ser. Anal., no.
December, 2018, doi: 10.1111/jtsa.12439.

[10] C. H. Park, “Outlier and anomaly pattern detection on data streams,” J.
Supercomput., vol. 75, no. 9, pp. 6118–6128, 2019, doi:
10.1007/s11227-018-2674-1.

[11] M. Sakr, W. Atwa, and A. Keshk, “Parallel outlier detection in real time
data streams,” Inf. Sci. Lett., vol. 217, no. 3, pp. 211–217, 2020.

[12] M. Togbe et al., “Anomaly Detection for Data Streams Based on
Isolation Forest using Scikit-multiflow,” 2020.

[13] S. Mishra and M. Chawla, “A Comparative Study of Local Outlier
Factor Algorithms for Outliers Detection,” in Emerging Technologies in
Data Mining and Information Security, Advances in Intelligent Systems
and Computing, 2019, pp. 347–356. doi: 10.1007/978-981-13-1498-8.

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

E
x

ec
u

ti
o
n

 T
im

e
(i

n
 m

s)

UKOF [14] MWFP-Outlier [15] LiCS [21] iLDCBOF [22] Method in [26] Method in [27] ASEC-OD [28] ESOD

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

329 | P a g e

www.ijacsa.thesai.org

[14] F. Liu, Y. Yu, P. Song, Y. Fan, and X. Tong, “Scalable KDE-based top-
n local outlier detection over large-scale data streams,” Knowledge-
Based Syst., vol. 204, p. 106186, 2020, doi:
10.1016/j.knosys.2020.106186.

[15] S. Cai et al., “MWFP-outlier: Maximal weighted frequent-pattern-based
approach for detecting outliers from uncertain weighted data streams,”
Inf. Sci. (Ny)., vol. 591, pp. 195–225, 2022, doi:
10.1016/j.ins.2022.01.028.

[16] A. Zubaroğlu and V. Atalay, “Data stream clustering: a review,” Artif.
Intell. Rev., 2020, doi: 10.1007/s10462-020-09874-x.

[17] L. Tran, L. Fan, and C. Shahabi, “Fast distance-based outlier detection
in data streams based on micro-clusters,” ACM Int. Conf. Proceeding
Ser., pp. 162–169, 2019, doi: 10.1145/3368926.3369667.

[18] A. Hassan, H. Mokhtar, and O. Hegazy, “A heuristic approach for
sensor network outlier detection,” Int J Res Rev Wirel Sens Netw, vol.
1, no. 4, pp. 66–72, 2011.

[19] C. HewaNadungodage, Y. Xia, and J. Lee, “Gpu-accelerated outlier
detection for continuous data streams,” in the 30th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2016, pp.
1133–1142.

[20] K. Yu, W. Shi, N. Santoro, and X. Ma, “Real-time outlier detection over
streaming data,” in 2019 IEEE SmartWorld, Ubiquitous Intelligence and
Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Internet of People and Smart City Innovation,
SmartWorld/UIC/ATC/SCALCOM/IOP/SCI, 2019, pp. 125–132. doi:
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00063.

[21] F. Z. Benjelloun, A. Oussous, A. Bennani, S. Belfkih, and A. Ait
Lahcen, “Improving outliers detection in data streams using LiCS and
voting,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 10, pp.
1177–1185, 2021, doi: 10.1016/j.jksuci.2019.08.003.

[22] A. Degirmenci and O. Karal, “Efficient density and cluster based
incremental outlier detection in data streams,” Inf. Sci. (Ny)., vol. 607,
pp. 901–920, 2022, doi: 10.1016/j.ins.2022.06.013.

[23] M. M. Masud, J. Gao, J. Han, L. Khan, and B. M. Thuraising-ham,
“Classification and adaptive novel class detection of feature-evolving
data streams,” IEEE Trans. Knowl. Data Eng., vol. 25, 2013.

[24] W. Wang, D. Wang, S. Jiang, S. Qin, and L. Xue, “Anomaly detection
in big data with separable compressive sensing,” in the 2015
international conference on communications, signal processing, and
systems. Springer, 2016, pp. 589–94.

[25] H. Ghomeshi, M. M. Gaber, and Y. Kovalchuk, “A non-canonical
hybrid metaheuristic approach to adaptive data stream classification,”
Futur. Gener. Comput. Syst., vol. 102, pp. 127–139, 2020, doi:
10.1016/j.future.2019.07.067.

[26] N. Iftikhar, T. Baattrup-Andersen, F. E. Nordbjerg, and K. Jeppesen,
“Outlier Detection in Sensor Data using Ensemble Learning,” Procedia
Comput. Sci., vol. 176, pp. 1160–1169, 2020, doi:
10.1016/j.procs.2020.09.112.

[27] M. Togbe et al., “Anomalies Detection Using Isolation in Concept-
Drifting Data Streams,” computers, pp. 1–21, 2021, [Online]. Available:
https://doi.org/10.3390/ computers10010013.

[28] N. Jayanthi, B. Vijaya Babu, and N. Sambasiva Rao, “An Ensemble
Framework Based Outlier Detection System in High Dimensional Data,”
Mater. Today Proc., vol. 7, no. 4, pp. 1162–1175, Feb. 2021, doi:
10.1016/j.matpr.2020.11.491.

[29] S. Rayana, W. Zhong, and L. Akoglu, “Sequential ensemble learning for
outlier detection: A bias-variance perspective,” Proc. - IEEE Int. Conf.
Data Mining, ICDM, pp. 1167–1172, 2017, doi:
10.1109/ICDM.2016.117.

[30] F. Liu, K. Ting, and Z. Zhou, “Isolation forest,” in In 2008 Eighth IEEE
International Conference on Data Mining, 2008, pp. 413–422.

[31] P. Karczmarek, A. Kiersztyn, W. Pedrycz, and E. Al, “K-Means-based
isolation forest,” Knowledge-Based Syst., vol. 195, p. 105659, 2020,
doi: 10.1016/j.knosys.2020.105659.

[32] Z. Ding and M. Fei, “An anomaly detection approach based on isolation
forest algorithm for streaming data using sliding window,” IFAC Proc.
Vol., vol. 46, no. 20, pp. 12–17, 2013, [Online]. Available:
https://doi.org/https://doi.org/10.3182/20130902-3-CN-3020.00044.

[33] T. Thomas, A. P. Vijayaraghavan, and S. Emmanuel, “Applications of
Decision Trees,” in Machine Learning Approaches in Cyber Security
Analytics, Singapore: Springer Singapore, 2020, pp. 157–184. doi:
10.1007/978-981-15-1706-8_9.

[34] L. Breiman, “Random forests,” Mach Learn, vol. 45, no. 1, pp. 5–32,
2001.

[35] H. M. Gomes et al., “Adaptive random forests for evolving data stream
classification,” Mach. Learn., pp. 1–27, 2017, [Online]. Available:
https://doi.org/10.1007/s10994-017-5642-8.

[36] V. C. Osamor and A. F. Okezie, “Enhancing the weighted voting
ensemble algorithm for tuberculosis predictive diagnosis,” Sci. Rep.,
vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1038/s41598-021-94347-6.

[37] L. Yang and A. Shami, “A Lightweight Concept Drift Detection and
Adaptation Framework for IoT Data Streams,” IEEE Internet Things
Mag., vol. 4, no. 2, pp. 96–101, Jun. 2021, doi:
10.1109/IOTM.0001.2100012.

[38] D. Dua and C. Gra, “UCI machine learning repository,” 2017.
http://archive.ics.uci.edu/ml.

[39] F. Pedregosa et al., “Scikit- learn: Machine learning in Python,”
12:2825–2830, Mach Learn Res, 2011. https://scikit-learn.org.

[40] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-Multiflow: A
Multi-output Streaming Framework,” J. Mach. Learn. Res., vol. 19, no.
72, pp. 1–5, 2018, [Online]. Available: http://jmlr.org/papers/v19/18-
251.html.

