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Abstract—In the last few years, data streams have drawn lots 

of researchers’ attention due to their various applications, such 

as healthcare monitoring systems, fraud and intrusion detection, 

the internet of things (IoT), and financial market applications. A 

data stream is an unbounded sequence of data continually 

generated over time and is prone to evolution. Outliers in 

streaming data are the elements that significantly deviate from 

the majority of elements and then have to be detected as they 

may be error values or events of interest. Detection of outliers is a 

challenging issue in streaming data and is one of the most crucial 

tasks in data stream mining. Existing outlier detection methods 

for static data are unsuitable for use in data stream settings due 

to the unique characteristics of streaming data such as 

unpredictability, uncertainty, high-dimensionality, and changes 

in data distribution. Thus, in this paper, a novel ensemble 

learning framework called Ensemble-based Streaming Outlier 

Detection (ESOD) is presented to perfectly detect outliers over 

streaming data using a sliding window technique that is updated 

in response to the incoming events from the data streaming 

environment to overcome the concept evolution nature of 

streaming data. The proposed framework has three phases, 

namely the training phase, testing/offline phase, and outlier 

detection/online phase. A detection weighted vote technique is 

used to determine the final decisions for potential outliers. In the 

extensive experimental study, which was conducted on 11 real-

world benchmark datasets, the proposed framework was 

assessed using many accuracy metrics. The experiment results 

showed that the proposed framework beats many other state-of-

the-art methods. 

Keywords—Outlier detection; data streams; data stream 
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I. INTRODUCTION 

Due to the recent advances in both software and hardware, 
many applications are generating streaming data, such as 
sensor networks, financial markets, real-time video 
monitoring, internet traffic, and medical data. The term "data 
stream" refers to a collection of temporally ordered, massive, 
usually arriving at a high rate, and potentially infinite data 
objects. A data stream can be formalized as DSt = {x1,t, x2,t, x3,t, 
..., xN,t}, where xi,t is the element number i at time t, and it has a 
set of high-dimensionality attributes or features. Through its 
large volume, it is therefore difficult to fully store data streams 
in memory and scan them several times [1]. Data streams 
differ from static data where they have some unique 
characteristics such as concept-evolution, concept-drift, and 
feature-evolution. In particular, concept-evolution happens 

when new classes emerge in streams, concept-drift occurs 
when the distribution of data points shifts over time, and 
feature-evolution occurs when the feature set of data streams 
changes over time [2]. Data Stream Mining (DSM) is a new 
approach for extracting important information from data 
streams [3]. Hence, the traditional data mining techniques are 
not applicable to processing data streams because of the 
special characteristics of streaming data as shown in Table I. 

Data streams, like traditional data, may have outliers, or 
data points that are considerably different from the bulk of 
data points [4]. They can be noise data points or interesting 
instances and have to be detected in many cases to achieve 
better performance and accuracy. Outlier detection is one of 
the most important data mining tasks for detecting unusual 
and anomalous data points or sequences hidden in a dataset 
[5]. However, outlier detection over data stream datasets 
completely differs from traditional data ones because it must 
be performed under only one pass, the available memory is 
limited, real-time response, and the concept-evolution nature 
of streaming data. In real life, outlier detection has a variety of 
essential applications, such as detecting credit card fraud; 
intrusion detection in computer networks or cybersecurity; 
system fault diagnosis in industry; early disease detection in 
the health care sector, etc. [6]. Outlier detection techniques 
may be based on one of the following learning methods: 
unsupervised, semi-supervised, supervised, or ensemble 
learning. The unsupervised learning technique does not need 
training data to build the model, while the semi-supervised 
learning technique combines a small collection of labelled 
data with a large dataset of unlabeled training data. In the 
supervised learning approach, it requires labelled training data 
availability [4]. On the other hand, the ensemble learning 
approach requires a group of multiple trained classifiers 
learning algorithms to detect outliers in order to improve the 
detection accuracy. In particular, a number of different base 
learners are used in an ensemble model, which is normally 
much stronger than all standalone base learners because it has 
the ability to improve the performance of weak learners [5]. 
For this purpose, this paper presents an effective outlier 
detection approach based on the ensemble learning technique 
where the iForestASD, decision tree, and Adaptive Random 
Forest (ARF) classifiers are used as the base learners to build 
an ensemble-based model over streaming data using the 
sliding window fashion with the objective of improving 
detection performance while decreasing detection time 
consumption. In the data streams environment, the sliding 
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window is a time-based streaming model which is generally 
used to effectively process the flow of streaming data through 
dividing these streams into several windows, as shown in Fig. 
1, where each window has an equal pre-defined size (w) in 
time (t). The size of a window may be specified in terms of 
time points or the number of recent objects. Hence, each 
window maintains only recent objects, while older ones are 
discarded, and all objects within the active sliding window 
have the same importance. 

TABLE I. COMPARISON BETWEEN STREAMING DATA AND STATIC DATA 

 Characteristic  Streaming Data  Static Data  

Volume  Infinite  Finite  

Type of Data  Heterogeneous  Homogeneous  

Scanning Time  Single pass  Multiple passes  

Data Processing  Real-time processing  Offline processing  

Data Storage  
Aggregated and 

summarized data only  
Raw data  

Concept  Evolving  Static  

Type of Result  Approximate result  Accurate result  

Temporal and Spatial 

Contexts  
Important aspects  

May be considered for 

certain applications  

Space and Time 

Complexity  
Strict  Not strict  

 

Fig. 1. The Sliding Window Time-based Model. 

To detect outlier values, a combination of different base 
detectors; iForestASD, decision tree, and adaptive random 
forest algorithms; were chosen to develop an ensemble-based 
learning framework, which has never been explored before in 
the literature. The iForestASD model can be retrained more 
quickly than models trained with higher complexity like SVM. 
IForestASD allows you to retrain the model with a sliding 
window so that detection performance does not degrade even 
with concept evolution. While the decision tree technique does 
not need data normalization or scaling, and it has a shorter 
training period. Furthermore, random forest has high learning 
performance with good data visualization for high 
dimensional data and does not require hyper-parameter tuning 
or tree pruning. Moreover, it enables rapid detection model 
training even with limited computational resources. This is the 
main motivation for choosing this combination of base 
learners to construct our ensemble-based learning model for 
streaming outlier detection. In streaming data, the proposed 
framework (ESOD) attempts to detect both outliers and new 
class concepts. ESOD provides a more effective solution to 
this problem by integrating active learning in a supervised 
approach to detect any novel concepts and outliers in the 

streaming environment. The main research contributions and 
novelty are summarized in the following points: 

 Proposing an effective Ensemble-based Streaming 
Outlier Detection (ESOD) framework for accurately 
detecting outliers in the context of streaming data 
adapting to the concept drift nature of streaming data. 

 Building an ensemble-based model for the proposed 
framework using some heterogeneous machine 
learning algorithms as base learners, such as 
iForestASD, decision tree, and adaptive random forest, 
and then selecting the best combination. 

 Using the sliding window time-based technique in the 
ESOD framework to process the flow of streaming 
data. 

 Reducing computation time by allowing parameter 
tuning and comparing the outcomes of multiple 
algorithms in a single trial. 

 Providing a detection weighted vote technique to report 
the potential outliers that outperforms the standalone 
base learners and state-of-the-art techniques in terms of 
accuracy, precision and other evaluation metrics. 

The remainder of this paper is structured in the following 
way: related work on outlier detection techniques in streaming 
data is introduced section II. Section III explains the 
preliminaries of the used base learners. Section IV introduces 
the proposed framework. Section V discusses the experimental 
evaluations and the model development details. Finally, 
Section VI summarizes the proposed study and the next 
directions are given. 

II. RELATED WORK 

Many attempts in the literature have been devoted to the 
outlier detection problem over streaming data. Nevertheless, 
many of these detection approaches work in batch mode, in 
which all data points are stored and many passes can be made 
over the data [7-9]. Several batch outlier detection algorithms 
have been adapted for data stream outlier detection, according 
to a review in [10]. These methods, while applicable to 
streaming data, are inefficient because they do not take into 
consideration the special features and characteristics of data 
streams. The outlier detection approaches in the streaming 
data context may be divided into three main categories, which 
are statistical-based, clustering-based, and classification-based 
methods [11, 12]. The first attempts at outlier detection were 
statistical-based approaches based on defining a model to 
represent the normal behavior of the data [13]. If an incoming 
data point does not fit the model or has an extremely low 
probability of fitting the model, it is termed an outlier. In [14], 
The authors proposed an algorithm called UKOF for top-n 
local outlier detection based on the kernel density estimation 
(KDE) model over large-scale high-volume data streams, in 
which they defined a KDE-based outlier factor (KOF) to 
measure the local outlierness score, as well as upper bounds of 
the KOF and an upper-bound-based pruning strategy to reduce 
the search space. Although this method had a low 
computational cost, it assumed a stable distribution of data, 
which is inappropriate in a data stream setting. In recent 
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research [15], a maximal weighted frequent-pattern-based 
outlier detection approach (MWFP-Outlier) was proposed to 
detect potential outliers from uncertain data streams. This 
approach had two phases, namely pattern mining phase and an 
outlier detection phase. The MWFP-Mine approach was 
proposed in the pattern mining phase to mine maximal 
weighted frequent patterns using the list structure, tree 
structure, and pruning strategies by fully considering the 
existential probabilities and weights for each pattern. During 
the outlier detection phase, four deviation indices were created 
to measure the degree of deviation, and then the top k ranked 
transactions were reported as potential outliers. It is unclear, 
however, how it dealt with outliers and fast processing. 

The clustering-based methods are one of the common 
unsupervised methods used in outlier detection problems, 
which creates data clusters that represent the underlying data 
distribution [16]. Clustering-based methods divide the data 
into some clusters according to the similarity between the data 
points. Outliers are observations that are remote from clusters 
or clusters with significantly fewer data points. The clustering 
methods are categorized into distance-based and density-
based. In 2019 [17], Tran et al. proposed three distance-based 
algorithms using the micro-clusters concept, and they claimed 
that the proposed algorithms had a reasonable processing time 
and a low space cost. Regarding the density-based methods, 
there are some state-of-the-art methods developed to detect 
outliers in data streams, such as [18–20]. Another notable 
attempt was presented in [21], a method called LiCS was 
introduced to detect outlier that classifies the samples using K-
nearest neighbors of each node. Most recently, [22] proposed 
an incremental local density and cluster-based outlier factor 
method for detecting outliers in streaming data called 
iLDCBOF. The proposed method combined density-based 
spatial clustering of applications with noise (DBSCAN) and 
incremental versions of the local outlier factor (LOF), but it 
suffered from excessive computations. On the other hand, 
classification-based methods may either be incremental single 
model or ensemble classifier techniques, where the 
classification output is a function of the predictions from 
different classifiers. In addition, streaming ensemble-based 
methods have been developed to deal with the high 
dimensionality of data streams, and these techniques have 
great success in the outlier detection and prediction domains 
because of their accurate results and higher efficiency in both 
performance and resource consumption. Ensemble-based 
techniques integrate the results of many base models to create 
a more robust model that can detect outliers more effectively. 
Masud et al. [23] proposed a hyper outlier detection model for 
streaming data. They utilized the k-NN classifier first, 
followed by the SVM polynomial kernel classifier, and a data 
point is reported as an outlier if it is identified as an outlier by 
at least one of the classifiers. Then, to distinguish between 
novel and outlier data points, a neighborhood silhouette 
coefficient is applied. This approach addresses the novelty 
detection in multi-class underlying concepts, yet it requires all 
data chunks to be labelled to define the new concept. Wang et 
al. [24] proposed a model for detecting anomalies based on a 
matrix of uncompressed data against a matrix of compressed 
data, and this model utilized the original uncompressed data 
while considerably reducing computing costs. In [25], a new 

ensemble approach called RED-PSO was presented, which is 
suited to the drift notion of a data stream in the classification 
of non-stationary data streams. In [26], the authors proposed a 
sliding window-based ensemble approach for streaming 
outlier detection where a combination of clustering algorithms 
were utilized to construct clusters, which were later used in a 
one-class classification to identify outlier data. Togbe et al. 
[12] afforded iForestASD, i.e., an alternative isolation forest 
for streaming data implementation. They built the iForestASD 
on the scikit-multiflow framework; it is a machine learning 
framework for streaming data that is free and open source. In 
2021 [27], they modified their implementation of iForestASD 
to address the idea of data stream drift, proposing three 
algorithms for drift detection: ADWIN, KSWIN, and finally 
extending KSWIN to deal with n-dimensional data streams. 
Another recent study was presented in [28], where the authors 
proposed an ensemble-based outlier detection framework for 
high-dimensional data named Average Selection and 
Ensemble of Candidates for Outlier Detection (ASEC-OD). 
The proposed framework selected the most effective base 
outlier detectors, which have the highest performance. To 
summarize, none of these approaches can detect outliers 
accurately and efficiently in streaming data environments 
while maintaining high performance rates. Our approach 
differs from the aforementioned outlier methods in two ways. 
First, the proposed framework integrates outlier detection and 
the concept evolution phenomenon of streaming data by 
considering concept evolution for new outlier or inlier 
concepts that appear in incoming streams. It can sequentially 
update the outlier detection model in the case of concept 
evolution, resulting in a more robust outlier detection system 
that is matched with a streaming scenario. Second, it takes 
advantage of each heterogeneous base classifier in building an 
ensemble model to achieve the highest rates of performance 
metrics. 

III. BASE LEARNERS 

The outlier ensemble learning method will be very 
effective when heterogeneous base classifiers of diverse types 
are used. Thus, the distinct features of data can be identified or 
learned due to the variation between classifiers [29]. To boost 
efficiency, the proposed ensemble model constructs a set of 
models from three heterogeneous base learners. The chosen 
base learners (isolation forest, its variant iForestASD, decision 
tree, random forest, and its variant adaptive random forest) of 
the proposed framework are briefly introduced in this section. 

A. Isolation Forest (iForest) and IForestASD 

Isolation Forest (iForest) is a famous tree-based approach 
to outlier detection to isolate outlier instances [30]. The 
random selection of an attribute iteratively creates an isolation 
tree (itree) until each data point is isolated. Isolation forest is 
based on the notion that it is simple to isolate an outlier but 
more complex to characterize an inlier data point. 
Accordingly, the isolation forest consists of all the isolation 
trees constructed from its training set subsampling. The outlier 
score s(x, n), equation (1), is calculated by calculating the path 
length h(x) from the root to an instance x in an isolation tree 
constructed from n data instances [31]. 
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where E(h(x)); which is defined by equation (2); is the 
average path length h(x) of x over an isolation trees collection, 
i.e., itrees. 
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where c(n) represents the average path length of the binary 
search tree's unsuccessful search process. Finally, equation (3) 
calculates c(n), which is used to normalize an outlier score. 

( )    (   )  ( (   )  )             (3) 

where H(i) is formulated by equation (4). 

 ( )     ( )      , γ is the Euler’s constant           (4) 

Therefore, x is considered as outlier data if the outlier 
score is close to 1, but it is considered as normal data if the 
score is less than 0.5. 

On the other hand, the iForestASD [32] is an alternative 
version of the iForest method and is suitable for outlier 
detection over streaming data. The phrase “iForestASD” is an 
abbreviation for Isolation Forest Algorithm for Stream Data, 
where it uses the sliding window mechanism to process 
streaming data. In addition, iForestASD implemented the 
standard isolation forest technique to build the random forest. 
The IForestASD technique was developed to deal with the 
concept drift of the data stream by keeping a pre-defined 
anomaly rate threshold (u). Fig. 2 displays the workflow of the 
iForestASD approach to updating the model. If the anomaly 
rate in the active window is higher than u, then concept drift 
has occurred. The iForestASD then deletes the current 
detector and constructs another detector using all the data in 
the active window. Otherwise, there was no concept drift. The 
trained anomaly detector was then would not change. 

 

Fig. 2. The iForestASD Workflow. The Image is Reproduced from [32]. 

B. Decision Tree (DT) 

Decision trees are popular tree-based classification 
methods where each non-leaf node represents an attribute, 
whereas the edge links between its child nodes represent the 
attribute values and the leaf node represents a class label. In 
general, a decision tree is built in three main steps: 

 Select the best features of the training dataset to build 
the root node. 

 Split the training dataset into nodes using the Gini 
index. 

 Loop until no further splitting can be done. 

Information gain, gain ratio, and Gini index are used to 
partition the training dataset [33]. In this research, the Gini 
index is used as the DT splitting criterion, which is calculated 
by equation (5). 

 ( )     ∑   
  

                (5) 

where pi is the proportion of the ith class samples of the 
feature X. 

C. Random Forest and Adaptive Random Forest 

Firstly, the classical random forest (RF) [34] method is a 
tree-based approach that can be used for both classification 
and prediction tasks. The prediction of a new data point is 
determined by aggregating the predictions of n trees in 
classification tasks. Random predictors are chosen to split a 
node in random forests; therefore, every tree is grown based 
on a different random data sample. After multiple models have 
been generated, the overall trees of the model contribute to a 
weighted decision or vote to produce an overall determination. 
Regarding randomness splitting of the data, RF has two main 
sources of randomness which are bootstrap aggregating or 
bagging and boosting. In bootstrap aggregating, each classifier 
is trained on random sampling with replacement from the 
original dataset. On the other hand, in boosting approach, 
instead of evaluating all features at each tree split, only a 
random set of samples is used to make the eventual decision. 
RFs can model high dimensional data and they can handle 
missing values. 

Adaptive Random Forest (ARF) is one variant technique 
that adapts the standard random forest algorithm [35]. It 
produces decision trees by training them on resampled 
varieties of the original data and by randomly picking up a 
small number of features that can be inspected at each node 
for splitting. ARF offers data visualization of high 
dimensional data and it has a high accuracy and resistance to 
overfitting. 

IV. PROPOSED ENSEMBLE-BASED FRAMEWORK 

In this section, a novel ensemble-based outlier detection 
framework for data streams called Ensemble-based Streaming 
Outlier Detection (ESOD) is introduced. The proposed 
framework utilizes three heterogeneous machine learning 
algorithms, which are iForestASD, decision tree (DT), and 
adaptive random forest (ARF) as the base learners to build the 
ensemble model for detecting outliers in streaming data based 
on a weighted voting technique. To enhance efficiency, the 
proposed framework employs various base learners to build an 
ensemble-based model. Ensemble-based Streaming Outlier 
Detection (ESOD) has three main phases, as shown in Fig. 3, 
namely the training phase, testing/offline phase, and outlier 
detection/online phase. These phases are detailed in depth in 
the subsections that follow. 

A. The Training Phase 

The ESOD training phase is used to prepare data and tune 
the hyper-parameters of each classifier for the finest outcome. 
It consists of a series of steps that must be completed in the 
following order: 
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Fig. 3. The Ensemble-based Streaming Outlier Detection (ESOD) Block Diagram. 

1) Data preprocessing step: Certain data preprocessing 

techniques are done in order to turn raw data streams into 

meaningful patterns. The preprocessing stage is a critical step 

for the proper representation of streaming data. Hence, many 

different preprocessing techniques are employed, such as the 

removal of missing values, min-max scalar and one-hot 

encoding, for a more efficient classification process. There are 

three further phases in the ESOD's preprocessing stage, which 

are the data cleaning, data scaling, and feature selection 

phases. In the data cleaning phase, missing data is first 

examined and eliminated if it exists. The data scaling phase 

then employs the one-hot encoding approach on nominal or 

non-binary categorical data, and the min-max scaler is 

employed to scale values into the range of 0-1. Finally, the 

feature selection phase, where the main goal is to extract the 

set of relevant and non-redundant features, makes the learning 

model more meaningful and quicker because not all features 

are important for the model's learning process. In this study, 

the Least Absolute Shrinkage and Selection Operator 

(LASSO) technique is used to choose the most important and 

correlated features from the feature space that have a strict 

reflection on the target. 

2) Data segmentation step: In the data segmentation step, 

the preprocessed data D of n selected features is divided into 

two groups: training set Xtrain with m data points of ratio 70% 

where Xtrain ∈ Dm×n and testing set Xtest with r data points of 

ration 30% where Xtest ∈ Dr×n. The testing set, in contrast to 

the training set, should be unlabeled. Then, the K-fold cross 

validation (CV) method is used, in which the training set is 

divided into k equal non-overlapping subsets, determined by 

random sampling or the bootstrap mechanism, and the model 

is tested on different subsets of the dataset. Fig. 4 depicts the 

K-fold cross validation process. If k = 10, for example, nine 

groups of the sample data are used to train the model and only 

one group is used to test the model at each fold, where the 

model parameters with the lowest mean squared error from the 

k training models are chosen for the final model. For each 

fold, the outlier detection models are trained with only data 

from the inlier class, so the model is trained k times. The k-

fold cross validation approach is used in this study to choose 

the model hyper-parameters for setting each model as well as 

the configured models. 

 

Fig. 4. The K-Fold Cross Validation Process. 

3) Ensemble-learning model step: The heterogeneous 

base classifiers B = {β1, β2, …, βi}; iForestASD, decision tree, 

and ARF classifiers are built in this step, employing many 

hyper-parameter settings that are continually updated to 
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acquire the optimal parameters of each classifier. All three 

classifiers were trained using K random data samples (s1, s2,… 

sK) and were then used to classify outliers of the test set Xtest 

in the testing phase. Specifically, the outlier detection 

approach ESOD uses similar insights as in the random forest 

approach, where all these base learners are considered as trees 

for the ensemble model. In more detail, the outlier detection 

final decision is made by the weighted voting of these trees 

where it is the class label that has the highest weighted vote of 

classifiers predicted. After constructing the base learning 

models, the ensemble learning model ψβ1, β2,.., βi tries to 

combine their outlier results to declare the final decision by 

estimating the weights of individual base learning models β1, 

β2, … , βi. to aggregate their results with a weighted 

combination. The ESOD weighted voting approach involves 

assigning various weights to each classifier depending on its 

performance accuracy [36], calculated by equation (6), and 

voting on the classifiers based on this weight. After 

calculating the weight for each classifier, the most votes of 

classification results are selected as the ensemble's final 

detection result. 

    
   

∑   
 
 

              (6) 

where     is the weight of classifier βi,     is the classifier 

βi accuracy, and    is the accuracy summation of the three 
base classifiers used in the ensemble model. The trained 
ensemble model has been constructed at this point and can 
classify a data point as an inlier or outlier. 

B. The Testing/Offline Phase 

The test set was made up of the remaining 30% of the 
whole dataset. This test data is used as a final evaluation of an 
unseen dataset in the offline phase to ensure that the trained 
model was appropriately trained and predicts correctly. Hence, 
any unseen test sample x is classified into inlier or outlier 
instances using these trained base classifiers based on the 
above detection voting technique. 

C. The Outlier/Online Detection Phase 

During the outlier detection phase, i.e., the online phase, a 
flow of fresh unseen data streams is generated and processed 
using the sliding-time window technique. As a result of the 
ever-changing nature of stream data, detection mechanism 
updates are frequently based on time intervals in the form of 
sliding windows, where current items are given higher priority 
during the detection phase than older ones. The trained model 
can classify the known classes on which it was trained, 
identify any novel classes, and finally update the model with 
the most recent data to include any detected outliers. The 
model, in particular, tries to classify incoming samples of 
streaming data into known classes, which are outliers or 
inliers, or novel patterns. Hence, it predicts class labels for 
instances that belong to known classes, and the novel patterns 
are identified as "concept evolution". Once the new class is 
detected, it is integrated into the model for detecting repeated 
patterns. Thus, the trained model is automatically updated to 
handle the concept evolution by comparing the mean 
difference of two adjacent sub-windows [37]. 

V. EXPERIMENTAL EVALUATION 

This section presents the datasets, experimental setup, and 
parameter fine-tunning process followed by the assessment 
metrics and a brief discussion of the results. 

A. Dataset Description 

This research uses 11 publicly available outlier benchmark 
datasets (http, Credit-card-fraud, smtp, Annthyroid, Thyroid, 
Cardio, Pima Diabetes, Breast-cancer, Arrhythmia, Heart 
Disease, Hepatitis) from the UC Irvine Machine Learning 
Repository [38] for the evaluation of the base learner 
classifiers, state-of-the-art methods, and proposed framework. 
Description of these datasets is summarized in Table II by 
name, number of points, dimensions, outlier samples, percent 
of outliers, outlier class, and application domain of the 
datasets. 

TABLE II. DESCRIPTION OF THE BENCHMARK DATASETS USED IN THE PERFORMANCE EVALUATION 

Dataset Samples (m) Features (n) Outliers (%) Outlier Class Application Domain 

http 567,479 22 2,211 (0.39%) Attack Intrusion detection 

Credit-card-fraud 284,807 30 492 (0.17%) Fraudulent Fraud detection 

smtp 95,156 22 29 (0.03%) Attack Intrusion detection 

Annthyroid 7,200 6 534 (7.42%) 
Hyperfunction and  

Subnormal functioning 
Disease detection 

Thyroid 3,772 6 93 (2.47%) 
Hyperfunction and  

Subnormal functioning 
Disease detection 

Cardio 1,831 21 176 (9.61%) Pathologic Disease detection 

Pima Diabetes 768 9 193 (3.98%) Diabetes Disease detection 

Breast-cancer 683 30 239 (34.99%) Malignant Disease detection 

Arrhythmia 452 279 66 (14.60%) 
The smallest classes  

(3, 4, 5, 7, 8, 9, 14, 15) 
Disease detection 

Heart Disease 297 13 137 (46%) Class 0 Disease detection 

Hepatitis 155 19 32 (20.65%) Die Disease detection 
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TABLE III. HYPER-PARAMETER SETTINGS FOR DIFFERENT BASE LEARNER CLASSIFIERS 

Classifier Hyper-parameters Values 

iForestASD 

n_estimators = 100 

contamination = 0.2 

bootstrap = True 

n_jobs = -1 

random_state = 42 

Decision Tree (DT) 

criterion = gini 

n_estimators = 100 

Min_Samples_Split = 2 

Splitter = best 

max_features = log2 

max_depth = 6 

Adaptive Random Forest (ARF) 

n_models = 100 

max_features = sqrt 

aggregation_method = mean 

lambda_value = 6 

drift_detector = ADWIN 

warning_detector = ADWIN 

δw (warning threshold) = 0.01 

δd (drift threshold) = 0.001 

K-nearest neighbors (K-NN) 

n_neighbors = 7 

weights = distance 

metric = Euclidean 

Logistic Regression (LR) 

Penalty = l2 

solver = saga 

dual = True 

tol = 0.01 

random_state = 42 

max_iter = 1000 

SVM 

Regularization parameter = 1 

kernel = sigmoid 

gamma = scale 

shrinking = True 

coef0 = 0.01 

GaussianNB (GNB) 
priors = none 

var_smoothing = 0.001 

Artificial Neural Network (ANN) 

hidden_layer = 4 

activation = relu 

optimizer = adam 

batch_size = 32 

loss = binary_crossentropy 

epochs = 100 

Gradient Boosting (GB) 

learning_rate = 0.1 n_estimators=100 

min_samples_split = 500 

min_samples_leaf = 50 

max_depth = 5 

max_features = sqrt 

subsample = 0.8 

Local Outlier Factor (LOF) 

n_neighbors = 7 

algorithm = ball_tree 

leaf_size = 30 

metric = minkowski 

p = 2 
 

B. Experimental Setup 

All the developed models are implemented in the open-
source Python programming language using the Anaconda 
distribution API. The main libraries and packages used 
include pandas, NumPy, SciPy, matplotlib, and seaborn. 
Furthermore, the scikit-learn library [39] is the most widely 
used open-source Python machine learning package. Scikit-
learn structures various machine learning tasks such as 
regression, classification, and clustering algorithms and 
contains random forest, decision tree, K-NN classifiers, and 
more. Finally, to develop algorithms and conduct experiments, 

we used the Scikit-Multiflow framework [40], a Python-based 
open-source machine learning framework for evolving data 
streaming. 

C. Hyper-parameter Tuning 

The model hyper-parameters were tuned through a series 
of loops that iterated through changes in each relevant 
parameter of the given model based on the Grid Search 
strategy, and the model performance was assessed using 
stratified 10-fold cross-validation setting. Table III displays 
the optimal hyper-parameter values for each classifier used in 
the evaluation process after executing the hyper-parameter 
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fine-tuning method. In addition, the model performance is 
assessed using several ranges of sliding window size settings 
because of the relevance of this parameter in terms of 
computation time and memory use. For small datasets (Pima 
Diabetes, Breast-cancer, Arrhythmia, Heart Disease, 
Hepatitis), we used the sliding window of sizes w = 100, 120, 
140, 160, 180, and 200. Whereas w = 100, 200, 300, 400, 500, 
600, and 700 are the window sizes chosen for huge datasets 
(http, Credit-card-fraud, smtp, Annthyroid, Thyroid, Cardio). 

D. Performance Metrics 

To assess the effectiveness of the proposed framework, the 
average scores of ten separate trials were used to construct the 
most popular performance metrics in the outlier detection 
area, which are accuracy, precision, sensitivity or recall, and 
F1-score measures. All these metrics are calculated by the 
following equations, equation (7) – (10). For the binary 
classification, there are only four possible outcomes, which 
are True Negative (TN), False Negative (FN), False Positive 
(FP) and True Positive (TP). 

Accuracy = (TP+TN)/(TP+TN+FP+FN) * 100           (7) 

           (     )                 (8) 

Precision = TP / (TP + FP) * 100             (9) 

F1= 2*(Precision * Recall) / (Precision + Recall)         (10) 

E. Results and Discussion 

The proposed framework is evaluated by comparing 
results with its standalone base learners and other some 
predictive machine learning techniques such as Logistic 
Regression (LR), SVM, GaussianNB, K-NN, Artificial Neural 
Network (ANN), Gradient Boosting, and Local Outlier Factor 
(LOF). In addition, ESOD is compared with many state-of-
the-art methods found in [14], [15], [21], [22], [26], [27], and 
[28]. We individually show the performance of the 
comparisons on the aforementioned 11 datasets using the 
accuracy, precision, recall, and F1-score metrics. The 
performance results are the average of 30 trials of independent 
experiments. 

In the first experiments set, the efficiency of the proposed 
framework is evaluated using the accuracy, precision, and 
recall metrics with all baselines on the datasets. Table IV 
compares performance results of all base learners with the 
proposed model. From the results, it is clear that the linear 
regression, K-NN, SVM, and LOF perform worse than other 
algorithms in most cases. Although the base learners, i.e., 
iForestASD, decision tree, and adaptive random forest 
classifiers, of the proposed model independently perform very 
well, but the proposed framework performs better than these 
three standalone base learners. On the other hand, the 
experimental results reveal that the ESOD performs very well 
on the large-scale datasets such as http, credit and smtp 
datasets, beside its superior performance over other small 
datasets. For instance, ESOD achieves 98.65% and 99.64% of 

precision score on http and heart disease datasets, respectively. 
Another notable issue is that ESOD gives the highest recall or 
outlier detection rate, where it gets 99.78%, 99.05%, 99.66%, 
and 99.54% rates on http, credit, smtp, and hepatitis datasets, 
respectively. 

Fig. 5 plots the performance comparison between different 
machine learning algorithms, and ESOD method in terms of 
F1-score. It should be noted that the K-NN, SVM, and LOF 
methods exhibited very low performance rates compared to 
ESOD and the others. On the http dataset, which is the biggest 
dataset, the K-NN, SVM and LOF models exhibit poor recall 
rates of 77.90%, 70.78%, and 61.58%, respectively, 
demonstrating their inability to learn enough samples to 
accurately classify outlier data, while ESOD achieves 99.21% 
on the same dataset. Furthermore, all the K-NN, SVM and 
LOF models get the lowest F1 rates on the Breast-cancer 
dataset, which has the largest outlier ratio, with 77.34%, 
75.25%, and 69.59%, respectively, while ESOD can achieve 
the highest F1-score of 89.18%. In general, the proposed 
model has the best F1-score rates on all datasets. 

The next set of experiments is performed to compare the 
proposed framework with some state-of-the-art methods for 
streaming outlier detection presented in [14], [15], [21], [22], 
[26], [27] and [28] and the results are shown in Fig 6. In more 
detail, from Fig. 6(a)-(k), the performance of the proposed 
model (ESOD) is better than its competitive methods on all 
benchmark datasets, where it achieves higher rates than others. 
For instance, ESOD has attained 97.37% accuracy, 98.65% 
precision, a recall of 99.78% and finally F1-score of 99.21% 
on the http dataset, Fig. 6(a). In contrast, other methods have 
achieved lower rates, which are 71.87%, 70.63%, 73.22%, 
88.03%, 90.16%, 93.81%, and 84.32% of the recall measure 
for the methods UKOF [14], MWFP-Outlier [15], LiCS [21], 
iLDCBOF [22], Method in [26], Method in [27], and ASEC-
OD [28], respectively. One thing is notable here is that the 
MWFP-Outlier and LiCS methods have the lowest 
performance rates on all datasets in most cases. However, the 
model in [27] has a slightly high rates like our proposed 
model, where it gains 93.81%, 91.75%, 91.83%, 91.75%, 
92.43%, 91.31%, 81.82%, 87.33%, 90.27%, 93.50%, 90.70% 
of recall on http, credit, smtp, Annthyroid, thyroid, cardio, 
Pima, breast-cancer, arrhythmia, heart, and hepatitis datasets, 
respectively. Overall, the precisions of the seven state-of-the-
art methods are also lower than the ESOD precision (61.86% - 
93.52%). One can observe that the performance rates of our 
proposed framework is more consistent with increasing 
number of features on the dataset as compare to the other 
seven state-of-the-art methods on all datasets. On Arrhythmia 
dataset, which has 279 features, LiCS performs slightly better 
than iLDCBOF, Method in [26] and ASEC-OD. Meanwhile, 
UKOF obtains the lowest rates on breast-cancer dataset, which 
has the highest outlier ratio, but method in [26] approximately 
performs as good as ASEC-OD [28]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 11, 2022 

323 | P a g e  

www.ijacsa.thesai.org 

TABLE IV. EVALUATION OF ACCURACY, PRECISION AND RECALL RATES ON DIFFERENT INDIVIDUAL MODELS VS. ESOD FRAMEWORK. THE BEST AVERAGE 

SCORES PER EACH DATASET (COLUMN) AND MODEL (ROW) ARE SHOWN IN BOLD 
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Accuracy 

iForestASD 95.68 93.05 95.17 94.15 95.66 94.33 86.62 74.89 83.64 88.60 87.54 

DT 92.24 91.22 92.36 91.06 91.50 90.74 86.51 75.31 84.39 86.71 88.34 

ARF 93.66 92.05 92.70 92.98 93.84 94.50 85.65 74.29 83.44 86.57 86.53 

LR 71.07 85.15 85.66 85.70 86.01 86.30 84.28 70.99 83.16 85.72 86.11 

K-NN 80.08 80.11 80.34 81.00 81.37 81.22 80.76 69.60 80.23 80.77 80.31 

SVM 70.48 70.50 71.00 69.83 70.00 70.53 67.54 62.07 71.41 70.87 73.04 

GNB 92.00 92.23 91.89 90.08 90.69 91.22 84.70 73.60 83.00 83.18 90.60 

ANN 85.14 86.43 86.45 85.91 85.07 86.18 86.00 74.13 83.46 86.52 83.48 

GB 90.06 90.20 89.04 92.00 91.25 90.24 85.16 73.36 80.33 85.15 86.02 

LOF 75.09 76.00 75.35 76.48 74.08 76.63 75.62 77.09 76.32 76.36 76.08 

ESOD 97.37 94.05 95.67 95.32 95.70 96.23 88.18 79.92 85.45 87.44 90.58 

Precision 

iForestASD 97.20 95.18 93.03 95.21 97.43 94.64 85.97 84.24 94.28 98.70 96.35 

DT 94.90 91.57 91.53 93.90 94.42 94.54 84.08 83.81 92.21 93.29 92.80 

ARF 96.26 92.71 97.36 94.46 95.55 95.10 84.76 85.94 92.42 97.26 93.98 

LR 80.54 82.50 82.45 83.67 81.65 88.92 81.36 72.67 88.22 91.24 92.80 

K-NN 70.20 71.56 72.19 72.77 74.37 75.58 79.31 79.71 76.47 88.96 89.34 

SVM 70.19 70.60 70.66 71.06 71.80 72.71 73.20 73.71 74.02 72.96 71.57 

GNB 78.42 76.66 75.60 74.30 78.69 79.24 81.21 86.62 84.78 82.54 82.66 

ANN 90.04 89.90 91.26 90.65 91.15 93.28 83.38 80.75 91.02 91.33 92.14 

GB 89.16 90.91 91.51 92.91 90.72 92.73 83.88 82.41 90.78 92.17 90.49 

LOF 51.25 51.36 51.48 51.79 64.81 53.33 54.40 62.06 58.55 63.93 62.12 

ESOD 98.65 96.70 97.92 96.33 97.46 98.30 87.57 88.59 95.06 99.64 96.54 

Recall 

iForestASD 98.68 98.09 94.83 95.44 94.26 92.30 89.65 86.23 95.43 97.55 98.63 

DT 93.62 94.48 93.72 94.30 93.51 91.85 88.23 83.79 91.87 94.11 96.05 

ARF 98.16 96.02 94.35 95.24 94.13 92.22 86.75 85.75 94.07 96.65 94.85 

LR 80.25 80.51 81.76 81.78 81.80 81.94 81.88 82.33 82.43 83.60 83.54 

K-NN 87.50 86.15 86.29 88.57 82.27 86.99 86.46 75.11 83.19 82.78 85.39 

SVM 71.37 73.76 75.08 75.27 75.41 75.82 76.65 76.86 78.11 77.91 77.90 

GNB 82.10 82.44 84.91 85.22 85.82 85.77 83.84 85.44 86.06 89.26 89.83 

ANN 91.94 91.52 93.25 90.99 91.08 91.71 86.14 85.71 92.07 92.40 90.30 

GB 81.81 82.04 86.74 82.46 89.60 85.26 75.06 82.23 83.94 88.31 87.39 

LOF 77.14 78.55 78.16 76.99 76.55 78.71 71.09 79.19 73.42 76.77 72.80 

ESOD 99.78 99.05 99.66 98.17 97.14 95.20 90.92 89.78 96.86 98.27 99.54 
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Fig. 5. F1-score Rates of different Algorithms on different Datasets. 
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Fig. 6. Performance Comparison between State-of-the-Art Methods and the Proposed ESOD Model. 
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Another experiment was conducted to assess the impact of 
changing the window size of streaming data on the proposed 
framework. Table V compares the performance evaluation 
metrics when the window sizes were varied (w). When the 
window size is increased to w = 500 for the http, credit, smtp, 
Annthyroid, thyroid, and cardio datasets, while w = 180 for 
the Pima, breast-cancer, arrhythmia, heart, and hepatitis 
datasets, the rates have improved as the F1-score grows for all 
datasets. However, when the window size is greater than 500 
for large datasets and greater than 180 for small datasets, the 
F1-score falls dramatically. Furthermore, the model's 
performance varies significantly depending on the dataset, 
with ESOD earning a F1-score over 99% for the http dataset, 
which is the largest dataset. As a result, we expect ESOD to 
perform better on datasets with a high scale data. 

The final experiments set is performed to evaluate the 
average execution time of ESOD against the other methods. 

Fig. 7 shows that on the http dataset, for instance, ESOD 
performs with an execution time of 27.46 milliseconds 
compared to the LiCS, which takes about 41.56 milliseconds 
while the iLDCBOF method takes 37.89 milliseconds. 
Furthermore, LiCS takes the longest time among all the 
investigated methods, and the proposed method executes the 
http dataset at almost half the execution time of LiCS. On the 
other hand, comparison of execution time within the Hepatitis 
dataset, for instance, displays that ESOD has the shortest 
execution time of 11.40 milliseconds as compared to the 
others. In addition, within the Pima dataset, the result indicates 
that ESOD has an execution time of 19.64 milliseconds as 
against UKOF which has resulted in 26.47 milliseconds of 
execution time. In general, the results demonstrate that the 
proposed method is significantly faster than all other methods 
in every tested case on all datasets. 

TABLE V. PERFORMANCE EVALUATION OF ESOD WHEN VARYING THE WINDOW SIZE W. THE BEST AVERAGE SCORES PER EACH DATASET ARE SHOWN IN 

BOLD AND HIGHLIGHTED 

D
a

ta
se

t 

W
in

d
o

w
 

S
iz

e 
(w

) 

A
cc

u
ra

cy
 

P
re

ci
si

o
n

 

R
ec

a
ll

 

F
1

-s
co

re
 

h
tt

p
 

100 95.63 95.34 95.88 95.61 

200 95.72 95.72 96.12 95.92 

300 95.89 95.94 96.69 96.31 

400 96.71 96.06 96.64 96.35 

500 97.37 98.65 99.78 99.21 

600 97.11 97.41 97.83 97.62 

700 97.00 96.88 97.20 97.04 
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100 89.69 95.19 94.69 94.94 

200 90.61 95.27 94.21 94.74 

300 91.49 96.21 97.70 96.95 

400 92.99 96.57 97.82 97.19 

500 94.05 96.70 99.05 97.86 

600 93.79 96.66 98.42 97.53 

700 92.014 95.83 96.39 96.11 
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100 92.38 94.47 94.46 94.46 

200 93.47 95.35 95.24 95.29 

300 94.06 96.37 95.26 95.81 

400 95.36 96.78 98.00 97.39 

500 95.67 97.92 99.66 98.78 

600 95.28 97.50 99.58 98.53 

700 94.22 95.50 98.70 97.07 
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100 92.34 92.65 92.04 92.34 

200 92.87 92.88 92.66 92.77 

300 93.91 93.97 92.85 93.41 

400 94.57 94.62 94.25 94.43 

500 95.32 96.33 98.17 97.24 

600 95.30 95.33 97.14 96.23 
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700 95.04 95.21 96.44 95.82 
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100 92.44 95.98 94.08 95.02 

200 92.78 96.03 96.00 96.01 

300 93.65 96.14 96.20 96.17 

400 94.40 96.60 97.01 96.80 

500 95.70 97.46 97.14 97.30 

600 95.51 97.00 96.45 96.72 

700 94.43 97.00 96.19 96.59 
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100 90.83 96.85 91.40 94.05 

200 91.40 96.93 92.25 94.53 

300 93.70 97.38 93.83 95.57 
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500 96.23 98.30 95.20 96.73 

600 94.88 97.15 95.03 96.08 
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100 84.55 83.51 84.36 83.93 

120 84.69 84.35 83.66 84.00 
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160 77.31 76.68 75.66 76.17 

180 79.92 88.59 89.78 89.18 
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100 81.66 92.48 91.23 91.85 

120 81.56 92.89 92.94 92.91 

140 82.13 93.69 93.98 93.83 

160 84.78 94.44 95.48 94.96 

180 85.45 95.06 96.86 95.95 

200 83.02 94.01 93.66 93.83 

H
ea

rt
 D

is
ea

se
 

100 82.41 92.32 94.66 93.48 

120 83.07 93.14 96.01 94.55 

140 84.53 95.61 96.74 96.17 

160 86.18 97.85 97.37 97.61 

180 87.44 99.64 98.27 98.95 

200 87.30 98.10 98.12 98.11 

H
ep

a
ti

ti
s 

100 84.42 92.77 95.59 94.16 

120 85.61 92.81 95.62 94.19 

140 89.09 94.32 97.20 95.74 

160 89.35 95.05 98.20 96.60 

180 90.58 96.54 99.54 98.02 

200 86.27 96.29 97.86 97.07 
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Fig. 7. Execution Time Evaluation for ESOD Compared with different Methods on different Datasets. 

VI. CONCLUSION AND FUTURE WORK 

In this study, we propose a novel sliding window 
ensemble-based framework for detecting outliers in data 
streams called an Ensemble-base Streaming Outlier Detection 
(ESOD). To improve outlier detection decisions, the proposed 
framework was built with three machine learning algorithms 
as base learners: iForestASD, decision tree, and adaptive 
random forest (ARF) based on a weighted voting detection 
technique. Furthermore, ESOD considered the concept 
evolution nature of streaming data. Extensive empirical 
evaluations on various real datasets demonstrate the 
performance of our framework in comparison to that of 
existing algorithms in the literature. The results showed that 
the proposed framework beat existing algorithms in terms of 
outlier detection rate, as well as overall performance. In the 
future, we will look into how to adapt the framework to the 
feature-evolution nature of data streams. Another option is to 
use more optimization techniques and different feature 
selection methods. Aside from improving execution 
performance, we are also interested in implementing various 
time-based techniques that may lead to improved detection 
and accuracy rates. 
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