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Abstract—Structure from Motion is a pipeline for 3D 

reconstruction in which the true geometry of an object or a scene 

is inferred from a sequence of 2D images. As feature extraction is 

usually the first phase in the pipeline, the reconstruction quality 

depends on the accuracy of the feature extraction algorithm. 

Fairly evaluating the robustness of feature extraction algorithms 

in the absence of reconstruction ground truth is challenging due 

to the considerable number of parameters that affect the 

algorithms' sensitivity and the tradeoff between reconstruction 

size and error. The evaluation methodology proposed in this 

paper is based on two elements. The first is using constrained 3D 

reconstruction, in which only fixed numbers of extracted and 

matched features are passed to subsequent phases. The second is 

comparing the 3D reconstructions using size-error curves 

(introduced in this paper) rather than the value of reconstruction 

size, error, or both. The experimental results show that the 

proposed methodology is more transparent. 
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I. INTRODUCTION 

Structure from Motion (SfM) is a processing pipeline 
intended for reconstructing 3D models of objects from a 
sequence of 2D views (images). It involves several different 
phases in which various algorithms can be used, such as 
feature detection, feature description, feature matching 
(correspondence), triangulation, and finally 3D reconstruction. 
In addition, pruning or masking-out outliers may be performed 
between different phases. As it commonly starts with 
detecting features and computing descriptors, its accuracy 
depends mainly on the robustness of the used feature 
extraction algorithm. This raises a critical question; which of 
the available feature detectors-descriptors is best for SfM [1], 
[2]? 

Feature detection and description is a low-level process 
that can be considered the cornerstone and is usually used as 
the starting point of many applications in computer vision. A 
feature (keypoint) is an interesting or important piece of 
information, such as points, blobs, corners, edges, junctions, 
etc., that is relevant to the solution of the computational task 
(correspondence) behind a specific application (3D 
reconstruction). Accordingly, a feature detector is an 
algorithm that can detect these interesting keypoints in a given 
image. On the other hand, a feature descriptor describes each 
detected feature in an image by assigning it a distinctive 
identity formed by the pixels within a certain neighborhood. 
This identity enables effective recognition of the 

corresponding features during matching [3], [4]. After feature 
detection, detected features can be pruned using either a 
threshold for the detector response or by selecting the features 
with the highest response. 

The simplest strategy for matching two sets of feature 
descriptors and finding the corresponding features is brute-
force matching. In this strategy, each feature descriptor in the 
first set is compared with each feature descriptor in the second 
set. This allows for finding all possible pairs of corresponding 
features. However, it requires extensive computational 
resources. A better and faster strategy for feature matching, 
especially in large datasets, is to adopt a hash table or a multi-
dimensional search tree as an indexing data structure for 
rapidly retrieving neighbors (features) from the second set that 
are nearest to a given feature from the first set [5]. 

The list of corresponding features can be pruned by 
comparing the similarity (distance) of each pair with a 
predefined threshold representing the maximum allowed 
distance. Only pairs that satisfy the predefined threshold are 
kept, while other pairs are discarded. The downside of this 
method is the difficulty of deciding the appropriate threshold. 
In addition, applying the same threshold to all pairs can be 
inaccurate in some circumstances, as the distance of a correct 
match can be greater than that of an incorrect match. A better 
pruning strategy in such cases is to select only the best pair 
(the one with the smallest distance) for every feature or adopt 
the Nearest Neighbor Distance Ratio (NNDR) [6]. Matching 
results can be further pruned by selecting the pairs with the 
smallest distance. 

The remaining incorrect matches (outliers) can be removed 
or filtered out during the triangulation using many robust 
probabilistic methods [4], [7]. Random sampling consensus or 
RANSAC is one of the most widely used methods. It works by 
randomly picking a small subset of the seed matches, using 
that subset to estimate the transformation function, and then 
using a larger subset to check the transformation function 
correctness [8]. 

In SfM, detected features in a sequence of images are 
required to be accurately matched despite the image 
transformation (rotation and/or scaling) and illumination 
changes. The matched features across the sequence of images 
allow for predicting the camera motion by estimating the 
calibration matrix as well as the fundamental matrix. 
Accordingly, the accuracy of these estimations and 
consequently the 3D reconstruction is directly affected by the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 11, 2022 

331 | P a g e  

www.ijacsa.thesai.org 

robustness of the feature extraction algorithms and the 
accuracy of the feature matching algorithms [3]. Once feature 
correspondences between multiple views (images) are 
established, corresponding features are grouped into feature 
tracks. Corresponding features in each track are triangulated 
into a single 3D point. A sparse 3D point cloud is the result of 
triangulating corresponding features in all tracks [9]. 

More images can be incorporated into the current model 
using image registration. During image registration, new 
images are registered to the current model. This can be done 
by solving the Perspective-n-Point (PnP) problem. Given a set 
of correspondences between 3D points of an object (the 
current model) and their respective projections on the camera 
plane (of the new image), PnP problem can be solved to 
estimate the relative pose between the object and the camera 
by minimizing the reprojection error from 3D-2D point 
correspondences. To improve this incremental SfM pipeline, 
the reconstructed 3D point cloud is refined using Bundle 
Adjustment optimization technique resulting in a jointly 
optimal 3D point cloud [10]. 

The remaining part of this paper is organized as follows: 
Section II briefly covers the related work. Section III is a brief 
review of different feature extraction algorithms implemented 
for the experiment. Section IV describes the evaluation 
methodology proposed. Section V discusses the experimental 
results obtained. Section VI conclusion and future work 
reported. 

II. RELATED WORK 

Up to the best of the author's knowledge and as shown in 
Table. I, published research evaluates feature extraction 
algorithms (particularly in SfM) in terms of feature extraction 
time, number of extracted features, descriptor size (storage), 
number of matched features, point cloud size (density), and 
reprojection error. 

TABLE I. RELATED WORK 

Author Algorithms Factor Winner 

Govender [3] HCD, KLY, SIFT, SURF Error SIFT 

Urban et al. 

[11] 

AKAZE + M-SURF, ORB, SIFT, 

SURF, SURF + BinBoost 
Time SURF 

Chien et al. [2] AKAZE, ORB, SIFT, SURF 

#Features SURF 

Storage AKAZE 

Time ORB 

Pusztai et al. 

[5] 

AGAST, AKAZE, BRISK, 

FAST, GFTT, KAZE, MSER, 

ORB, SIFT, STAR, SURF 

#Features 

(Inliers) 
SURF 

Schönberger 

et al. [12] 

ConvOpt, DeepDesc, 

DSP-SIFT, LIFT, SIFT, SIFT- 

PCA, TFeat 

Density Varies 

Error SIFT 

Storage SIFT 

Time SIFT 

Cao et al. [10] 
BRISK, KAZE, ORB, SIFT, 

SURF 

Error 

(ROS) 
SURF 

Time BRISK 

Gao et al. [9] 
AKAZE, DeepCompare, LF-Net, 

ORB, SIFT, SuperPoint, SURF 

Density SURF 

Error AKAZE 

Time ORB 

Yusefi et al. 

[7] 
FAST, ORB, SIFT, STAR, SURF 

Error FAST 

Time STAR 

As shown in Table II, each algorithm has one or more 
parameters that affect its sensitivity in most cases. Using the 
default values for these parameters results in a quite different 
average number of extracted features, as shown in Table IV. 
Therefore, it may be unfair to use the number of extracted 
features as an evaluation factor of feature extraction 
algorithms without trying to tune the parameters of each 
algorithm. In addition, the extraction time depends on the 
number of extracted features and the descriptor type and size. 
Therefore, it may be unfair to evaluate feature extraction 
algorithms in terms of the extraction time without taking the 
number of extracted features (i.e., by averaging), descriptor 
type, and descriptor size into consideration. Moreover, there is 
a trade-off between the point-cloud size and the reprojection 
error. Therefore, it may be unfair to evaluate feature extraction 
algorithms in SfM based on the value of point-cloud size only 
or reprojection error only. 

The scope of this paper is fairly evaluating the robustness 
of the feature extraction algorithms in SfM in terms of point 
cloud size and reprojection error regardless of the space and 
time efficiency. 

III. FEATURE DETECTORS AND DESCRIPTORS 

Table II lists the fourteen feature extraction algorithms that 
were evaluated in this paper. A feature extraction algorithm 
can be designed for feature detection only, feature description 
only, or both feature detection and description. In the last case, 
feature detectors are combined with their own feature 
descriptors. In the first two cases, different types of feature 
descriptors can be paired with different kinds of feature 
detectors. 

TABLE II. PARAMETERS OF FEATURE EXTRACTION ALGORITHMS 

AKAZE  [13] 
descriptor_size, descriptor_channels, threshold, nOctaves, 

nOctaveLayers 

BEBLID*  [14] n_bits, scale_factor 

BRIEF*  [15] bytes 

BRISK  [16] thresh, octaves 

DAISY*  [17] radius, q_radius, q_theta, q_hist, norm 

FREAK*  [18] patternScale, nOctaves 

KAZE  [19] threshold, nOctaves, nOctaveLayers 

LATCH*  [20] bytes, half_ssd_size, sigma 

LUCID*  [21] lucid_kernel, blur_kernel 

ORB  [22] 
nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, 

WTA_K, patchSize, fastThreshold 

SIFT  [23] 
nfeatures, nOctaveLayers, contrastThreshold, 

edgeThreshold, sigma 

SURF  [24] extended, hessianThreshold, nOctaves, nOctaveLayers 

TEBLID*  [25] n_bits, scale_factor 

VGG*  [26] desc, isigma, scale_factor 

Algorithms identified by * in Table II do not have a 
default feature detector. For such algorithms, FAST (Features 
from Accelerated Segment Test) feature detection algorithm is 
combined with them in the experimental work in Section V. 
FAST algorithm was proposed by Rosten et al. in 2006 for fast 
feature detection [27], [28]. Therefore, it is considered a viable 
choice for complementing those algorithms. 
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Feature descriptors can be categorized into two main 
categories: namely parameterized descriptors and binary 
descriptors. Each element in parameterized descriptors is a 
floating-point number (or any non-binary discretization of a 
floating-point number). On the other hand, each element in 
binary descriptors is a binary number (0 or 1). Typically, 
binary descriptors are derived using pixel-level comparisons 
that require minimal computational resources and result in a 
compact representation. Consequently, they became an 
attractive option for numerous contemporary applications 
[10]. Out of the fourteen feature extraction algorithms that 
were evaluated in this paper, only DAISY, KAZE, SIFT, 
SURF, and VGG are parameterized while the others are 
binary. 

IV. PROPOSED EVALUATION METHODOLOGY 

In this section, the proposed methodology for fairly 
evaluating the robustness of feature extraction algorithms in 
SfM is presented. The proposed methodology is expressed 
using Python-like pseudo-code in Fig. 1 and Fig. 2. It is also 
illustrated by a block diagram in Fig. 3. 

 

Fig. 1. Proposed Algorithm for Constrained 3D Reconstruction. 

Constrained 3D Reconstruction algorithm shown in Fig. 1 
takes a sequence of images as well as a feature extraction 
algorithm and returns a point cloud. Constrained 3D 
reconstruction is required since the quality of the 3D 
reconstruction depends on not only the robustness of the 
detected features but also the number of detected features. In 
order to ensure fairness and due to the difficulty of optimizing 
the parameters of each algorithm to produce the same number 
of features, only a fixed number of features detected by each 
algorithm is passed to the subsequent phase, as illustrated by 
Constrained Feature Extraction block in Fig. 3. Selection of 
the detected features can be performed by sorting them in non-
increasing order of their respective responses and selecting the 
features with the highest response. In addition, only a fixed 
number of corresponding features matched using each 
algorithm is passed to the subsequent phase, as illustrated by 
Constrained Feature Matching block in Fig. 3. Selection of the 
corresponding features can be performed by storing them in 

non-decreasing order of matching distance and selecting the 
correspondences with the smallest matching distance. 

Instead of the ratio test proposed by Lowe in [23] in the 
matching phase, brute-force matcher with cross-checking was 
used to return only consistent pairs of features. A pair of 
features (i, j) is considered consistent if j is the nearest feature 
to i and i is the nearest to j in the feature space. The consistent 
pairs of matching features are then passed to the next phase, 
where sparse point clouds are reconstructed. 

Size-Error Curves Generation algorithm shown in Fig. 2 
takes a list of point clouds generated using different feature 
extraction algorithms for a specific dataset and reconstructs 
size-error curves. Such curves visualize the average 
reprojection error of different 3D reconstructions as a function 
of the point cloud size. Moreover, the use of size-error curves 
allows employing methods like the elbow method [29] and 
finding a suitable operating point on ROC curve [30] for 
carefully selecting and/or pruning a reconstructed point cloud. 
Size-error curves are generated by first creating a list of 
sample sizes. The points in each point cloud are sorted in non-
decreasing order of their respective reprojection error and then 
sampled using every sample size. The size-error curve can be 
visualized by plotting the average reprojection error of the 
points in each sample against the sample size. 

 

Fig. 2. Proposed Algorithm for Evaluation of 3D Reconstruction. 

V. EXPERIMENTAL RESULTS 

A. Datasets 

To evaluate the robustness of feature extraction 
algorithms, a well-known and publicly available collection of 
datasets was used as a benchmark. The collection contains six 
different datasets of outdoor scenes of different architectural 
objects. All images were captured at 3072 × 2028 resolution 
and have been corrected for radial distortion. Each dataset 
name, number of images, and sample image are shown in 
Table III. More information about the dataset can be found in 
[31], [32]. 

Algorithm Constrained 3D Reconstruction (I, feat_alg) 

Input : sequence of images I 

        feature extraction algorithm feat_alg 

Output: point cloud pc 

F = {} 

for i in I: 

    f = feat_alg.extract(i) 

    F[i] = sorted(f, 

        key = lambda item:-item.response 

    )[:MAX_FEAT] 

M = {} 

for i in I: 

    for j in I: 

        if I == j: 

            continue 

        m = feat_alg.match(F[i],F[j]) 

        M[i,j] = sorted(m, 

            key = lambda item:item.distance 

        )[:MAX_MATCH] 

return colmap. mapper(I,M) 

Algorithm Size-Error Curves Generation (PC) 

Input : list of point clouds PC, 

        each point cloud is composed of a list of 

        3D points (x, y, z, e) 

Output: list of dictionaries D, 

        each dictionary is a map from point cloud 

        size to average reprojection error 

K = [] 

for pc in PC: 

    K.append(len(pc)) 

K = sorted(K) 

 

D = [] 

for pc in PC: 

    d = {} 

    e = sorted(pc.e) 

    for k in K: 

        if k > len(pc): 

            break 

        d[k] = sum(e[:k])/k 

    D.append(d) 

 

return D 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 11, 2022 

333 | P a g e  

www.ijacsa.thesai.org 

TABLE III. THE SIX DATASETS USED IN THIS RESEARCH 

Dataset castle-P19 castle-P30 entry-P10 fountain-P11 Herz-Jesus-P8 Herz-Jesus-P25 

Sample 

      

Size 19 30 10 11 8 25 
 

B. Setup 

An experiment was performed on a virtual machine with a 
2 x Core Intel(R) Xeon(R) CPU @ 2.20 GHz and 13.00 GB of 
RAM provided by Google Collaborate Pro to evaluate the 
robustness of different feature extraction algorithms. OpenCV 
4.6.0 was built with OPENCV_ENABLE_NONFREE as well 
as OPENCV_EXTRA_MODULES_PATH, while COLMAP 
3.8 was built with the default configuration. 

 

Fig. 3. Proposed Methodology for Fair Evaluation. 

Feature detection and extraction subroutines contained 
within OpenCV library framework [33] were used with their 
default parameters provided by the library for Python. When a 
required parameter does not have a default value, the value 
recommended by the algorithm author(s) is used. Each 
detector is only combined with its own descriptor in this 
experiment, and detectors with no descriptor are combined 
with FAST due to its speed and availability in a real-time 
environment. OpenCV BFMatcher was used along with 
crossCheck flag and the default norm of each feature 
extraction algorithm for feature correspondence. COLMAP 
SfM pipeline [34], [35] was used on the CPU for spare 3D 
reconstruction. The complete pipeline is illustrated by Fig. 3. 

Only the best 2000 detected features are passed to the next 
phase. In addition, only the best 500 corresponding matches 
are passed to the next phase. The two numbers were chosen 
empirically to suit almost all the feature extraction algorithms. 

In order to connect OpenCV to COLMAP, an SQLite 
database is used for storing the following: 

 Camera parameters. 

 Images filenames. 

 Coordinates of each extracted feature for each image. 

 Indexes of each pair of corresponding features. 

In order to reconstruct the corresponding sparse point 
clouds, a total of 14 x 6 SQLite databases were created and 
passed to COLAMP as command-line parameters. 

C. Results and Discussion 

During this experiment, 84 different point clouds were 
created. As shown in Section II, the projection error is the 
most common and obvious way to measure how good a point 
cloud is. V and the radar chart in Fig. 4 illustrate the 
reprojection error of each point cloud. By comparing the 
reprojection error resulting from different feature extraction 
algorithms on each dataset, the feature extraction algorithm 
with the smallest reprojection error can be considered the 
winner. Based on the result of this experiment, it is clear that 
FREAK resulted in the smallest reprojection error on most 
datasets (four out of six) and on average. Therefore, it can be 
considered the winner. However, the quality of the resulting 
point cloud is defined not only by the reprojection error but 
also by the point cloud size (density). 

According to the results shown in VI and illustrated by the 
radar chart in Fig. 5, it is clear that the density of the point 
clouds generated using FREAK feature extraction algorithm is 
disappointing. It is almost the smallest for most of the 
datasets. This means that FREAK’s low reprojection error 
comes at a cost (the sparsity of the point cloud). 

Obviously, neither Fig. 4 nor Fig. 5 (alone or side-by-side) 
provide an accurate measure or visualization of the relative 
performance of different feature extraction algorithms in SfM. 
This raises the need for a measure or visualization that takes 
care of the quantity-quality trade-off. 

On the other hand, using the size-error curves shown in 
Fig. 6, a true winner can be easily identified by observing the 
area under the curve (AUC). The feature extraction algorithm 
corresponding to the smallest AUC and adequate density can 
be considered a winner regardless of point cloud size and the 
average reprojection error. For instance, it is clear from Fig. 6 
that SIFT is the winner in Herz-Jesus-P8 dataset even though 
it did not generate the point cloud with the largest size or the 
smallest average reprojection error. 
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TABLE IV. THE AVERAGE NUMBER OF EXTRACTED FEATURES PER DATASET FOR EACH FEATURE EXTRACTION ALGORITHM 

AKAZE BEBLID BRIEF BRISK DAISY FREAK KAZE LATCH LUCID ORB SIFT SURF TEBLID VGG 

099888 163893 158462 081135 163893 159357 098562 158662 163893 257609 095820 359358 163893 163893 

TABLE V. REPROJECTION ERROR USING DIFFERENT FEATURE EXTRACTION ALGORITHMS 

 castle-P19 castle-P30 entry-P10 fountain-P11 Herz-Jesus-P25 Herz-Jesus-P8 Average 

AKAZE 0.6175 0.6171 0.7233 0.6473 0.8661 0.6831 0.6924 

BEBLID 0.4798 0.5159 0.5705 0.5404 0.6353 0.6204 0.5604 

BRIEF 0.5139 0.5075 0.6058 0.5947 0.6840 0.6364 0.5904 

BRISK 0.5619 0.7170 0.7034 0.7701 0.9119 0.8535 0.7530 

DAISY 0.5291 0.5687 0.6357 0.5628 0.6956 0.5994 0.5986 

FREAK 0.5850 0.4956 0.4923 0.4446 0.4891 0.5331 0.5066 

KAZE 0.6271 0.6521 0.8231 0.6488 0.8392 0.7331 0.7206 

LATCH 0.5643 0.5717 0.6984 0.7157 0.8138 0.7649 0.6881 

LUCID        

ORB 0.7029 0.7575 0.7366 0.8767 0.8932 0.8264 0.7989 

SIFT 0.5730 0.5777 0.5336 0.3497 0.6307 0.5575 0.5370 

SURF 0.6112 0.5870 0.6773 0.4715 0.7324 0.6789 0.6264 

TEBLID 0.5133 0.5203 0.5927 0.5431 0.6507 0.6049 0.5709 

VGG 0.4966 0.5372 0.6016 0.5283 0.6463 0.5915 0.5669 

Average 0.5674 0.5866 0.6457 0.5918 0.7299 0.6679 0.6315 

TABLE VI. POINT CLOUD SIZE USING DIFFERENT FEATURE EXTRACTION ALGORITHMS 

 castle-P19 castle-P30 entry-P10 fountain-P11 Herz-Jesus-P25 Herz-Jesus-P8 Maximum 

AKAZE 2160 5869 1497 1375 3326 1212 5869 

BEBLID 1559 4664 1393 1525 3036 1090 4664 

BRIEF 1795 4694 1429 1473 3001 1087 4694 

BRISK 1170 1229 1193 1275 2947 1088 2947 

DAISY 2065 5656 1664 1642 3074 1145 5656 

FREAK 1054 2460 1026 1228 2524 810 2524 

KAZE 2151 6177 1591 1494 3609 1229 6177 

LATCH 1825 5327 1412 1460 2984 1085 5327 

LUCID        

ORB 1238 2246 1015 0877 2304 1046 2304 

SIFT 2240 6118 1428 1702 3614 1197 6118 

SURF 1338 4744 0934 1323 3350 1050 4744 

TEBLID 1797 4528 1475 1549 3167 1140 4528 

VGG 1740 4876 1468 1595 3068 1141 4876 

Maximum 2240 6177 1664 1702 3614 1229 6177 
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Fig. 4. Reprojection Error using different Feature Extraction Algorithms. 

 

Fig. 5. Point cloud Size using different Feature Extraction Algorithms. 
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Fig. 6. Reprojection Error as a Function of the Point cloud Size for the Six Datasets. 

VI. CONCLUSION AND FUTURE WORK 

In this research, fourteen different OpenCV feature 
extraction algorithms were evaluated in COLMAP SfM 
pipeline on six public datasets. Based on the experimental 
results reported in Section V, it can be concluded that the best 
feature extraction algorithm does not necessarily generate a 
point cloud with the minimum reprojection error nor the 
maximum number of points in SfM. So, the size-error curves 
proposed in this paper should be used for comparing different 
3D reconstructions of a given dataset, as they are more 
transparent than using the value of point cloud size, 
reprojection error, or both. 

The size-error curves demonstrate that SIFT feature 
extraction algorithm outperforms other algorithms in almost 
all six datasets. Our future work is to consider combining 
feature detectors other than FAST with descriptors that do not 
have a default detector and those that do. By applying the fair 
evaluation method proposed in this paper to the different 
combinations, a better combination of feature detector and 
feature descriptor for SfM may be found. 
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