
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

330 | P a g e

www.ijacsa.thesai.org

Towards a Fair Evaluation of Feature Extraction

Algorithms Robustness in Structure from Motion

Dina M. Taha1, Hala H. Zayed2, Shady Y. El-Mashad3

Faculty of Engineering (at Shoubra), Benha University, Cairo, Egypt1, 3

Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt2

School of Information Technology and Computer Science, Nile University, Cairo, Egypt2

Abstract—Structure from Motion is a pipeline for 3D

reconstruction in which the true geometry of an object or a scene

is inferred from a sequence of 2D images. As feature extraction is

usually the first phase in the pipeline, the reconstruction quality

depends on the accuracy of the feature extraction algorithm.

Fairly evaluating the robustness of feature extraction algorithms

in the absence of reconstruction ground truth is challenging due

to the considerable number of parameters that affect the

algorithms' sensitivity and the tradeoff between reconstruction

size and error. The evaluation methodology proposed in this

paper is based on two elements. The first is using constrained 3D

reconstruction, in which only fixed numbers of extracted and

matched features are passed to subsequent phases. The second is

comparing the 3D reconstructions using size-error curves

(introduced in this paper) rather than the value of reconstruction

size, error, or both. The experimental results show that the

proposed methodology is more transparent.

Keywords—Feature extraction; feature matching; structure

from motion; 3D reconstruction

I. INTRODUCTION

Structure from Motion (SfM) is a processing pipeline
intended for reconstructing 3D models of objects from a
sequence of 2D views (images). It involves several different
phases in which various algorithms can be used, such as
feature detection, feature description, feature matching
(correspondence), triangulation, and finally 3D reconstruction.
In addition, pruning or masking-out outliers may be performed
between different phases. As it commonly starts with
detecting features and computing descriptors, its accuracy
depends mainly on the robustness of the used feature
extraction algorithm. This raises a critical question; which of
the available feature detectors-descriptors is best for SfM [1],
[2]?

Feature detection and description is a low-level process
that can be considered the cornerstone and is usually used as
the starting point of many applications in computer vision. A
feature (keypoint) is an interesting or important piece of
information, such as points, blobs, corners, edges, junctions,
etc., that is relevant to the solution of the computational task
(correspondence) behind a specific application (3D
reconstruction). Accordingly, a feature detector is an
algorithm that can detect these interesting keypoints in a given
image. On the other hand, a feature descriptor describes each
detected feature in an image by assigning it a distinctive
identity formed by the pixels within a certain neighborhood.
This identity enables effective recognition of the

corresponding features during matching [3], [4]. After feature
detection, detected features can be pruned using either a
threshold for the detector response or by selecting the features
with the highest response.

The simplest strategy for matching two sets of feature
descriptors and finding the corresponding features is brute-
force matching. In this strategy, each feature descriptor in the
first set is compared with each feature descriptor in the second
set. This allows for finding all possible pairs of corresponding
features. However, it requires extensive computational
resources. A better and faster strategy for feature matching,
especially in large datasets, is to adopt a hash table or a multi-
dimensional search tree as an indexing data structure for
rapidly retrieving neighbors (features) from the second set that
are nearest to a given feature from the first set [5].

The list of corresponding features can be pruned by
comparing the similarity (distance) of each pair with a
predefined threshold representing the maximum allowed
distance. Only pairs that satisfy the predefined threshold are
kept, while other pairs are discarded. The downside of this
method is the difficulty of deciding the appropriate threshold.
In addition, applying the same threshold to all pairs can be
inaccurate in some circumstances, as the distance of a correct
match can be greater than that of an incorrect match. A better
pruning strategy in such cases is to select only the best pair
(the one with the smallest distance) for every feature or adopt
the Nearest Neighbor Distance Ratio (NNDR) [6]. Matching
results can be further pruned by selecting the pairs with the
smallest distance.

The remaining incorrect matches (outliers) can be removed
or filtered out during the triangulation using many robust
probabilistic methods [4], [7]. Random sampling consensus or
RANSAC is one of the most widely used methods. It works by
randomly picking a small subset of the seed matches, using
that subset to estimate the transformation function, and then
using a larger subset to check the transformation function
correctness [8].

In SfM, detected features in a sequence of images are
required to be accurately matched despite the image
transformation (rotation and/or scaling) and illumination
changes. The matched features across the sequence of images
allow for predicting the camera motion by estimating the
calibration matrix as well as the fundamental matrix.
Accordingly, the accuracy of these estimations and
consequently the 3D reconstruction is directly affected by the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

331 | P a g e

www.ijacsa.thesai.org

robustness of the feature extraction algorithms and the
accuracy of the feature matching algorithms [3]. Once feature
correspondences between multiple views (images) are
established, corresponding features are grouped into feature
tracks. Corresponding features in each track are triangulated
into a single 3D point. A sparse 3D point cloud is the result of
triangulating corresponding features in all tracks [9].

More images can be incorporated into the current model
using image registration. During image registration, new
images are registered to the current model. This can be done
by solving the Perspective-n-Point (PnP) problem. Given a set
of correspondences between 3D points of an object (the
current model) and their respective projections on the camera
plane (of the new image), PnP problem can be solved to
estimate the relative pose between the object and the camera
by minimizing the reprojection error from 3D-2D point
correspondences. To improve this incremental SfM pipeline,
the reconstructed 3D point cloud is refined using Bundle
Adjustment optimization technique resulting in a jointly
optimal 3D point cloud [10].

The remaining part of this paper is organized as follows:
Section II briefly covers the related work. Section III is a brief
review of different feature extraction algorithms implemented
for the experiment. Section IV describes the evaluation
methodology proposed. Section V discusses the experimental
results obtained. Section VI conclusion and future work
reported.

II. RELATED WORK

Up to the best of the author's knowledge and as shown in
Table. I, published research evaluates feature extraction
algorithms (particularly in SfM) in terms of feature extraction
time, number of extracted features, descriptor size (storage),
number of matched features, point cloud size (density), and
reprojection error.

TABLE I. RELATED WORK

Author Algorithms Factor Winner

Govender [3] HCD, KLY, SIFT, SURF Error SIFT

Urban et al.

[11]

AKAZE + M-SURF, ORB, SIFT,

SURF, SURF + BinBoost
Time SURF

Chien et al. [2] AKAZE, ORB, SIFT, SURF

#Features SURF

Storage AKAZE

Time ORB

Pusztai et al.

[5]

AGAST, AKAZE, BRISK,

FAST, GFTT, KAZE, MSER,

ORB, SIFT, STAR, SURF

#Features

(Inliers)
SURF

Schönberger

et al. [12]

ConvOpt, DeepDesc,

DSP-SIFT, LIFT, SIFT, SIFT-

PCA, TFeat

Density Varies

Error SIFT

Storage SIFT

Time SIFT

Cao et al. [10]
BRISK, KAZE, ORB, SIFT,

SURF

Error

(ROS)
SURF

Time BRISK

Gao et al. [9]
AKAZE, DeepCompare, LF-Net,

ORB, SIFT, SuperPoint, SURF

Density SURF

Error AKAZE

Time ORB

Yusefi et al.

[7]
FAST, ORB, SIFT, STAR, SURF

Error FAST

Time STAR

As shown in Table II, each algorithm has one or more
parameters that affect its sensitivity in most cases. Using the
default values for these parameters results in a quite different
average number of extracted features, as shown in Table IV.
Therefore, it may be unfair to use the number of extracted
features as an evaluation factor of feature extraction
algorithms without trying to tune the parameters of each
algorithm. In addition, the extraction time depends on the
number of extracted features and the descriptor type and size.
Therefore, it may be unfair to evaluate feature extraction
algorithms in terms of the extraction time without taking the
number of extracted features (i.e., by averaging), descriptor
type, and descriptor size into consideration. Moreover, there is
a trade-off between the point-cloud size and the reprojection
error. Therefore, it may be unfair to evaluate feature extraction
algorithms in SfM based on the value of point-cloud size only
or reprojection error only.

The scope of this paper is fairly evaluating the robustness
of the feature extraction algorithms in SfM in terms of point
cloud size and reprojection error regardless of the space and
time efficiency.

III. FEATURE DETECTORS AND DESCRIPTORS

Table II lists the fourteen feature extraction algorithms that
were evaluated in this paper. A feature extraction algorithm
can be designed for feature detection only, feature description
only, or both feature detection and description. In the last case,
feature detectors are combined with their own feature
descriptors. In the first two cases, different types of feature
descriptors can be paired with different kinds of feature
detectors.

TABLE II. PARAMETERS OF FEATURE EXTRACTION ALGORITHMS

AKAZE [13]
descriptor_size, descriptor_channels, threshold, nOctaves,

nOctaveLayers

BEBLID* [14] n_bits, scale_factor

BRIEF* [15] bytes

BRISK [16] thresh, octaves

DAISY* [17] radius, q_radius, q_theta, q_hist, norm

FREAK* [18] patternScale, nOctaves

KAZE [19] threshold, nOctaves, nOctaveLayers

LATCH* [20] bytes, half_ssd_size, sigma

LUCID* [21] lucid_kernel, blur_kernel

ORB [22]
nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel,

WTA_K, patchSize, fastThreshold

SIFT [23]
nfeatures, nOctaveLayers, contrastThreshold,

edgeThreshold, sigma

SURF [24] extended, hessianThreshold, nOctaves, nOctaveLayers

TEBLID* [25] n_bits, scale_factor

VGG* [26] desc, isigma, scale_factor

Algorithms identified by * in Table II do not have a
default feature detector. For such algorithms, FAST (Features
from Accelerated Segment Test) feature detection algorithm is
combined with them in the experimental work in Section V.
FAST algorithm was proposed by Rosten et al. in 2006 for fast
feature detection [27], [28]. Therefore, it is considered a viable
choice for complementing those algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

332 | P a g e

www.ijacsa.thesai.org

Feature descriptors can be categorized into two main
categories: namely parameterized descriptors and binary
descriptors. Each element in parameterized descriptors is a
floating-point number (or any non-binary discretization of a
floating-point number). On the other hand, each element in
binary descriptors is a binary number (0 or 1). Typically,
binary descriptors are derived using pixel-level comparisons
that require minimal computational resources and result in a
compact representation. Consequently, they became an
attractive option for numerous contemporary applications
[10]. Out of the fourteen feature extraction algorithms that
were evaluated in this paper, only DAISY, KAZE, SIFT,
SURF, and VGG are parameterized while the others are
binary.

IV. PROPOSED EVALUATION METHODOLOGY

In this section, the proposed methodology for fairly
evaluating the robustness of feature extraction algorithms in
SfM is presented. The proposed methodology is expressed
using Python-like pseudo-code in Fig. 1 and Fig. 2. It is also
illustrated by a block diagram in Fig. 3.

Fig. 1. Proposed Algorithm for Constrained 3D Reconstruction.

Constrained 3D Reconstruction algorithm shown in Fig. 1
takes a sequence of images as well as a feature extraction
algorithm and returns a point cloud. Constrained 3D
reconstruction is required since the quality of the 3D
reconstruction depends on not only the robustness of the
detected features but also the number of detected features. In
order to ensure fairness and due to the difficulty of optimizing
the parameters of each algorithm to produce the same number
of features, only a fixed number of features detected by each
algorithm is passed to the subsequent phase, as illustrated by
Constrained Feature Extraction block in Fig. 3. Selection of
the detected features can be performed by sorting them in non-
increasing order of their respective responses and selecting the
features with the highest response. In addition, only a fixed
number of corresponding features matched using each
algorithm is passed to the subsequent phase, as illustrated by
Constrained Feature Matching block in Fig. 3. Selection of the
corresponding features can be performed by storing them in

non-decreasing order of matching distance and selecting the
correspondences with the smallest matching distance.

Instead of the ratio test proposed by Lowe in [23] in the
matching phase, brute-force matcher with cross-checking was
used to return only consistent pairs of features. A pair of
features (i, j) is considered consistent if j is the nearest feature
to i and i is the nearest to j in the feature space. The consistent
pairs of matching features are then passed to the next phase,
where sparse point clouds are reconstructed.

Size-Error Curves Generation algorithm shown in Fig. 2
takes a list of point clouds generated using different feature
extraction algorithms for a specific dataset and reconstructs
size-error curves. Such curves visualize the average
reprojection error of different 3D reconstructions as a function
of the point cloud size. Moreover, the use of size-error curves
allows employing methods like the elbow method [29] and
finding a suitable operating point on ROC curve [30] for
carefully selecting and/or pruning a reconstructed point cloud.
Size-error curves are generated by first creating a list of
sample sizes. The points in each point cloud are sorted in non-
decreasing order of their respective reprojection error and then
sampled using every sample size. The size-error curve can be
visualized by plotting the average reprojection error of the
points in each sample against the sample size.

Fig. 2. Proposed Algorithm for Evaluation of 3D Reconstruction.

V. EXPERIMENTAL RESULTS

A. Datasets

To evaluate the robustness of feature extraction
algorithms, a well-known and publicly available collection of
datasets was used as a benchmark. The collection contains six
different datasets of outdoor scenes of different architectural
objects. All images were captured at 3072 × 2028 resolution
and have been corrected for radial distortion. Each dataset
name, number of images, and sample image are shown in
Table III. More information about the dataset can be found in
[31], [32].

Algorithm Constrained 3D Reconstruction (I, feat_alg)

Input : sequence of images I

 feature extraction algorithm feat_alg

Output: point cloud pc

F = {}

for i in I:

 f = feat_alg.extract(i)

 F[i] = sorted(f,

 key = lambda item:-item.response

)[:MAX_FEAT]

M = {}

for i in I:

 for j in I:

 if I == j:

 continue

 m = feat_alg.match(F[i],F[j])

 M[i,j] = sorted(m,

 key = lambda item:item.distance

)[:MAX_MATCH]

return colmap. mapper(I,M)

Algorithm Size-Error Curves Generation (PC)

Input : list of point clouds PC,

 each point cloud is composed of a list of

 3D points (x, y, z, e)

Output: list of dictionaries D,

 each dictionary is a map from point cloud

 size to average reprojection error

K = []

for pc in PC:

 K.append(len(pc))

K = sorted(K)

D = []

for pc in PC:

 d = {}

 e = sorted(pc.e)

 for k in K:

 if k > len(pc):

 break

 d[k] = sum(e[:k])/k

 D.append(d)

return D

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

333 | P a g e

www.ijacsa.thesai.org

TABLE III. THE SIX DATASETS USED IN THIS RESEARCH

Dataset castle-P19 castle-P30 entry-P10 fountain-P11 Herz-Jesus-P8 Herz-Jesus-P25

Sample

Size 19 30 10 11 8 25

B. Setup

An experiment was performed on a virtual machine with a
2 x Core Intel(R) Xeon(R) CPU @ 2.20 GHz and 13.00 GB of
RAM provided by Google Collaborate Pro to evaluate the
robustness of different feature extraction algorithms. OpenCV
4.6.0 was built with OPENCV_ENABLE_NONFREE as well
as OPENCV_EXTRA_MODULES_PATH, while COLMAP
3.8 was built with the default configuration.

Fig. 3. Proposed Methodology for Fair Evaluation.

Feature detection and extraction subroutines contained
within OpenCV library framework [33] were used with their
default parameters provided by the library for Python. When a
required parameter does not have a default value, the value
recommended by the algorithm author(s) is used. Each
detector is only combined with its own descriptor in this
experiment, and detectors with no descriptor are combined
with FAST due to its speed and availability in a real-time
environment. OpenCV BFMatcher was used along with
crossCheck flag and the default norm of each feature
extraction algorithm for feature correspondence. COLMAP
SfM pipeline [34], [35] was used on the CPU for spare 3D
reconstruction. The complete pipeline is illustrated by Fig. 3.

Only the best 2000 detected features are passed to the next
phase. In addition, only the best 500 corresponding matches
are passed to the next phase. The two numbers were chosen
empirically to suit almost all the feature extraction algorithms.

In order to connect OpenCV to COLMAP, an SQLite
database is used for storing the following:

 Camera parameters.

 Images filenames.

 Coordinates of each extracted feature for each image.

 Indexes of each pair of corresponding features.

In order to reconstruct the corresponding sparse point
clouds, a total of 14 x 6 SQLite databases were created and
passed to COLAMP as command-line parameters.

C. Results and Discussion

During this experiment, 84 different point clouds were
created. As shown in Section II, the projection error is the
most common and obvious way to measure how good a point
cloud is. V and the radar chart in Fig. 4 illustrate the
reprojection error of each point cloud. By comparing the
reprojection error resulting from different feature extraction
algorithms on each dataset, the feature extraction algorithm
with the smallest reprojection error can be considered the
winner. Based on the result of this experiment, it is clear that
FREAK resulted in the smallest reprojection error on most
datasets (four out of six) and on average. Therefore, it can be
considered the winner. However, the quality of the resulting
point cloud is defined not only by the reprojection error but
also by the point cloud size (density).

According to the results shown in VI and illustrated by the
radar chart in Fig. 5, it is clear that the density of the point
clouds generated using FREAK feature extraction algorithm is
disappointing. It is almost the smallest for most of the
datasets. This means that FREAK’s low reprojection error
comes at a cost (the sparsity of the point cloud).

Obviously, neither Fig. 4 nor Fig. 5 (alone or side-by-side)
provide an accurate measure or visualization of the relative
performance of different feature extraction algorithms in SfM.
This raises the need for a measure or visualization that takes
care of the quantity-quality trade-off.

On the other hand, using the size-error curves shown in
Fig. 6, a true winner can be easily identified by observing the
area under the curve (AUC). The feature extraction algorithm
corresponding to the smallest AUC and adequate density can
be considered a winner regardless of point cloud size and the
average reprojection error. For instance, it is clear from Fig. 6
that SIFT is the winner in Herz-Jesus-P8 dataset even though
it did not generate the point cloud with the largest size or the
smallest average reprojection error.

SQLite
DB

Constrained
Feature

Extraction

Constrained
Feature

Matching

Image

Sequence

OpenCV

Incremental
SfM

Geometric
Verification

COLMAP

Point

Cloud

Size-Error
Curves

Generation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

334 | P a g e

www.ijacsa.thesai.org

TABLE IV. THE AVERAGE NUMBER OF EXTRACTED FEATURES PER DATASET FOR EACH FEATURE EXTRACTION ALGORITHM

AKAZE BEBLID BRIEF BRISK DAISY FREAK KAZE LATCH LUCID ORB SIFT SURF TEBLID VGG

099888 163893 158462 081135 163893 159357 098562 158662 163893 257609 095820 359358 163893 163893

TABLE V. REPROJECTION ERROR USING DIFFERENT FEATURE EXTRACTION ALGORITHMS

 castle-P19 castle-P30 entry-P10 fountain-P11 Herz-Jesus-P25 Herz-Jesus-P8 Average

AKAZE 0.6175 0.6171 0.7233 0.6473 0.8661 0.6831 0.6924

BEBLID 0.4798 0.5159 0.5705 0.5404 0.6353 0.6204 0.5604

BRIEF 0.5139 0.5075 0.6058 0.5947 0.6840 0.6364 0.5904

BRISK 0.5619 0.7170 0.7034 0.7701 0.9119 0.8535 0.7530

DAISY 0.5291 0.5687 0.6357 0.5628 0.6956 0.5994 0.5986

FREAK 0.5850 0.4956 0.4923 0.4446 0.4891 0.5331 0.5066

KAZE 0.6271 0.6521 0.8231 0.6488 0.8392 0.7331 0.7206

LATCH 0.5643 0.5717 0.6984 0.7157 0.8138 0.7649 0.6881

LUCID

ORB 0.7029 0.7575 0.7366 0.8767 0.8932 0.8264 0.7989

SIFT 0.5730 0.5777 0.5336 0.3497 0.6307 0.5575 0.5370

SURF 0.6112 0.5870 0.6773 0.4715 0.7324 0.6789 0.6264

TEBLID 0.5133 0.5203 0.5927 0.5431 0.6507 0.6049 0.5709

VGG 0.4966 0.5372 0.6016 0.5283 0.6463 0.5915 0.5669

Average 0.5674 0.5866 0.6457 0.5918 0.7299 0.6679 0.6315

TABLE VI. POINT CLOUD SIZE USING DIFFERENT FEATURE EXTRACTION ALGORITHMS

 castle-P19 castle-P30 entry-P10 fountain-P11 Herz-Jesus-P25 Herz-Jesus-P8 Maximum

AKAZE 2160 5869 1497 1375 3326 1212 5869

BEBLID 1559 4664 1393 1525 3036 1090 4664

BRIEF 1795 4694 1429 1473 3001 1087 4694

BRISK 1170 1229 1193 1275 2947 1088 2947

DAISY 2065 5656 1664 1642 3074 1145 5656

FREAK 1054 2460 1026 1228 2524 810 2524

KAZE 2151 6177 1591 1494 3609 1229 6177

LATCH 1825 5327 1412 1460 2984 1085 5327

LUCID

ORB 1238 2246 1015 0877 2304 1046 2304

SIFT 2240 6118 1428 1702 3614 1197 6118

SURF 1338 4744 0934 1323 3350 1050 4744

TEBLID 1797 4528 1475 1549 3167 1140 4528

VGG 1740 4876 1468 1595 3068 1141 4876

Maximum 2240 6177 1664 1702 3614 1229 6177

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

335 | P a g e

www.ijacsa.thesai.org

Fig. 4. Reprojection Error using different Feature Extraction Algorithms.

Fig. 5. Point cloud Size using different Feature Extraction Algorithms.

castle-P19

castle-P30

entry-P10

fountain-P11

Herz-Jesus-

P25

Herz-Jesus-

P8

AKAZE BEBLID BRIEF BRISK
DAISY FREAK KAZE LATCH
LUCID ORB SIFT SURF
TEBLID VGG

castle-P19

castle-P30

entry-P10

fountain-P11

Herz-Jesus-

P25

Herz-Jesus-

P8

AKAZE BEBLID BRIEF BRISK
DAISY FREAK KAZE LATCH
LUCID ORB SIFT SURF
TEBLID VGG

AKAZE BEBLID BRIEF BRISK DAISY FREAK KAZE
LATCH LUCID ORB SIFT SURF TEBLID VGG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 1170 1338 1740 1797 2065 2160

R
ep

ro
je

ct
io

n
 E

rr
o

r

Point Cloud Size

castle-P19

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2246 4528 4694 4876 5656 6118

R
ep

ro
je

ct
io

n
 E

rr
o

r

Point Cloud Size

castle-P30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 1015 1193 1412 1429 1475 1591

R
ep

ro
je

ct
io

n
 E

rr
o

r

Point Cloud Size

entry-P10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 1228 1323 1460 1494 1549 1642

R
ep

ro
je

ct
io

n
 E

rr
o

r

Point Cloud Size

fountain-P11

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

336 | P a g e

www.ijacsa.thesai.org

Fig. 6. Reprojection Error as a Function of the Point cloud Size for the Six Datasets.

VI. CONCLUSION AND FUTURE WORK

In this research, fourteen different OpenCV feature
extraction algorithms were evaluated in COLMAP SfM
pipeline on six public datasets. Based on the experimental
results reported in Section V, it can be concluded that the best
feature extraction algorithm does not necessarily generate a
point cloud with the minimum reprojection error nor the
maximum number of points in SfM. So, the size-error curves
proposed in this paper should be used for comparing different
3D reconstructions of a given dataset, as they are more
transparent than using the value of point cloud size,
reprojection error, or both.

The size-error curves demonstrate that SIFT feature
extraction algorithm outperforms other algorithms in almost
all six datasets. Our future work is to consider combining
feature detectors other than FAST with descriptors that do not
have a default detector and those that do. By applying the fair
evaluation method proposed in this paper to the different
combinations, a better combination of feature detector and
feature descriptor for SfM may be found.

REFERENCES

[1] S. A. K. Tareen and Z. Saleem, “A comparative analysis of SIFT,
SURF, KAZE, AKAZE, ORB, and BRISK,” in 2018 International
Conference on Computing, Mathematics and Engineering Technologies:
Invent, Innovate and Integrate for Socioeconomic Development,
iCoMET 2018 - Proceedings, 2018, vol. 2018-January. doi:
10.1109/ICOMET.2018.8346440.

[2] H. J. Chien, C. C. Chuang, C. Y. Chen, and R. Klette, “When to use
what feature? SIFT, SURF, ORB, or A-KAZE features for monocular
visual odometry,” in International Conference Image and Vision
Computing New Zealand, 2016, vol. 0. doi:
10.1109/IVCNZ.2016.7804434.

[3] N. Govender, “Evaluation of Feature Detection Algorithms for Structure
from Motion,” Csir, 2009.

[4] S. Bianco, G. Ciocca, and D. Marelli, “Evaluating the performance of
structure from motion pipelines,” J Imaging, vol. 4, no. 8, 2018, doi:
10.3390/jimaging4080098.

[5] Z. Pusztai and L. Hajder, “Quantitative Comparison of Feature Matchers
Implemented in OpenCV3,” in 21 st. Computer Vision Winter
Workshop, Rimske Toplice, 2016.

[6] R. Szeliski, “Computer Vision : Algorithms and Applications 2nd
Edition,” Springer, 2021.

[7] A. YUSEFI, A. DURDU, and C. SUNGUR, “Performance and Trade-
off Evaluation of SIFT, SURF, FAST, STAR and ORB feature detection

algorithms in Visual Odometry,” European Journal of Science and
Technology, 2020, doi: 10.31590/ejosat.819735.

[8] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Commun ACM, vol. 24, no. 6, 1981, doi:
10.1145/358669.358692.

[9] K. Gao et al., “Local feature performance evaluation for structure-from-
motion and multi-view stereo using simulated city-scale aerial imagery,”
IEEE Sens J, vol. 21, no. 10, 2021, doi: 10.1109/JSEN.2020.3042810.

[10] M. Cao et al., “Evaluation of local features for structure from motion,”
Multimed Tools Appl, vol. 77, no. 9, 2018, doi: 10.1007/s11042-018-
5864-1.

[11] S. Urban and M. Weinmann, “Finding a good feature detector-descriptor
combination for the 2d keypoint-based registration of tls point clouds,”
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2015, vol. 2, no. 3W5. doi: 10.5194/isprsannals-
II-3-W5-121-2015.

[12] J. L. Schönberger, H. Hardmeier, T. Sattler, and M. Pollefeys,
“Comparative evaluation of hand-crafted and learned local features,” in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, 2017, vol. 2017-January. doi:
10.1109/CVPR.2017.736.

[13] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion for
accelerated features in nonlinear scale spaces,” in BMVC 2013 -
Electronic Proceedings of the British Machine Vision Conference 2013,
2013. doi: 10.5244/C.27.13.

[14] I. Suárez, G. Sfeir, J. M. Buenaposada, and L. Baumela, “BEBLID:
Boosted efficient binary local image descriptor,” Pattern Recognit Lett,
vol. 133, 2020, doi: 10.1016/j.patrec.2020.04.005.

[15] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary robust
independent elementary features,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2010, vol. 6314 LNCS, no. PART 4.
doi: 10.1007/978-3-642-15561-1_56.

[16] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary Robust
invariant scalable keypoints,” in Proceedings of the IEEE International
Conference on Computer Vision, 2011. doi:
10.1109/ICCV.2011.6126542.

[17] E. Tola, V. Lepetit, and P. Fua, “DAISY: An efficient dense descriptor
applied to wide-baseline stereo,” IEEE Trans Pattern Anal Mach Intell,
vol. 32, no. 5, 2010, doi: 10.1109/TPAMI.2009.77.

[18] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast retina
keypoint,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2012. doi:
10.1109/CVPR.2012.6247715.

[19] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE features,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012,
vol. 7577 LNCS, no. PART 6. doi: 10.1007/978-3-642-33783-3_16.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2524 2984 3036 3074 3326 3609

R
ep

ro
je

ct
io

n
 E

rr
o

r

Point Cloud Size

Herz-Jesus-P25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 1046 1085 1088 1140 1145 1212

R
ep

ro
je

ct
io

n
 E

rr
o

r

Point Cloud Size

Herz-Jesus-P8

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

337 | P a g e

www.ijacsa.thesai.org

[20] G. Levi and T. Hassner, “LATCH: Learned arrangements of three patch
codes,” in 2016 IEEE Winter Conference on Applications of Computer
Vision, WACV 2016, 2016. doi: 10.1109/WACV.2016.7477723.

[21] A. Ziegler, E. Christiansen, D. Kriegman, and S. Belongie, “Locally
uniform comparison image descriptor,” in Advances in Neural
Information Processing Systems, 2012, vol. 1.

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Proceedings of the IEEE International
Conference on Computer Vision, 2011. doi:
10.1109/ICCV.2011.6126544.

[23] D. G. Low, “Distinctive image features from scale-invariant keypoints,”
Int J Comput Vis, 2004.

[24] H. Bay, T. Tuytelaars, and L. van Gool, “SURF: Speeded up robust
features,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2006, vol. 3951 LNCS. doi: 10.1007/11744023_32.

[25] I. Suarez, J. M. Buenaposada, and L. Baumela, “Revisiting Binary Local
Image Description for Resource Limited Devices,” IEEE Robot Autom
Lett, vol. 6, no. 4, 2021, doi: 10.1109/LRA.2021.3107024.

[26] K. Simonyan, A. Vedaldi, and A. Zisserman, “Learning local feature
descriptors using convex optimisation,” IEEE Trans Pattern Anal Mach
Intell, vol. 36, no. 8, 2014, doi: 10.1109/TPAMI.2014.2301163.

[27] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2006, vol. 3951 LNCS. doi: 10.1007/11744023_34.

[28] S. Y. El-Mashad and A. Shoukry, “Evaluating the robustness of feature
correspondence using different feature extractors,” in 2014 19th

International Conference on Methods and Models in Automation and
Robotics, MMAR 2014, 2014. doi: 10.1109/MMAR.2014.6957371.

[29] R. L. Thorndike, “Who belongs in the family?,” Psychometrika, vol. 18,
no. 4, 1953, doi: 10.1007/BF02289263.

[30] C. E. Metz, “Basic principles of ROC analysis,” Semin Nucl Med, vol.
8, no. 4, 1978, doi: 10.1016/S0001-2998(78)80014-2.

[31] C. Strecha, W. von Hansen, L. van Gool, P. Fua, and U. Thoennessen,
“On benchmarking camera calibration and multi-view stereo for high
resolution imagery,” in 26th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, 2008. doi: 10.1109/CVPR.2008.4587706.

[32] A. Ley, R. Hänsch, and O. Hellwich, “Syb3r: A realistic synthetic
benchmark for 3D reconstruction from images,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2016, vol. 9911
LNCS. doi: 10.1007/978-3-319-46478-7_15.

[33] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[34] J. L. Schönberger, E. Zheng, J. M. Frahm, and M. Pollefeys, “Pixelwise
view selection for unstructured multi-view stereo,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2016, vol. 9907
LNCS. doi: 10.1007/978-3-319-46487-9_31.

[35] J. L. Schonberger and J. M. Frahm, “Structure-from-Motion Revisited,”
in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2016, vol. 2016-December. doi:
10.1109/CVPR.2016.445.

