
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 11, 2022 

357 | P a g e  

www.ijacsa.thesai.org 

Transformer-based Neural Network for 

Electrocardiogram Classification 

Mohammed A. Atiea, Mark Adel 

Computer Science Department, Faculty of Computers and Information 

Suez University, Suez, Egypt 

 

 
Abstract—A transformer neural network is a powerful 

method that is used for sequence modeling and classification. In 

this paper, the transformer neural network was combined with a 

convolutional neural network (CNN) that is used for feature 

embedding to provide the transformer inputs. The proposed 

model accepts the raw electrocardiogram (ECG) signals side by 

side with extracted morphological ECG features to boost the 

classification performance. The raw ECG signal and the 

morphological features of the ECG signal experience two 

independent paths with the same model architecture where the 

output of each transformer decoder is concatenated to go 

through the final linear classifier to give the predicted class. The 

experiments and results on the PTB-XL dataset with 7-fold cross-

validation have shown that the proposed model achieves high 

accuracy and F-score, with an average of 99.86% and 99.85% 

respectively, which shows and proves the robustness of the model 

and its feasibility to be applied in industrial applications. 
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I. INTRODUCTION 

Cardiovascular diseases (CVDs) happen due to 
malfunctions in the heart as well as blood vessels. CVDs are 
one of the main causes of global deaths as issued by the World 
Health Organization (WHO) [1], CVDs share 32% of the 
global death causes in 2019. ECG is an essential tool for 
CVDs diagnoses and treatment, also it is required for 
continuous heart monitoring. As WHO reported, 85% of 
deaths by CVDs located in developing countries where there 
is a shortage of professional doctors who are required to 
interpret the ECG for going through the proper medication and 
treatment [2]. CVDs unleash the potential for the need to 

automate the ECG interpretation process to overcome the 
aforementioned challenges. 

An extensive amount of research was done to introduce an 
efficient and sophisticated method for ECG classification. 
Cognitive algorithms are more suitable to process the ECG 
signals since the ECG parameters are not standard for all 
people, also it requires special types of models that are 
capable to handle sequential data efficiently due to the nature 
of the ECG signals [3]. Using classical signal processing 
techniques, machine-learning-based classification methods are 
introduced to operate on manually extracted ECG features. 
Especially, deep neural networks present an outstanding 
performance due to the introduction of various new, well-
structured datasets. 

This paper introduces a novel method for ECG beat 
classification based on transformer networks and convolution 
operation for feature embedding to prepare model inputs. Two 
instances of the proposed model were trained independently 
by the raw ECG signals as well as the morphological feature 
R-R Interval (RRI), as illustrated in Fig. 1, where the output of 
both models is concatenated with the other to give the final 
prediction. The experiments in this paper were held based on 
the PTB-XL dataset [4] where the resampling methods were 
done to overcome the imbalanced data distribution of the used 
dataset. 

The remaining sections of this paper are organized as 
follows:  Section II involves the state-of-art previous related 
work, Section III introduces a detailed description of the 
proposed model, Section IV gives the experiments setup and 
the results, and Section V gives the conclusion about the paper 
main points and the future vision. 

 

Fig. 1. An ECG Signal Sinus Rhythm. 
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II. RELATED WORK 

ECG beats classification is considered frequently in recent 
scientific literature. There are two main approaches to solving 
an ECG signal classification problem, one of them is to use 
classical machine learning approaches such as random forests 
[5], support vector machine (SVM) [6], ensemble SVM [7], 
etc. 

Usually, classical machine learning algorithms are 
preceded by many phases to achieve an acceptable 
performance. These phases include the ECG noise elimination 
process which is mainly encountered by digital signal 
processing techniques such as low- and high-pass filters. 

Also, one of the most essential phases, that has a 
considerable effect on classifier performance, is feature 
extraction which can be based on signal domain 
transformations like different variants of Fourier transform [8] 
and Wavelet transform such as tunable Q-wavelet transform 
[9], the maximal overlap wavelet packet transform (MOWPT) 
[10], and continuous wavelet transform (CWT) [11]; features 
extraction can also be done based on some statistical 
measurements as skewness and kurtosis [9]. Another way to 
do feature extraction is to depend on the morphological 
characteristics of the ECG signal; such methods acquire 
features mainly from the QRS complex component of the 
ECG. 

On the other side of classical machine learning algorithms, 
the deep-natural-networks-based models provide exceptional 
performance over other machine learning algorithms, 
especially when a large amount of data is fed to the models. 

Convolutional neural networks (CNN) were used in two 
ways of manner: 1-D CNN that accepts 1-D ECG signal as its 
input also 2-D CNN can be adapted after applying higher 
signal domain transformation to generate a representative 
visual representation of ECG signal as a spectrogram and then 

feed these spectrograms to the 2-D CNN which requires a 
considerable amount of computational effort. 

Recurrent neural networks (RNN) also can be 
accommodated because of the sequential nature of the ECG 
data [12]. Also, RNN variants such as gated recurrent units 
(GRU) [13] and long-short-term memory [14] are introduced 
to solve the ECG classification problem [15]; since these 
architectures solve gradient exploding and vanishing problems 
in the backpropagation algorithm in the network training 
process [14]. The main disadvantages of the RNN and its 
variants are that RNN cannot handle long dependencies in the 
sequential data also because of its sequential behavior RNN 
does not benefit from parallel hardware accelerators [16] such 
as graphical processing unit (GPU) and field-programmable 
gate array (FPGA). A hybrid architecture can be combined of 
CNN and RNN or its variants can also present a sophisticated 
accuracy in ECG classification [17]. 

III. METHOD 

A. ECG Morphological Features Extraction 

Morphological features of the ECG signals introduced an 
outstanding performance with different classifiers [18] since 
these features present critical information that is required to 
recognize different types of ECG signals. R-R interval (RRI) 
was chosen to be fed to the proposed model besides the raw 
ECG signals to optimize the model performance. The RRI was 
extracted by Pan–Tompkins algorithm [19] as it represents 
sophisticated performance measurements. The RRI and raw 
ECG examine two different independent paths of the same 
model architecture where the output of each model in 
concatenated before entering the classification head. The 
proposed model takes advantage of both the CNN and the 
transformer neural network [20]. The proposed classification 
model consists of 2 paths each with 4 main stages as 
illustrated in Fig. 2. Each main stage is explained in detail in 
the following subsections and the internal structure of each 
main stage is illustrated in Fig. 3. 

 

Fig. 2. Abstract Model Architecture. 
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Fig. 3. Detailed Structure of the Embedding Module and Transformer Neural Network. 

B. Feature Embedding 

The feature embedding module consists of four 
convolutional layers as illustrated in Table I to generate a 
compact and concrete ECG features map, each of the two 
convolutional layers is followed by the Rectified Linear Unit 
(ReLU) activation function to provide the non-linearity in the 
ECG signals, while each of the last two layers is followed by 
maximum pooling layers which output a feature map with the 
highlighted features of the current ECG signal. Hence the fed 
data is a sequence of one-dimensional ECG signals, the output 
of the discrete convolution operation is given as 

 ( )  (   ) ( )   ∑  ( ) (   )            (1) 

Where x is the input signal, and w is the sliding kernel 
window. Also, the applied ReLU function can be computed 
with the following 

  ( )     (   )             (2) 

The size of the output of the feature embedding layer will 
be the same in the original transformer literature [20], which 
equals 512 (dmodel). The size of the feature embedding output 
has to be the same as the output of the positional encoding, 
which is illustrated in the next subsection to provide the 
summation of both to the transformer encoder. 

C. Positional Encoding 

Hence the proposed model has no recurrence relation, it is 
a necessity to provide information about the absolute and 
relative positions of different timestamps in the ECG signals. 

In order to introduce this information, the output of a 
positional encoding layer is summed to the output of the 
feature embedding module to be provided as an input to the 
transformer encoder and decoder [20]. 

Any periodic function is sufficient to implement the 
positional encoder, but in this work, the positional encoder is 
implemented by different frequencies of the sine and cosine 
functions because of their linear properties, which are feasible 
to be learned by the model [20].  Positional encoding can be 
modeled by the following 

  (      )     (          
         ) 

  (        )     (          
         )            (3) 

where pos represents the position of the sequence token, 
and i represents the spatial location of the ECG feature. 

TABLE I. FEATURE EMBEDDING MODULE LAYERS 

Layers Layer Name Kernel Size 

1 Convolution 3 X 1 

2 Convolution 3 X 1 

3 Convolution 3 X 1 

4 MaxPooling 3 X 1 

5 Convolution 3 X 1 

6 MaxPooling 3 X 1 
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D. Transformer Encoder 

The proposed model consists of four identical layers where 
each layer is subdivided into two sublayers which are a multi-
head self-attention sublayer and a position-wise fully 
connected feed-forward neural network. Residual connections 
exist around each sublayer to handle gradient flow in the 
network during the training time. To accommodate the 
residual connections each sublayer and the embedding 
dimension have a dimension of 512. The output of the multi-
head self-attention sublayer and its input via the residual 
connection is normalized to provide a sustainable training 
process to the network. Then, the data will flow through a 
fully-connected feed-forward network to provide a more 
convenient representation of the attention output. 

A self-attention pooling [21] block was added to accept the 
output of the encoder block to reformulate the attention score 
tensor, from the dimension of [length of sequence, batch size, 
embedding dimension] to [batch size, embedding dimension], 
to be accepted by the multi-head attention sublayer in the 
decoder module where the attention function [20] can be 
written as 

         (     )          (
    

√  
)V           (4) 

where Q is the query, K is the key, V is the value, and 
dk=dmodel/h [20]. 

E. Transformer Decoder 

The transformer decoder contains the same structure as the 
transformer encoder with the same sublayers proceeded with 
normalization as well as residual connection. 

In addition to a multi-head self-attention sublayer and a 
position-wise fully connected feed-forward neural network, 
the decoder provides a multi-head attention sublayer to attend 
over the output of the transformer encoder module. Also, the 
multi-head attention sublayer is modified to attend only to the 
previous sequence tokens from the encoder output which is 
performed by masking the attention tensor [20]. 

F. Linear Classifier 

At this stage, the outputs of each path of the raw ECG and 
RRI are concatenated into one tensor which is passed through 
this linear classifier to give the final prediction. The linear 
classifier consists of a flatten layer and two fully-connected 
feed-forward networks that are separated by a dropout layer 
for regularization [22]. 

IV. EXPERIMENTS RESULTS 

All the experiments were carried out by Google 
Colaboratory where the dataset handling and the model 
implementation were held in Python 3.9. 

A. Dataset Description 

In the training process, we used the PTB-XL dataset [4]. 
PTB-XL is the to-date largest freely accessible clinical 12-lead 
ECG-waveform dataset. The dataset covers a broad range of 

diagnostic classes including a large fraction of healthy 
records. A total of 2183721837 clinical 12-lead ECG records 
of 10 seconds length from 18885 patients are included in the 
dataset. The data is gender-balanced (52 percent male, 48 
percent female) and includes the ages of 0 to 95 years old 
(median 62 and interquartile range of 22). 

The ECG statements used for annotation are conformed to 
the SCP-ECG standard [23] and were assigned to three non-
mutually exclusive categories diag (short for diagnostic 
statements such as ―anterior myocardial infarction‖), form 
(related to considerable changes of particular parts within the 
ECG such as ―abnormal QRS complex‖) and rhythm (related 
to specific changes of the rhythm such as ―atrial fibrillation‖). 
There are 71 different statements in all, which are broken 
down into 44 diagnoses, 12 rhythms, and 19 form statements, 
four of which are also utilized as diagnostic ECG statements. 
A hierarchical classification into five coarse superclasses and 
24 subclasses is also provided for diagnostic statements. As 
shown in Table II, We mainly classified by the 5 main classes 
(NORM, HYP, MI, STTC, CD) and by 14 classes which are 
(LVH, IVCD, ISC_, LAO/LAE, IMI, CRBBB, NST_, 
CLBBB, RAO/RAE, ILBBB, LMI, AMI, NORM, WPW). 

Apart from its large nominal size, PTB-XL is notable for 
its diversity, both in terms of signal quality (with 77.01 
percent of the highest signal quality) and in terms of a broad 
range of pathologies, many different co-occurring diseases, 
and a high proportion of healthy control samples, which is 
uncommon in clinical datasets. This variability is what makes 
PTB-XL such a valuable resource for training and evaluating 
algorithms in a real-world scenario, where machine learning 
(ML) algorithms must function reliably independent of 
recording settings or potentially low-quality data. 

As you can see, the dataset still doesn't have a normal 
distribution, hence data augmentation was necessary to 
improve accuracy. By using data augmentation, we were able 
to improve the diversity of training data without having to 
acquire additional data. 

B. Classification Model Metrics 

Two models were created, one of them operates on ECG 
superclasses while the other operates on the ECG subclasses 
as shown in Table II. 

Several statistical metrics were established to evaluate the 
classification performance of the proposed model where these 
metrics are precision, sensitivity, F1-score, and accuracy. All 
the mentioned metrics were computed due to the equations in 
Table III, where TP is a true positive, TN is a true negative, 
FP is a false positive, and FN is a false negative. The aVR 
lead was fed to the two models due to the amount of 
information it contains about the cardiac state of the individual 
as well as it is proven to present a good performance for 
classification and detection tasks [24]. 

Table IV shows all the classification performance metrics 
for the superclasses model while Table V presents the 
classification performance metrics for the subclasses model. 
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TABLE II. PTB-XL DATASET SUPERCLASSES AND SUBCLASSES 

Superclass Subclass Records Description 

HYP 

LVH 2137 left ventricular hypertrophy 

LAO/LAE 427 left atrial overload/enlargement 

RAO/RAE 99 right atrial overload/enlargement 

CD 

IVCD 789 
non-specific intraventricular  

conduction disturbance (block) 

CRBBB 542 complete right bundle branch block 

CLBBB 536 complete left bundle branch block 

ILBBB 77 incomplete left bundle branch block 

WPW 80 Wolff-Parkinson-White syndrome 

STTC 
NST_ 770 non-specific ST changes 

ISC_ 1275 non-specific ischemic 

MI 

LMI 201 lateral myocardial infarction 

AMI 354 anterior myocardial infarction 

IMI 2685 inferior myocardial infarction 

NORM NORM 9528 normal ECG 

TABLE III. STATISTICAL METRICS EQUATIONS 

Metric Equation 

Accuracy 
      

           
 

Precision 
   

     
 

Recall 
   

     
 

F1 Score     
         

       
 

TABLE IV. CLASSIFICATION PERFORMANCE METRICS FOR SUPERCLASSES 

MODEL 

Class Precision Recall F1 Score Average Acc. 

HYP 99.73% 99.83% 99.78% 

99.86% 

CD 99.69% 99.72% 99.70% 

STTC 100% 99.86% 99.93% 

MI 99.86% 99.86% 99.86% 

NORM 100% 100% 100% 

Average 99.86% 99.85% 99.85% 

The proposed model was trained through 32 epochs for the 
superclasses model and 35 epochs for the subclasses model, 
Table VI introduces the average time required per epoch for 
each model. Also, the cross-entropy loss function is used to 
establish the loss during training and validation processes 
concerning the number of epochs which is illustrated in Fig. 4. 
Also, the accuracy of the training and validation processes is 
shown in Fig. 5 concerning the number of epochs. As 
illustrated in Table VII and Table VIII, the experimental 
results demonstrate that the proposed model introduced a 
considerable improvement over the current state-of-arts 
models for ECG classification. 

TABLE V. CLASSIFICATION PERFORMANCE METRICS FOR SUBCLASSES 

MODEL 

Class Precision Recall F1 Score Average Acc. 

LVH 99.86% 100% 99.93% 

99.6% 

LAO/LAE 99.96% 100% 99.98% 

RAO/RAE 99.73% 100% 99.86% 

IVCD 99.83% 100% 99.91% 

CRBBB 99.02% 97.22% 98.11% 

CLBBB 100% 100% 100% 

ILBBB 99.96% 99.96% 99.96% 

WPW 99.93% 100% 99.96% 

NST_ 99.06% 98.01% 98.53% 

ISC_ 99.06% 99.29% 99.17% 

LMI 99.04% 100% 99.52% 

AMI 99.69% 100% 99.84% 

IMI 99.28% 100% 99.63% 

NORM 100% 100% 100% 

Average 99.6% 99.6% 99.6% 

TABLE VI. APPROXIMATE TRAINING TIME PER EPOCH 

Num. of Classes Training Time 

5 Classes ≈ 1.9 min/epoch 

14 Classes ≈ 5.1 min/epoch 

 
(a) 

 
(b) 

Fig. 4. (a) Subclasses Model Loss, (b) Superclasses Model Loss. 
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     (a)              (b) 

Fig. 5. (a) Subclasses Model Accuracy, (b) Superclasses Model Accuracy. 

TABLE VII. CURRENT ADVANCED METHODS FOR ECG CLASSIFICATION VS PROPOSED MODEL 

Literature Feature Extraction Classifier 

Z. Wang et al (2019) [5] 

RR Interval 

High Order Statistics 

Wavelet packet coefficient 

Principal Component analysis 

Random Forests 

Z. Ahmed et al (2021) [6] - CNN + SVM 

S. K. Pandey et al (2020) [7] 

Wavelets Transform 

High Order Statistics 

Morphological Features 

ENSEMBLE SVM 

S. Liu et al (2020) [8] 2D the Graph Fourier Transform (GFT) SVM 

C. K. Jha et al (2020) [9] Tunable Q-wavelet transform SVM 

J. S. Huang et al (2020) [10] the maximal overlap wavelet packet transform Residual CNN 

T. Wang et al (2021) [11] Continuous Wavelet CNN 

S. Singh et al (2018) [12] - LSTM 

H. M. Lynn et al (2019) [13] - Bidirectional GRU 

X. Xu et al (2020) [17] - 1D CNN + BILSTM 

F. Qiao et al (2020) [25] - BLSTM 

P. P lawiak et al (2020) [26] 

Power spectral density (PSD) 

Discrete Fourier transform (DFT) 

Genetic algorithm 

DGEC 

Shuai Ma et al (2022) [27] - 1D-CNN +  DCGAN 

The proposed model - 1D-CNN + Transformer 

TABLE VIII. COMPARISON WITH THE MOST MODERN METHODS AND THE PROPOSED MODEL FOR PERFORMANCE MEASUREMENTS AND THE NUMBER OF 

CLASSES USED IN EACH MODEL 

Literature Number of classes Precision Recall F1 Score Average Acc. 

Z. Wang et al (2019) [5] 5 - 37.47% - 92.31% 

Z. Ahmed et al (2021) [6] 5 94% 93% - 96.5% 

S. K. Pandey et al (2020) [7] 4 69.11% 65.26% 66.24% 94.40% 

S. Liu et al (2020) [8] 4 - 52.7% - 96.2% 

C. K. Jha et al (2020) [9] 8 - 96.22% - 99.27% 

J. S. Huang et al (2020) [10] 5 99.39% 95.16% 97.23% 98.79% 

T. Wang et al (2021) [11] 4 - 93.25% 94.43% 98.74% 

S. Singh et al (2018) [12] 2 - 92.4% - 88.1% 

H. M. Lynn et al (2019) [13] 2 - - - 98.6% 

X. Xu et al (2020) [17] 5 96.34% 95.90% 95.92% 95.90% 

F. Qiao et al (2020) [25] 5 97.15% 97.71% - 99.32% 

P. P lawiak et al (2020) [26] 17 - 94.62% - 99.37% 

Shuai Ma et al (2022) [27] 5 98.5% 98.2% - 98.7% 

The proposed model (avg.) 14 99.6% 99.6% 99.6% 99.6% 
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V. CONCLUSION 

This paper introduces a novel classification model for 12-
lead ECG signals based on PTB-XL. The proposed model 
depends on the transformer neural networks for ECG sequence 
modeling and CNN for feature embedding. The model can be 
fed by the raw ECG signals as well as the RRI feature of the 
ECG to achieve robust classification performance. The 
proposed model achieved accuracy and F-score, with an 
average of 99.86% and 99.86% respectively where these 
metrics can compete with the many recent state-of-art models. 
Due to the model performance and since the transformers 
were introduced to solve the sequential models’ complexity 
challenges, the proposed model is capable to be deployed in 
practical applications. In future work, this model can be 
integrated with wearable device technology to assist in critical 
cases with continuous monitoring to save more lives. 
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