
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Using Incremental Ensemble Learning Techniques to
Design Portable Intrusion Detection for

Computationally Constraint Systems

Promise R. Agbedanu1
African Centre of Excellence in Internet of Things

University of Rwanda
Kigali, Rwanda

Richard Musabe2
Rwanda Polytechnic

Kigali, Rwanda

James Rwigema3
African Centre of Excellence in Internet of Things

University of Rwanda
Kigali, Rwanda

Ignace Gatare4
University of Rwanda

Kigali, Rwanda

Abstract—Computers have evolved over the years, and as the
evolution continues, we have been ushered into an era where
high-speed internet has made it possible for devices in our homes,
hospital, energy, and industry to communicate with each other.
This era is known as the Internet of Things (IoT). IoT has several
benefits in a country’s economy’s health, energy, transportation,
and agriculture sectors. These enormous benefits, coupled with
the computational constraint of IoT devices, make it challenging
to deploy enhanced security protocols on them, making IoT
devices a target of cyber-attacks. One approach that has been
used in traditional computing over the years to fight cyber-attacks
is Intrusion Detection System (IDS). However, it is practically
impossible to deploy IDS meant for traditional computers in
IoT environments because of the computational constraint of
these devices. This study proposes a lightweight IDS for IoT
devices using an incremental ensemble learning technique. We
used Gaussian Naive Bayes and Hoeffding trees to build our
incremental ensemble model. The model was then evaluated on
the TON IoT dataset. Our proposed model was compared with
other proposed state-of-the-art methods and evaluated using the
same dataset. The experimental results show that the proposed
model achieved an average accuracy of 99.98%. We also evaluated
the memory consumption of our model, which showed that
our model achieved a lightweight model status of 650.11KB as
the highest memory consumption and 122.38KB as the lowest
memory consumption.

Keywords—Cyber-security; ensemble machine learning; incre-
mental machine learning; Internet of Things; intrusion detection;
online machine learning

I. INTRODUCTION

As the evolution of computing technology continues, the
ability of things, such as fridges, air-conditioners, medical
equipments, and meters among others to communicate has
become a reality due to fast communication technologies. A
paradigm popularly known as the Internet of Things (IoT) has
not only become a household term with smart homes, but it
also has numerous uses in energy, agriculture, manufacturing,
healthcare, and transportation. There is no doubt that the IoT
has many benefits, which is why the number of IoT devices
is growing exponentially. According to [1], the number of

IoT devices is estimated to reach 30.9 billion by 2025. The
numerous benefits of the IoT ecosystem make it attractive to
cyber-attacks. An attack statistic presented by SAM Seamless
Network shows that over 1 billion IoT-based attacks happened
in 2021 [2]. Although methodologies, such as encryption and
secured architecture are progressively being deployed to ensure
that IoT devices are secured, the computational constraint
of these devices makes it challenging to implement these
security measures to their fullest potential. Another approach
to securing these devices from cyber-attacks is to detect these
attacks before an attacker exploits them. Intrusion Detection
Systems have been around for more than four decades, with the
development of these IDSs focused on traditional computing
systems [3]. They have been among the primary methodologies
used to protect computer networks. Vacca [4] defines intrusion
detection as the process of detecting activities perpetrated
against computer systems by intruders. Over the past 40 years,
many breakthroughs have been made in intrusion detection.
One of the most significant breakthroughs in this area is the
use of machine learning in detecting intrusions. However, with
all these breakthroughs, it is practically impossible to deploy
traditional computing-based IDS methods in the IoT. The
impossibility of deploying these IDSs in IoT systems has been
created because of the computational constraints of IoT de-
vices. The constraints have led to several studies being carried
out to design IDSs that can be deployed in IoT systems without
significantly affecting the computational resources of these
devices. Several approaches have been proposed in designing
lightweight IDSs for IoT environments. However, these studies
fail to either report how these lightweight IDSs are achieved or
how much computational resources these proposed approaches
consume. For example, [5]–[9] proposed various techniques
that are supposed to translate into lightweight IDSs. However,
these works either failed to report how these methods translate
into lightweight IDS or how much computational resources
these proposed methods consume. This study proposes a novel
lightweight intrusion detection system using an incremental
machine learning approach. The main contributions of this
study are as follows:

www.ijacsa.thesai.org 33 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

• Using an incremental machine learning approach to
design a lightweight IoT intrusion detection system.

• Measuring the memory consumption of our proposed
model.

• The study uses an incremental ensemble approach to
achieve improved accuracy.

• The study evaluates the proposed IDS model on an
IoT dataset.

The remainder of the paper is structured as follows. Section
II discusses the study’s background. Section III focuses on
works relevant to our study, whereas Sections IV, V and VI
focus on the proposed model, experimental evaluation, and
conclusion, respectively.

II. BACKGROUND

A. Intrusion Detection System

An intrusion detection system (IDS) is a security device
that detects illegal access to data within a networked or
computer-based environment in order to threaten the integrity,
availability, or confidentiality of the computing device [10],
[11]. An IDS’s objective is to continuously monitor network
traffic and flag any activity that violates the normal usage
of the system [12]. According to [13], typically, an IDS
consists of sensors, an analysis engine, and some reporting
system. Intrusion detection systems can be classified either
on how they are deployed or detect illegal activities. From a
deployment perspective, an IDS can be classified as distributed,
centralized, or hybrid. On the other hand, an IDS can be
classified as signature-based, anomaly-based, specification-
based, or hybrid. According to [14], signature-based detection
is the set of pre-defined rules, such as the sequence of bytes
in network traffic that are pre-loaded to trigger an alert when
a matched sequence is detected. On the other hand, anomaly
detection records the normal behavior of a network and then
compares them with the system’s current behavior. The authors
also explained the specification-based detection method as an
approach that uses input specifications designed manually.
Finally, hybrid detection methods deploy a combination of
signature-based, anomaly-based, and specification-based detec-
tion methods to improve accuracy and reduce false positive
rates.

1) Ensemble Learning: According to [15], ensemble learn-
ing is a machine learning technique that combines the strengths
of different machine learning algorithms into a single algo-
rithm. The primary goal of ensemble learning is to improve
accuracy by leveraging the strengths of the ensemble learners
[16]. There are instances where traditional machine learning
models do not achieve high accuracy [17]. Several ensemble-
based techniques have been developed over time, but the most
popular are bagging, boosting, stacking generalization, and
expert mixture [16].

In the preceding paragraphs, we briefly explain the three
categories of ensemble learning.

2) Bagging-based Learning: Bagging, short for bootstrap
aggregation, is an algorithm that is best suited for problems
with a small training dataset. Given a training set S with a
cardinality n, the bagging algorithm trains several independent

classifiers T. Each of these classifiers are trained using a
percentage of N [16] sampling. Linear classifiers such as
linear SVM, decision stumps, and single-layer perceptrons are
excellent candidates for bagging [16]. Classifiers are trained
and then combined using simple majority voting in bag-
ging. Bagging, an abbreviation for bootstrap aggregation, is a
method that works well with issues that have a limited training
dataset. The bagging algorithm learns several independent
classifiers T given a training set S with a cardinality of n.
Each of these classifiers is trained using a proportion of N
sampling. Linear classifiers like linear SVM, decision stumps,
and single-layer perceptrons are great candidates for bagging
[16]. In bagging, classifiers are trained and then concatenated
using simple majority voting.

3) Boosting-based Learning: An iterative approach can
be used to generate a robust classifier from a set of weak
classifiers. Although boosting also combines a large number
of weak learners through simple majority voting, there is one
significant difference between boosting and bagging. Every
instance in bagging has an equal chance of being in each
dataset used in training. In boosting, on the other hand,
the dataset used to train each subsequent model focuses on
instances misclassified by the previous model. At any given
time, a boosting designed for a binary class problem generates
a set of three weak classifiers. The first learning classifier is
trained on a random subset of the training data available. A
different subset of the original training dataset is used to train
the second learning classifier [18].

4) Stack Generalization: Non-trainable combiners are used
in bagging and boosting methods. The combination weights
in non-trainable combiners are determined after the classi-
fiers have been trained. The combination rule used in non-
trainable combiners does not allow determining which member
classifier learned from which partition of the feature space
[16]. Trainable combiners can be used to solve this problem,
and individual ensemble members can be combined using a
separate classifier in stacked generalization.

5) Mixture of Experts: A sampling technique is used to
train an ensemble of classifiers in a mixture of experts. The
classifiers are then combined using a weighted combination
rule [19]. Furthermore, a mixture of experts can encompass the
selection of algorithms, with each classifier trained to become
an expert in a different aspect of the feature space. Individual
classifiers are usually not weak since they are trained to
become experts.

B. Online/Incremental Machine Learning

Online machine learning, also known as incremental ma-
chine learning, is increasingly becoming popular in real-time
data streams. According to [20], online algorithms instanta-
neously build machine learning models after seeing a small
portion of the data. This characteristic leads to the inability
to undo less optimal decisions made earlier because the data
will no longer be available for the algorithm. The concept of
machine learning models acquiring knowledge from continu-
ous data without accessing the original data has been applied
to domains like intelligent robots, auto-driving, and unmanned
aerial vehicles [21]–[23]. According to [24], as reported by
[20],, in data stream models infinite stream of data arrives

www.ijacsa.thesai.org 34 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

continuously, and these streams of data are to be processed
by systems with resource constraints. The main restriction of
data stream models is that memory of these systems are usually
small and can only hold a minimal portion of the data stream.
Regarding data stream models, only a minimal subset of the
data can be kept for instant data analysis [25]. Fig. 1 shows an
online machine-learning model using an offline dataset, while
Fig. 2 shows the same model using streams of network traffic.

III. RELATED WORK

Throughout this section, we will look at some studies
that are relevant to our work. Yang et al. [26] proposed an
ensemble framework for intrusion detection systems (IDSs) in
IoT environments, focusing primarily on idea drift adaptability.
The suggested framework employs a performance-weighted
probability averaging ensemble to manage concept drift in
IoT anomaly detection. When compared to other cutting-edge
approaches, the suggested framework performed better. Even
though the author’s proposed method took less time to run than
the other methods they looked at for their study, they did not
look into how the proposed model affected other computing
parameters, such as memory.

Jan et al. [5] used a supervised Support Vector Machine
(SVM) to detect IoT adversarial attacks. The authors used only
the sensor node’s packet arrival rate to design the proposed
IDS. The accuracy of the proposed IDS showed better perfor-
mance compared to other models like neural networks, KNN,
and decision trees. One of the drawbacks of this study is that it
only considered DDoS attacks. Additionally, the authors failed
to report how the proposed approach leads to a lightweight
IDS. Parameters such as memory consumption and model
running time were not reported.

In a similar study, [27] proposed a lightweight IDS for
IoT ecosystems using a Deep Belief Network and Genetic
Algorithm. According to the study, the proposed system was
more accurate than other methods that were looked at for the
study. However, the study failed to report how the proposed
approach translates to a lightweight model. Moreover, the
dataset used for the experimental validation is not an IoT-based
dataset. Like in other studies, parameters that are supposed to
prove the lightweight status of the proposed method were not
considered in the study.

Roy et al. [7] also designed a lightweight IDS for IoT
systems using a set of optimization techniques. They used mul-
ticollinearity, sampling, and dimensionality reduction to reduce
the training data, which resulted in a shorter training time.
Like other earlier related works considered in this section,
although their proposed approach reduces the training time
of the model, the study did not report how much memory the
model consumes.

Zhao et al. [8] suggested a network intrusion detection
method for IoT devices utilizing a lightweight neural net-
work. To minimize the dimensionality of features, the authors
employed a principal component analysis approach. The pro-
posed method was tested using the UNSW-NB15 and Bot-
IoT datasets. Although the authors determined that both the
ultralight feature extraction network and principal component
analysis contributed to the suggested model’s lightweight per-

formance, they did not report on the computational complexity
of their proposed method.

In order to make a lightweight IDS for IoT systems, [9]
said that they used a mix of feature selection techniques on
different datasets to make a lightweight IDS algorithm for IoT
traffic. However, two datasets used to evaluate their proposed
lightweight IDS were non-IoT related. Also, the authors did
not talk about how their proposed model would affect the
computing power in their experimental environment.

Latif et al. [6] reported using a Dense Random Neural
Network to develop a lightweight intrusion detection system
for IoT environments. The proposed model was evaluated on
the ToN-IoT dataset, and the results show a detection accuracy
of 99.14% for binary class classification and 99.05% for
multiclass classifications. However, Latif et al. did not report
on the computational complexity of their proposed model. A
parameter is required to measure the lightness of the proposed
model.

Pan et al. [28] also suggested a lightweight, intelligent in-
trusion detection system (IDS) architecture for wireless sensor
networks. The authors used KNN and the sine cosine technique
to create their model. The authors reported that combining the
above techniques improves classification accuracy and reduces
false alarms. However, the authors failed to report how the
lightweight model was achieved or what parameters were used
to determine the lightweight status of the model.

Reis et al. [29] created an IDS for cyber-physical systems
using incremental support vector machines. In their study, a
one-class support vector machine was applied to each sensor to
retrieve abnormal behaviors. These anomalies are orchestrated
as an output of the proposed incremental machine learning
model. Although the model proposed by Reis et al. achieved
an accuracy higher than 95%, the study did not detail how the
proposed method would affect the computational resources of
cyber-physical systems.

To reduce the computation overhead, [30], introduced
a privacy-preserving pipeline-based intrusion detection for
distributed incremental learning that selects unique features
using an innovative extraction technique. Current incremental
learning techniques are computationally expensive, and the
distributed intrusion detection method is used to distribute the
load across IoT and edge devices. Theoretical analysis and
experiments show that state-of-the-art techniques require less
space and time. The study, however, reported on time complex-
ity but not space complexity. Furthermore, the experimental
validation dataset is not an IoT-based dataset.

IV. PROPOSED MODEL

This section details the design and conceptual implemen-
tation of our suggested approach. The suggested model is
based on a machine learning technique, ensuring the creation
of a lightweight IDS model suitable for the IoT environment.
The proposed model employs incremental machine learning
and data streaming ensemble learning approaches to create a
lightweight intrusion detection system for the IoT environment.
The proposed model processes network data generated in IoT
environments as data streams and train each data stream.
After each iteration, the model is updated. Fig. 3 depicts our
proposed model.

www.ijacsa.thesai.org 35 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 1. Online Machine Learning using Offline Dataset.

Fig. 2. Online Machine Learning using Data Stream.

1) Pre-Processing: The dataset used to train our pro-
posed model is cleaned at this stage. The pre-
processing data approach used in this study includes
imputing missing data values and transforming and
selecting important features to train our machine
learning model. We employed one-hot encoding as
one of the techniques to pre-process our data. A
single hot encoding transformer will encode all the
features provided to it. If a list or set is supplied, this
transformer will encode each item in the list or set
by composing it with compose.Select command in
River; the encoding can apply to a subset of features.

2) Model Training: This study proposes a novel online
stacking ensemble machine learning technique using
Gaussian Naive Bayes and Hoeffding Tree Classifier.
We chose these two machine learning models to build
our ensemble learning because we want to achieve the
following three objectives

• Design a model that consumes a minimal
computational resource (lightweight).

• Building a fast model.
• A model that achieves a high accuracy.

Gaussian Naive Bayes and Hoeffding Tree Classifier

are used as the base classifiers of our proposed model;
whiles Hoeffding Tree is used as the meta classifier of
the proposed model. Each observation of the dataset
is read as a stream and is then used to train the base
and meta classifier. Each base classifier predicts each
stream of data, that is, XiYi which becomes feature
input to the meta classifier. The meta classifier (HT)
then uses the outputs of the base classifiers to make a
better prediction. We chose Hoeffding trees because
they learn patterns in data without continuously stor-
ing data samples for future reprocessing, and this
makes them particularly suitable for use on embedded
devices. Similarly, Gaussian NB is quick and flexible
and produces highly reliable results. It works well
with large amounts of data and requires little training
time, and it also improves grading performance by
removing insignificant specifications [31], [32].

3) Model Evaluation: The final stage of the model is
the model evaluation stage. The proposed model’s
accuracy, precision, recall, F1, model training time,
and memory consumption are all evaluated.

We chose incremental and ensemble machine learning to de-
velop our framework in this work because of the the following

www.ijacsa.thesai.org 36 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

benefits.

1) Network traffic is generated in blocks as a data
stream. By using incremental learning on network
traffic, models can predict the nature of traffic without
having to be trained on large datasets.

2) The computational constraints of IoT devices make
loading an entire training dataset into main memory
difficult and impractical. Even if the entire training
data can fit into the main memory of an IoT device,
the device’s computational power will be drastically
reduced.

3) New data is constantly available because of the
sophisticated nature of cyber-attacks. Retraining the
model on the entire dataset will be time-consuming
and computationally expensive. Because models in
online machine learning are trained with data streams,
they can quickly learn from new data examples
without consuming much computational power.

4) Real-time network traffic is generated, which must be
analyzed in real-time to prevent intruders from gain-
ing unauthorized access to devices. Online machine
learning has proven to be an effective learning method
in real-time environments.

5) Traffic flow is dynamic and constantly changing.
Changes in network traffic can impact the predictive
performance of machine learning models, referred to
as concept drift in machine learning. Models should
be able to self-adapt to changes in the relationship
between input and output data to handle concept
drifts.

6) Most of the time, ensemble methods have produced
higher accuracy than the individual models that were
used to make them.

Additionally, the use of the above method poses the fol-
lowing limitation.

1) Getting a good tradeoff between accuracy, speed,
and minimal resource consumption is going to be
a challenge because combining models increases the
computational consumption of the final output.

A. Gaussian Naive Bayes

According to [33], the Naive Bayes algorithm is a typical il-
lustration of how generative hypotheses and parameter guesses
can facilitate learning. Consider the problem of predicting a
label y ∈ {0,1} from a vector of characteristics X = (x1,..., xd),
where each xi is in the range of {0,1}. The optimal classifier
of Bayes is given below

hBayes(X) = argmaxP [Y = y|X = x], y ∈ {0, 1} (1)

We need 2d parameters to define the probability function
P[Y = y—X = x], each of which relates to P[Y = 1—X
= x] for a given value of y ∈ {0, 1}d. This means that
when the number of features increases, so does the number of
instances necessary. In the Naive Bayes technique, we make
the generative assumption that, given the label, the features are
independent of one another. To put it another way,

P [Y = y|X = x] =

d∏
i=1

P [Y = y|X = x] (2)

The Bayes optimum classifier can be reduced further using
this assumption and the Bayes rule:

hBayes(X) = argmaxP [Y = y]

d∏
i=1

P [Xi = xi|Y = y] (3)

That is, the set of parameters to estimate has been reduced
to 2d +1. In this situation, the generative assumption we made
considerably decreased the number of parameters we needed
to learn. When the maximum likelihood principle is used to
determine out the parameters, the resulting classification model
is called the Naive Bayes classifier.

One typical technique to handle continuous attributes in
Naive Bayes classification is to use Gaussian distributions to
express the probabilities of the features based on the classes.
As a result, every attribute is represented as Xi N(, 2) by a
Gaussian probability density function (PDF), [34] as reported
by [35].

Xi ∼ N(µ, σ2) (4)

The Gaussian PDF is shaped like a bell and is defined by
the equation below where µ is the mean and σ2 is the variance.

N(µ, σ2)(x) =
1√
2πσ2

e−
(x−µ)2

2a2 (5)

B. Hoeffding Tree (HT)

Hulten et al [36] are the first to propose Hoeffding trees.
The Hoeffding tree algorithm is a fundamental algorithm for
stream data classification. It is an induction of a decision tree
algorithm that could learn from enormous data streams if the
distributed generating examples remain constant over time. It
creates decision trees that are similar to the standard batch
learning method. Asymptotically, Hoeffding trees as well as
decision trees are connected. The HT technique is based on
the basic premise that a modest sample size can frequently be
sufficient to identify an optimal splitting feature. The key point
to understand here is that classic batch learning algorithms
produce decision trees based on attribute splitting. The HT
method is mathematically verified to use the Hoeffding bound.
To comprehend the significance of the Hoeffding bound, a
few assumptions must be made. Let’s say we get N separate
samples of a random variable r with a range of R, where r is a
measure of attribute selection. In the case of Hoeffding trees,
r is information gain, and if we calculate the mean value of
rmean for this sample, the Hoeffding limit indicates that the
true mean of r is at least 1-δ. The primary benefits of the HT
algorithm are as follows:

1) it is incremental in nature
2) it achieves high accuracy with small sample size.
3) scans on the same data are never performed.

www.ijacsa.thesai.org 37 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 3. Our Proposed Model.

However, Hoeffding Tree has a few disadvantages. The
main disadvantage is that HT cannot handle concept drift
because the node cannot be changed once it is created. Wang
et al [37] described how to deal with concept drift using
classifiers. The algorithm devotes a significant amount of time
to attributes with nearly identical splitting quality. Furthermore,
memory utilization can be further optimized.

[!h] ∈=

√
R21n 1

δ

2n
(6)

The algorithm for Hoeffding tree is shown in Algorithm 1.

V. EXPERIMENTAL EVALUATION

A. Experimental Environment

The proposed method was implemented using Python 3.8
with River as our framework for online machine learning.
The proposed method was implemented on a MacBook Pro
with an M1 chip with 16 GB of RAM. The TON-IoT dataset
was used to evaluate the proposed framework. There are
several incremental or online streaming libraries that provide
machine functionalities. Some of these libraries are Creme,
scikit-multiflow, and River. In this study, we choose to build
our incremental learning models using River. According to
[38], River is a merger of creme and Scikit-multiflow. River
is a library that allows continual learning by handling dy-
namic data streams. We chose River because it includes data
transformation methods, learning algorithms, and optimization
algorithms. Its distinct data structure lends itself well to
streaming data and web application settings.

B. Dataset

According to [39], the TON-IoT dataset was built by the
Cyber Range and IoT Las at the University of South Wales.

The dataset has nine (9) types of cyber-attacks. These are De-
nial of Service (DoS), Distributed Denial of Service (DDoS),
ransomware, backdoor, data injection, scanning, Cross-site
Scripting (XSS), password cracking, and Man-in-The-Middle
(MiTM). The generated data were from seven IoT and IIoT
devices: fridge, motion light, garage door, GPS tracker, ther-
mostat, and weather. The fridge dataset has a total of 587076
records; the motion light dataset has 452262 records; the
garage door has 591446 records; the GPS tracker produced
595686 records, whiles the thermostat and weather produced
442228 and 650242 records, respectively. The statistics of the
dataset used are shown in Tables I and II below.

C. Evaluation Metrics

True positive (VP ): Positive intrusion that is both expected
and confirmed.

False positive (UP ): An intrusion that was expected to be
positive but ended up turning out to be negative.

True negative (VN ): The intrusion is expected to be nega-
tive and confirmed to be negative.

False negative (UN ): The intrusion was expected to be
negative, but it turned out to be positive.

1) Accuracy: A model’s overall accuracy can be measured
by the number of correctly predicted events made by the given
model. The formula below computes the total accuracy of the
model.

Accuracy =
VP + VN

VP + VN + UP + UN

2) Precision: Precision is found by dividing the total num-
ber of positive detections by the number of positive detections
that were correctly identified as positive.

www.ijacsa.thesai.org 38 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Algorithm 1: Hoeffding Tree Algorithm [36]
Input: S is a sequence of examples,

X is a set of discrete attributes,
G(.) is a split evaluation function,
δ is one minus the desired probability of
choosing the correct attribute at any given
node

Output: HT is a decision tree
procedure HOEFFDINGTREE(S,X,G, δ)

Let HT be a tree with a single leaf l1 (the root)
Let X1 = X ∪ {Xθ }
Let Ḡ1(Xθ) be the Ḡ obtained by predicting the most
frequent class in S

for each class Yk do
for each value Xij of each attribute Xi ∈ X

do
Let nijk (l1) = 0

end
end
for each example (X, Yk) in S do

Sort (x, y) into a leaf l using HT
for each Xij in X ssuch that Xi ∈ X do

Increment nijk (l)
end

end
Label l with the majority class among the examples
seen so far at l
if the examples seen so far at l are not all of the

same class then
end
Compute Ḡl (Xi) for each attribute Xi ∈ Xl − Xθ

using the counts nijk(l)
Let Xa be the attribute with highest Ḡl.
Let Xb be the attribute with second-highest Ḡl.
Compute ∈ using Equation 1

if Ḡl (Xa)− Ḡl (Xb) > ∈ and Xa ̸= Xθ, then
end
Replace l by an internal node that splits on Xa.

For each branch of the split
Add a new leaf lm and let Xm = X − {Xa}.
Let Gm(Xθ) be the G obtained by predicting the most

frequent class at l
for each class Yk and each value Xij of each

attribute Xi ∈ Xm − {Xθ} do
Let nijk(lm) = 0
end
return HT

end procedure

Precision =
VP

VP + UP

3) Recall: The recall is defined as the ratio of true positive
detections to the number of real abnormal samples.

Recall =
VP

VP + UN

TABLE I. STATISTICS OF TON IOT DATASET [39]

Fridge IoT dataset
Type of attack No of rows
Backdoor 35568
DDoS 10233
Injection 7079
Normal 500827
Password 28425
Ransomware 2902
XSS 2042

GPS tracker IoT dataset
Backdoor 35571
DDoS 10226
Injection 6904
Normal 513849
Password 513849
Ransomware 2833
Scanning 550
XSS 577

Motion light IoT dataset
Backdoor 28209
DDoS 8121
Injection 5595
Normal 388328
Password 17521
Ransomware 2264
Scanning 1775
XSS 449

Weather IoT dataset
Backdoor 35641
DDoS 15182
Injection 9726
Normal 559718
Password 25715
Ransomware 2865
Scanning 529
XSS 866

Garage IoT dataset
Backdoor 35568
DDoS 10230
Injection 6331
Normal 515443
Password 19287
Ransomware 2902
Scanning 529
XSS 1156

TABLE II. STATISTICS OF TON IOT DATASET CONTINUATION [39]

Modus IoT dataset
Backdoor 40035
Injection 7079
Normal 405904
Password 24269
Scanning 529
XSS 577

Thermostat IoT dataset
Backdoor 35568
DDoS 10230
Injection 6331
Normal 515443
Password 19287
Ransomware 2902
Scanning 529
XSS 1156

4) F1 Score: The F1 score is the average of precision and
recall. The F1-score is determined as the weighted average
of precision and recall, taking both the UP and UN into
consideration.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ VP

2 ∗ VP + UP + UN

www.ijacsa.thesai.org 39 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

5) Memory: The computational constraint of IoT devices
makes it difficult and sometimes impossible to run IDS meant
for traditional computers on these IoT devices. This calls for
developing models that consume minimal memory (lightweight
models).

6) Model Running Time: In this evaluation metric, we
measure the total time it takes for the proposed model to run.

D. Results

In this section, we present the proposed results and com-
pare them with other state-of-the-art techniques. To begin
with, this study compares the results of the proposed model
with other state-of-the-art IDS proposed and evaluated with
the TON IoT dataset. We decided to limit the state-of-the-
art studies that used ToN IoT dataset because we wanted to
eliminate biases. In comparing these studies, we considered
the category of the TON IoT dataset used in each study, the
method proposed by each of the works under consideration,
the highest accuracy recorded, and whether the study records
the time used to build the model as well as the amount of
memory the model consumes. The comparison of our approach
with other state-of-the-art IDS for IoT systems is presented
in table III. When the authors fail to report a parameter, we
indicate it as non-available (N/A). Table III shows that out
of the five state-of-the-art IDSs considered in the study, none
of them reports on the model or the memory consumption
of their proposed technique. Although [40], [41] both report
100% accuracy, our proposed model outperforms the methods
proposed in those studies for the following reasons:

1) The accuracy reported in our study is the average
accuracy of our proposed model whereas [40], [41]
report total accuracy.

2) Our study focused on multi-class classification,
whereas [40], [41] focused on binary-class classifi-
cation.

Table IV compares the accuracy, time, and memory con-
sumption of the models used to build our incremental ensemble
technique with our proposed model. Although the time and
memory consumption of the individual models are lower than
our proposed model, we wanted to propose a model that
achieves a trade-off between accuracy, time, and memory
consumption. Our proposed model achieved a higher accuracy
without significantly increasing the time and memory con-
sumption. The time and memory consumption of the proposed
model shows it can run on computationally constrained devices
without negatively impacting the computational resources of
these devices.

Fig. 4 below shows the output of our proposed model in
terms of the time taken to build the model. The results show
that our proposed model recorded the least training time of
59 seconds on the thermostat dataset and the highest training
time of 114 seconds on the weather IoT dataset. The concept
of incremental learning allows our model to learn one stream
of data at a time. Therefore, the time used to train the model
on a stream of data will be the total observations in the dataset
divided by the total model training time. This makes our model
very fast irrespective of the size of the dataset.

Fig. 4. Model Training Time of our Model using the TON IoT Dataset.

When tested on the modus dataset, our proposed model
achieved a superior average accuracy of 96.81%, with preci-
sion, recall, and F1 scores of 97.23%, 96.81%, and 96.92%,
respectively. The Hoeffding tree had an average accuracy of
92.96%, precision, recall, and F1 scores of 92.36%, 92.36%,
and 92.36%, respectively. Using the GPS IoT dataset, the
Gaussian NB had an average accuracy of 77.60% and pre-
cision, recall, and F1 scores of 60.21%, 77.60%, and 67.81%,
respectively. Fig. 5 shows the results of our model when
evaluated using the modus IoT dataset.

Fig. 5. Accuracy of Gaussian NB, HT and Proposed Model on Modus
Dataset.

Similarly, our proposed model has a superior average
accuracy of 99.98% when it was evaluated using the fridge IoT
dataset. The proposed model also recorded the same precision,
recall, and F1 score value using the same dataset. Hoeffding
tree algorithm recorded 98.63%, 98.68%, 98.52%, and 98.52%
for precision, recall, F1 score, and average accuracy, respec-
tively. Gaussian NB recorded the lowest average accuracy,
an average accuracy of 85.31%. Gaussian NB also recorded
the least values for precision, recall, and F1 scores, with
72.8%, 85.31%, and 78.55%, respectively. Fig. 6 illustrates
the outcomes of our model when tested against the fridge IoT
dataset.

www.ijacsa.thesai.org 40 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

TABLE III. USING THE TON IOT DATASET, WE COMPARED OUR PROPOSED MODEL TO STATE-OF-THE-ART MODELS THAT HAD BEEN TESTED USING
THE SAME DATASET

Study Year of the
study

Method used Highest accu-
racy

Model training
time (S)

Memory con-
sumption (KB)

[6] 2021 Dense Random Neural Net-
work

99.14% N/A N/A

[40] 2022 Optimized decision tree 100 N/A N/A
[41] 2022 Ensemble based voting 100 N/A N/A
[42] 2022 Graph Neural Network 97.87 N/A N/A
[43] 2021 Synthetic minority oversam-

pling technique
99.0 N/A N/A

Our proposed
model

2022 Stack-based Incremental en-
semble (HT and Gaussian
NB)

99.98 71 122.38

TABLE IV. COMPARING THE ACCURACY (ACC), MODEL TIME CONSUMPTION (TIME) AND MEMORY USAGE OF THE BASE CLASSIFIERS AGAINST OUR
MODEL ON THE DIFFERENT DATASETS

Fridge IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

85.31% 29.9 15.85 98.68% 20.7 532.71 99.98% 104 650.11
Modus IoT dataset

Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
77.60% 19.2 19.2 92.36% 14 124.58 96.81% 75 495.25

Garage IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

85.96% 37 27.05 95.70% 29.5 75.85 99.96% 131 394.95
Motion light IoT dataset

Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
85.86% 22.9 20.6 92.06% 15.5 33.56 99.98% 79 219.58

GPS Tracker IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

85.20% 28.3 10.56 98.29% 18.7 120.36 99.97% 97 281.94
Weather IoT dataset

Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
86.08% 33.4 20.58 98.37% 23.7 314.91 99.93% 116 627.81

Thermostat IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

87.27% 19.9 6.85 99.12% 13.8 55.07 99.94% 71 122.38

The experimental findings show that our proposed method
performed better when tested using the motion IoT dataset.
The proposed ensemble model achieved an average accuracy
of 99.98% with precision and recall of the same value whiles
recording 99.97% for the F1 score. The same dataset revealed
that the Hoeffding tree recorded an average accuracy of
92.06% whiles recording a precision, recall, and F1 score
of 88.56%, 92.06%, and 89.64%, respectively. The average
accuracy, precision, recall, and F1 score recorded by Gaussian
NB is 85.86%, 73.73%, 85.86%, and 79.33%, respectively.
Fig. 7 depicts the results of our model when tested against the
motion IoT dataset.

When tested on the garage IoT dataset, our proposed
ensemble model again had the highest precision, recall, F1
score, and average accuracy. Our proposed model recorded an
average accuracy of 99.96%, with the same value recorded
for precision, recall, and F1 score. Hoeffding tree, on the

other hand, recorded a precision, recall, F1 score, and average
accuracy of 95.52%, 95.70%, 95.26% and 95.70% respectively.
Gaussian Naive Bayes recorded a precision, recall, F1 score,
and average accuracy of 73.88%, 85.96%, 79.46%, and 85.96
respectively when it was evaluated using the garage IoT
dataset. Fig. 8 shows the results of our model when tested
against the garage IoT dataset.

Evaluating our proposed model on the GPS tracker dataset,
our model achieved a superior average accuracy of 99.97%
with precision, recall, and F1 score of 99.97% each. Hoeffding
tree recorded an average accuracy of 98.29% whiles recording
a precision, recall, and F1 score of 98.36%, 98.29% and
98.08%, respectively. Evaluating the Gaussian NB using the
GPS IoT dataset revealed an average accuracy of 85.20%
with precision, recall, and F1 score of 88.26%, 85.20%, and
82.02%, respectively. Fig. 9 shows the results of our model
when evaluated using the GPS tracker IoT dataset.

www.ijacsa.thesai.org 41 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 6. Accuracy of Gaussian NB, HT and Proposed Model on Fridge
Dataset.

Fig. 7. Accuracy of Gaussian NB, HT and Proposed Model on Motion
Dataset.

Fig. 8. Accuracy of Gaussian NB, HT and Proposed Model on Garage
Dataset.

The experimental result shows that when our proposed
model is evaluated using the thermostat IoT dataset, the

Fig. 9. Accuracy of Gaussian NB, HT and Proposed Model on GPS Tracker
Dataset.

model achieved an average accuracy of 99.94% with precision,
recall, and F1 score of 99.94% for each of them, respectively.
Gaussian NB showed an average accuracy of 87.27% whiles
recording a precision, recall, and F1 score of 76.17%, 87.27%,
and 81.34%, respectively. Hoeffding tree showed an average
accuracy of 99.12% with precision, recall, and F1 score of
99.07%, 99.12% and 99.03%, respectively. Fig. 10 shows the
results of our model when tested against the thermostat IoT
dataset.

Fig. 10. Accuracy of Gaussian NB, HT and Proposed Model on the
Thermostat Dataset.

We also evaluated our model on the weather IoT dataset,
one of the datasets found in the TON IoT dataset. The results
show that Gaussian NB recorded precision, recall, F1, and
average accuracy of 80.02%, 86.08%, 76.65%, and 86.08%,
respectively. On the other hand, the Hoeffding tree recorded
precision, recall, F1, and average accuracy of 98.47%, 98.37%,
98.30%, and 98.37%, respectively. However, our proposed
ensemble technique recorded an average accuracy of 99.93%
with precision, recall, and F1 score of 99.93%, respectively.
Fig. 11 illustrates the outcomes of our model when tested
against the weather IoT dataset.

The Fridge IoT dataset recorded the highest consumption of

www.ijacsa.thesai.org 42 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 11. Accuracy of Gaussian NB, HT and Proposed Model on Weather
Dataset.

650.11KB, whiles the weather IoT dataset recorded the lowest
memory consumption of 122.38KB. The results of the memory
consumption of the model proposed in this study show that
even at the highest memory consumption, the proposed IDS
achieves a lightweight status and can potentially run on IoT
devices without significantly affecting the available memory
of these devices. The memory consumption of our proposed
model is shown in Fig. 12.

The precision, recall, and F1 score of Gaussian Naive
Bayes, Hoeffding tree, and our proposed model on different
attack categories are shown in Tables V and VI below.

Fig. 12. Memory Consumption of our Proposed Model on Various
Sub-Datasets of TON IoT Dataset

VI. LIMITATION OF THE STUDY

The main limitation of the study is how the proposed
method can be used to achieve good accuracy, higher detection
speed, and lower resource consumption at the same time. One
approach that can be used to overcome this limitation is to
deploy the proposed model on a resource-constrained device
while fine-tuning the model to achieve a good tradeoff among
the parameters mentioned above.

VII. CONCLUSION

The security of the IoT ecosystems is increasingly gaining
significant importance due to its numerous applications. The
security of IoT systems has gone beyond encryption, authen-
tication, and secured architecture. Recently, much security-
based research in IoT systems has been focused on detecting
attacks and anomalies in network traffic. However, because of
the computational constraints of IoT devices, IDS developed
for traditional computing systems cannot be deployed in IoT
environments. It is, therefore, expedient to design lightweight
IDS that can be deployed on IoT devices. In this view, we
used the incremental machine learning technique to design a
lightweight IDS for IoT systems using incremental ensem-
ble machine learning algorithms. Our proposed model was
evaluated using the TON IoT dataset. The results show that
our proposed model achieved a high average accuracy rate of
99.98%. The experimental results show the highest memory
consumption at 650.11KB and the lowest at 122.38KB. The
experimental result shows that our approach has led to the
design of an IDS with a high accuracy rate and a lightweight
model that can potentially run on IoT devices. In the future, we
plan to evaluate our approach to other IoT-based datasets and
deploy our model on an IoT device to evaluate parameters such
as CPU usage, memory, and energy consumption. Additionally,
future work could consider exploring how concept drifts in
these datasets could be handled.

ACKNOWLEDGMENT

We would like to express our profound gratitude to the
PASET Regional Scholarship and Innovation Fund and Google
PhD Fellowship Program for supporting this study.

REFERENCES

[1] Statista, “• Global IoT and non-IoT connections 2010-2025 — Statista.”
[Online]. Available: https://www.statista.com/statistics/1101442/iot-
number-of-connected-devices-worldwide/

[2] SAM Seamless Network, “2021 IoT Security Landscape - SAM
Seamless Network.” [Online]. Available: https://securingsam.com/2021-
iot-security-landscape/

[3] J. P. Anderson, “Computer security threat monitoring and surveillance,”
Technical Report, James P. Anderson Company, 1980.

[4] J. R. Vacca, Computer and information security handbook. Newnes,
2012.

[5] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, “Toward a lightweight
intrusion detection system for the internet of things,” IEEE Access,
vol. 7, pp. 42 450–42 471, 2019.

[6] S. Latif, Z. e Huma, S. S. Jamal, F. Ahmed, J. Ahmad, A. Zahid,
K. Dashtipour, M. U. Aftab, M. Ahmad, and Q. H. Abbasi, “Intrusion
detection framework for the internet of things using a dense random
neural network,” IEEE Transactions on Industrial Informatics, 2021.

[7] S. Roy, J. Li, B.-J. Choi, and Y. Bai, “A lightweight supervised intrusion
detection mechanism for iot networks,” Future Generation Computer
Systems, vol. 127, pp. 276–285, 2022.

[8] R. Zhao, G. Gui, Z. Xue, J. Yin, T. Ohtsuki, B. Adebisi, and H. Gacanin,
“A novel intrusion detection method based on lightweight neural net-
work for internet of things,” IEEE Internet of Things Journal, 2021.

[9] T. D. Diwan, S. Choubey, H. Hota, S. Goyal, S. S. Jamal, P. K. Shukla,
and B. Tiwari, “Feature entropy estimation (fee) for malicious iot traffic
and detection using machine learning,” Mobile Information Systems, vol.
2021, 2021.

[10] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using
neural networks and support vector machines,” in Proceedings of the
2002 International Joint Conference on Neural Networks. IJCNN’02
(Cat. No. 02CH37290), vol. 2. IEEE, 2002, pp. 1702–1707.

www.ijacsa.thesai.org 43 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

TABLE V. COMPARING THE PRECISION (P), RECALL (R) AND F1 SCORE OF EACH MODEL ON EACH ATTACK CATEGORY

Fridge IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Attack category P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Backdoor 0.00 0.00 0.00 98.73 99.38 99.06 99.97 99.76 99.86
DDoS 0.00 0.00 0.00 88.65 95.58 91.99 99.98 99.95 99.97
Injection 0.00 0.00 0.00 75.37 83.26 79.12 99.87 99.97 99.92
Normal 85.31 100.00 92.07 99.96 100.00 99.98 99.98 100.00 99.99
Password 0.00 0.00 0.00 90.09 92.99 91.52 99.97 99.97 99.97
Ransomware 0.00 0.00 0.00 43.83 27.29 33.64 99.59 99.69 99.64
XSS 0.00 0.00 0.00 100.00 11.31 20.33 100.00 99.41 99.71

Modus IoT dataset
Backdoor 0.00 0.00 0.00 83.16 71.65 76.97 97.35 87.40 92.10
Injection 0.00 0.00 0.00 41.83 18.16 25.33 75.70 69.80 72.63
Normal 77.60 100.00 87.39 99.97 100.00 99.99 99.99 99.98 99.99
Password 0.00 0.00 0.00 46.42 68.78 55.43 71.61 89.00 79.36
Scanning 0.00 0.00 0.00 47.65 63.14 54.31 86.60 71.64 79.62
XSS 0.00 0.00 0.00 14.29 0.20 0.40 17.51 25.10 20.63

Garage IoT dataset
Backdoor 0.00 0.00 0.00 99.55 94.32 96.86 99.67 99.91 99.79
DDoS 0.00 0.00 0.00 35.38 98.51 52.06 99.65 98.99 99.32
Injection 0.00 0.00 0.00 0.00 0.00 0.00 99.81 99.78 99.79
Normal 85.96 100.00 92.45 99.97 100.00 99.99 100.00 100.00 100.00
Password 0.00 0.00 0.00 66.51 47.23 55.23 99.85 99.88 99.87
Ransomware 0.00 0.00 0.00 0.00 0.00 0.00 99.90 99.83 99.86
Scanning 0.00 0.00 0.00 0.00 0.00 0.00 99.81 98.68 99.24
XSS 0.00 0.00 0.00 0.00 0.00 0.00 100.00 99.13 99.57

Motion light IoT dataset
Backdoor 0.00 0.00 0.00 43.94 99.28 60.92 99.97 99.70 99.83
DDoS 0.00 0.00 0.00 0.00 0.00 0.00 99.96 99.94 99.95
Injection 0.00 0.00 0.00 0.00 0.00 0.00 99.93 99.95 99.94
Normal 85.86 100.00 92.39 99.95 100.00 99.97 99.98 100.00 99.99
Password 0.00 0.00 0.00 0.00 0.00 0.00 99.98 99.98 99.98
Ransomware 0.00 0.00 0.00 0.00 0.00 0.00 99.82 99.82 99.82
Scanning 0.00 0.00 0.00 0.00 0.00 0.00 99.77 99.77 99.77
XSS 0.00 0.00 0.00 0.00 0.00 0.00 100.00 99.11 99.55

GPS Tracker IoT dataset
Backdoor 95.05 7.50 13.90 97.87 99.47 98.66 99.97 99.73 99.61
DDoS 98.77 8.65 15.91 69.66 92.50 79.47 99.87 99.97 99.92
Injection 16.77 46.00 24.58 79.02 79.78 79.40 99.84 99.88 99.86
Normal 88.42 96.57 92.31 99.96 100.00 99.98 99.98 100.00 99.99
Password 100.00 11.11 20.00 85.27 83.39 84.32 99.96 99.94 99.95
Ransomware 20.08 58.84 29.94 99.54 7.70 14.29 99.12 99.61 99.37
Scanning 100.00 0.18 0.36 100.00 20.36 33.84 100.00 99.64 99.82
XSS 10.92 13.52 12.08 0.00 0.00 0.00 100.00 95.84 97.88

TABLE VI. COMPARING THE PRECISION (P), RECALL (R) AND F1 SCORE OF EACH MODEL ON EACH ATTACK CATEGORY CONTINUATION

Gaussian NB Hoeffding Tree Our proposed model
Attack category P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Weather IoT dataset
Backdoor 100.00 0.05 0.10 96.42 99.48 97.92 99.89 99.98 99.94
DDoS 0.00 0.00 0.00 83.59 93.53 88.28 99.89 99.84 99.87
Injection 0.00 0.00 0.00 69.59 89.18 78.18 97.39 99.88 98.62
Normal 86.08 100.00 92.52 99.97 100.00 99.98 100.00 100.00 100.00
Password 0.00 0.00 0.00 89.57 78.11 83.45 99.93 98.87 99.45
Ransomware 100.00 0.31 0.63 86.95 34.66 49.56 96.71 99.55 98.11
Scanning 0.00 0.00 0.00 100.00 38.56 55.66 95.19 86.01 90.37
XSS 0.00 0.00 0.00 100.00 39.84 56.98 100.00 94.11 96.97

Thermostat IoT dataset
Backdoor 0.00 0.00 0.00 97.48 99.43 98.44 99.93 99.75 99.84
Injection 0.00 0.00 0.00 88.55 93.47 90.94 99.11 99.80% 99.45
Normal 87.27 100.00 93.20 99.95 100.00 99.97 99.98 100.00 99.99
Password 0.00 0.00 0.00 85.37 84.64 85.00 99.52 98.99 99.26
Ransomware 0.00 0.00 0.00 72.39 44.70 55.27 99.55 98.23 98.89
Scanning 0.00 0.00 0.00 0.00 0.00 0.00 69.33 85.25 76.47
XSS 0.00 0.00 0.00 100.00 1.34 2.64 100.00 94.65 97.25

[11] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” computers & security, vol. 28, no. 1-2, pp.
18–28, 2009.

[12] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on
software engineering, no. 2, pp. 222–232, 1987.

[13] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
survey of intrusion detection in internet of things,” Journal of Network

and Computer Applications, vol. 84, pp. 25–37, 2017.
[14] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,

“Network intrusion detection for iot security based on learning tech-
niques,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp.
2671–2701, 2019.

[15] S. Otoum, B. Kantarci, and H. T. Mouftah, “A novel ensemble method
for advanced intrusion detection in wireless sensor networks,” in Icc

www.ijacsa.thesai.org 44 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

2020-2020 ieee international conference on communications (icc).
IEEE, 2020, pp. 1–6.

[16] C. Zhang and Y. Ma, Ensemble machine learning: methods and appli-
cations. Springer, 2012.

[17] T. T. Khoei, G. Aissou, W. C. Hu, and N. Kaabouch, “Ensemble learning
methods for anomaly intrusion detection system in smart grid,” in
2021 IEEE International Conference on Electro Information Technology
(EIT). IEEE, 2021, pp. 129–135.

[18] R. E. Schapire, “The strength of weak learnability,” Machine learning,
vol. 5, no. 2, pp. 197–227, 1990.

[19] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural computation, vol. 3, no. 1, pp. 79–87,
1991.

[20] A. A. Benczúr, L. Kocsis, and R. Pálovics, “Online machine learning
in big data streams,” arXiv preprint arXiv:1802.05872, 2018.

[21] A. Khannoussi, A.-L. Olteanu, C. Labreuche, P. Narayan, C. Dezan, J.-P.
Diguet, J. Petit-Frère, and P. Meyer, “Integrating operators’ preferences
into decisions of unmanned aerial vehicles: multi-layer decision engine
and incremental preference elicitation,” in International Conference on
Algorithmic Decision Theory. Springer, 2019, pp. 49–64.

[22] A. Mozaffari, M. Vajedi, and N. L. Azad, “A robust safety-oriented
autonomous cruise control scheme for electric vehicles based on model
predictive control and online sequential extreme learning machine with
a hyper-level fault tolerance-based supervisor,” Neurocomputing, vol.
151, pp. 845–856, 2015.

[23] F. Feng, R. H. Chan, X. Shi, Y. Zhang, and Q. She, “Challenges in
task incremental learning for assistive robotics,” IEEE Access, vol. 8,
pp. 3434–3441, 2019.

[24] S. Muthukrishnan et al., “Data streams: Algorithms and applications,”
Foundations and Trends® in Theoretical Computer Science, vol. 1,
no. 2, pp. 117–236, 2005.

[25] M. R. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing on data
streams.” External memory algorithms, vol. 50, pp. 107–118, 1998.

[26] L. Yang, D. M. Manias, and A. Shami, “Pwpae: An ensemble frame-
work for concept drift adaptation in iot data streams,” in 2021 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2021, pp.
01–06.

[27] V. Shakhov, S. U. Jan, S. Ahmed, and I. Koo, “On lightweight method
for intrusions detection in the internet of things,” in 2019 IEEE In-
ternational Black Sea Conference on Communications and Networking
(BlackSeaCom). IEEE, 2019, pp. 1–5.

[28] J.-S. Pan, F. Fan, S.-C. Chu, H.-Q. Zhao, and G.-Y. Liu, “A lightweight
intelligent intrusion detection model for wireless sensor networks,”
Security and Communication Networks, vol. 2021, 2021.

[29] L. H. A. Reis, A. Murillo Piedrahita, S. Rueda, N. C. Fernandes,
D. S. Medeiros, M. D. de Amorim, and D. M. Mattos, “Unsupervised
and incremental learning orchestration for cyber-physical security,”

Transactions on emerging telecommunications technologies, vol. 31,
no. 7, p. e4011, 2020.

[30] A. Tabassum, A. Erbad, A. Mohamed, and M. Guizani, “Privacy-
preserving distributed ids using incremental learning for iot health
systems,” IEEE Access, vol. 9, pp. 14 271–14 283, 2021.

[31] S. D. Jadhav and H. Channe, “Comparative study of k-nn, naive bayes
and decision tree classification techniques,” International Journal of
Science and Research (IJSR), vol. 5, no. 1, pp. 1842–1845, 2016.

[32] A. McCallum, K. Nigam et al., “A comparison of event models for
naive bayes text classification,” in AAAI-98 workshop on learning for
text categorization, vol. 752, no. 1. Citeseer, 1998, pp. 41–48.

[33] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[34] T. M. Mitchell and T. M. Mitchell, Machine learning. McGraw-hill
New York, 1997, vol. 1, no. 9.

[35] C. Bustamante, L. Garrido, and R. Soto, “Comparing fuzzy naive
bayes and gaussian naive bayes for decision making in robocup 3d,” in
Mexican International Conference on Artificial Intelligence. Springer,
2006, pp. 237–247.

[36] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, 2001, pp. 97–
106.

[37] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 226–235.

[38] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty,
R. Vaysse, A. Zouitine, H. M. Gomes, J. Read, T. Abdessalem et al.,
“River: machine learning for streaming data in python,” 2021.

[39] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, “Ton iot
telemetry dataset: A new generation dataset of iot and iiot for data-
driven intrusion detection systems,” IEEE Access, vol. 8, pp. 165 130–
165 150, 2020.

[40] Q. Abu Al-Haija, A. Al Badawi, and G. R. Bojja, “Boost-defence
for resilient iot networks: A head-to-toe approach,” Expert Systems,
p. e12934, 2022.

[41] M. A. Khan, M. A. Khan Khattk, S. Latif, A. A. Shah, M. Ur Rehman,
W. Boulila, M. Driss, and J. Ahmad, “Voting classifier-based intrusion
detection for iot networks,” in Advances on Smart and Soft Computing.
Springer, 2022, pp. 313–328.

[42] W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “E-
graphsage: A graph neural network based intrusion detection system
for iot,” in NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2022, pp. 1–9.

[43] A. R. Gad, A. A. Nashat, and T. M. Barkat, “Intrusion detection system
using machine learning for vehicular ad hoc networks based on ton-iot
dataset,” IEEE Access, vol. 9, pp. 142 206–142 217, 2021.

www.ijacsa.thesai.org 45 | P a g e


