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Abstract—Human-robot interaction (HRI) and human-robot 

collaboration (HRC) has become more popular as the industries 

are taking initiative to idealize the era of automation and 

digitalization. Introduction of robots are often considered as a 

risk due to the fact that robots do not own the intelligent as 

human does. However, the literature that uses deep learning 

technologies as the base to improve HRI safety are limited, not to 

mention transfer learning approach. Hence, this study intended 

to empirically examine the efficacy of transfer learning approach 

in human detection task by fine-tuning the SSD models. A 

custom image dataset is developed by using the surveillance 

system in TT Vision Holdings Berhad and annotated accordingly. 

Thereafter, the dataset is partitioned into the train, validation, 

and test set by a ratio of 70:20:10. The learning behaviour of the 

models was monitored throughout the fine-tuning process via 

total loss graph. The result reveals that the SSD fine-tuned model 

with MobileNetV1 achieved 87.20% test AP, which is 6.1% 

higher than the SSD fine-tuned model with MobileNetV2. As a 

trade-off, the SSD fine-tuned model with MobileNetV1 attained 

46.2 ms inference time on RTX 3070, which is 9.6 ms slower as 

compared to SSD fine-tuned model with MobileNetV2. Taking 

test AP as the key metric, SSD fine-tuned model with 

MobileNetV1 is considered as the best fine-tuned model in this 

study. In conclusion, it has shown that the transfer learning 

approach within the deep learning domain can help to protect 

human from the risk by detecting human at the first place. 

Keywords—Human detection; deep learning; transfer learning; 

SSD; fine-tuning; human-robot interactions 

I. INTRODUCTION 

Robotics and automation systems has become a key 
technology that can help in creating an idealistic future [1]. 
According to the worldwide trend, it is reported that although 
the deployment of concepts related to human-robot 
collaboration (HRC) and human-robot interaction (HRI) has 
increase progressively, yet it shows that the adoption of the 
market on these concepts is still in the early stage [2]. As 
much as the HRI concepts are concerned, the introduction of 
robots can be a stumbling block to the industries as it 
possesses potential risks to the human workers when it comes 
to sharing of working space between the robots and the human 

workers [3]. Perhaps, both human workers and robots must 
ensure appropriate communication to promote safe 
collaboration [4]. 

Insufficient safety devices can be the most remarkable 
barrier in forming the trust of HRI concept [5]. It has been 
found out that the occupational safety has ranked as the most 
important factor in bringing successful HRI applications. 
Enormous amount of research has been carried out to improve 
the safety of HRI [6]–[8]. In light of this, the major safety 
mechanisms can be generally categorized into four senses, 
which are vision, tactile, audition and distance [9]. It is noted 
that even though vision-based sensor seems to be the trickiest 
and most computationally extensive, it is still considered to 
have the most unique sense owing to its irreplaceable richness 
of the features extracted from this sense. With that in mind, 
vision-based sensors were incorporated in the present study. 

Recent advances in deep learning and transfer learning 
have garnered great success in various domains [10]–[12]. In 
particular to HRI applications, limited number of studies has 
exploited on the usage of deep learning in ensuring a safe 
interaction and collaboration, not to mention about using 
transfer learning approach. Within this context, this study 
intended to examine the applicability of deep learning-based 
object detection approach via transfer learning approach to 
detect human at the first place and evaluate on the 
performance of such approach. 

II. RELATED WORKS 

Mohammed et al. [13] presented a novel online collision 
avoidance approach that only relies on inputs from Microsoft 
Kinect sensors. The depth images were used with the 
background subtraction approach to obtain the virtual model 
of the human operators. Distance between human operators 
and the robot was then computed for the collision detection 
based on a threshold value. Instead of solely rely on the 
Microsoft Kinect sensors, Magrini et al. [14] established a 
layered control architecture to improve the safety of HRC 
applications by integrating multiple sensors and controllers. 
Microsoft Kinects sensors were utilized to compute the 
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distance between two parties while laser scanners were 
deployed to ensure in which area the human worker is located. 
Both studies used dual-camera settings as to obtain the depth 
information of the workers as well as to detect the presence of 
the human operators within the robot cell. 

A study has claimed that it is the first time a deep neural 
network is utilized for developing a real-time collision 
detection system and solid results are yielded with a highly 
satisfied detection speed [15]. Joint signals were used as the 
input of the training of the deep neural networks. The authors 
highlighted that the study is limited to cyclic motion due to the 
fact that cycle-normalization technique is applied. Another 
study integrated both tactile and visual perception for safety 
purposes [16]. 1D-CNN was used for the physical contact 
detection while 3D-CNN was meant for the visual perception 
to perform human action recognition. Joint signals and images 
are used as the input for the networks, respectively. 

As for the advance of deep learning, transfer learning 
seems to be a favourable approach in different research fields. 
The effectiveness of transfer learning approach are 
investigated to extract the wink-based EEG signals that is 
converted by means of continuous wavelet transform (CWT) 
method [17]. The findings were prominent which can 
potentially be used for controlling the rehabilitation devices. A 
deep learning-based pre-trained object detection model were 
adopted in the research with huge amount of data to diagnose 
the rice leaf disease in a real-time manner [12]. The results 
further justify the applicability of deep learning technologies, 
might as well for the transfer learning approach in yielding 
promising results across different domain. 

III. METHODOLOGY 

In this section, a general description of the overall research 
workflow is provided. First, the image acquisition process is 
explained and the dataset that is used in this work is reported, 
followed by the image annotation stage. Next, appropriate 
files are generated for training the models under specific deep 
learning framework. The training strategies and procedures are 
then clarified and visualized in a flowchart for better glance of 
the process. Lastly, the performance metrics that is used to 
evaluate the performance of the models are described. 

A. Image Acquisition 

The surveillance cameras that are mounted in TT Vision 
Holdings Berhad were used to acquire the image dataset. In 
particular, the recorded video footages were obtained from the 
surveillance database to extract relevant images. Since it is 
always beneficial to introduce variation to the deep learning 
models, the location of the surveillance cameras was carefully 
chosen. Among all the surveillance cameras, it was observed 
that the people working in the production area will have 
higher possibility of moving around compared to the office 
due to their work nature. Therefore, only the surveillance 
cameras that are in the production area were selected. 

In total, 1463 images were acquired from the recorded 
video footages. Example of the obtained images was depicted 
in Fig. 1. In compliance to the standard data splitting 
procedure, the dataset was separated into three portions, which 
are training, validation, and testing. The ratio of the data 

splitting used in this study was set to be 70:20:10. In addition, 
data augmentation methods such as horizontal flipping and 
cropping were utilized to further increase the size of the image 
dataset and allow more variation of the dataset. 

 

Fig. 1. Examples of Training Images. 

B. Image Annotation 

All the human workers that shown up in the images were 
annotated manually with a tight bounding box and labelled 
with the “Person” class name. Not to confuse the model, it is 
noted that in this study the occluded part of the human 
workers was not annotated. With respect to the image 
annotation procedure, a popular image annotation tool known 
as LabelIMG [18] was used to perform the annotation. The 
output annotation files with the format of PASCAL VOC were 
generated after the bounding box annotation. 

C. TensorFlow Records (TFRecords) Generation 

Throughout the study, TensorFlow is used as the deep 
learning framework to develop the deep learning-based object 
detection models. Thus, TFRecords files were required to 
generate because this is the only format that can be translated 
by TensorFlow library for loading the datasets. For instance, 
TFRecord files can be understood as a simple format that 
stores the dataset as sequence of binary strings for efficiency 
purposes. A script was used to iterates through all the 
annotations in the XML files so that the annotations can be 
converted into TFRecord annotation files. Since TFRecords 
only stores binary strings, the label class are stored in binary 
value and a label map is required for the annotations to have a 
reference on the class name. For this reason, a one-class label 
map was developed for mapping the class integer presented in 
the TFRecords file and the class name. 

D. Transfer Learning: Fine-tuning 

An open-source deep learning framework that is developed 
on top of TensorFlow known as TensorFlow Object Detection 
API was leveraged since it can be considered as a ready to use 
toolkit in developing, training and inferencing object detection 
models. Particularly, the Single Shot Multibox Detector (SSD) 
within the TensorFlow 2 Detection Model Zoo was trained to 
perform human detection tasks [19]. The meta-architecture of 
the fine-tuned SSD models is shown in Fig. 2. In this study, 
both MobileNetV1 and MobileNet V2 that were pretrained on 
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COCO 2017 dataset were used as the backbone networks [20], 
[21]. The feature pyramid network was deployed as the neck 
to extract richer semantic features [22]. Whereas the single 
shot convolutional prediction head was used correspond to the 
class prediction and the bounding box regression. 

Instead of training the object detection models from 
scratch, transfer learning approach known as fine-tuning was 
applied as it is beneficial from the perspective of training time 
as well as the requirement of a large dataset. By mean of fine-
tuning strategy, it is indicated that only the detection head was 
subject to the training of human detection task, while the 
backbone network and the neck was remained. 

 

Fig. 2. Meta-architecture of Fine-tuned SSD Models. 

E. Learning Rate and Loss Inspection 

Various hyperparameters can be adjusted in order to 
improve the learning performance of the models. Learning 
rate acts an important role due to the fact that it can affects the 
scale of how much the weights are updated within the 
networks. Instead of using a mere value for the learning rate, 
this hyperparameter was scheduled via the cosine annealing 
and warm restart techniques [23]. The motivation behind is to 
improve the learning behaviour and avoid the occurrence of 
exploding gradient and vanishing gradient. Both SSD models 
were configured to undergo a 2.5k warmup steps with learning 
rate of 0.001. In total, the models were fine-tuned for 100k 
training steps with learning rate of 0.01. 

As for deep learning approaches as well as transfer 
learning, the learning behaviour has to be monitored 
throughout the training process. Despite that the scheduling 
techniques applied can help in improving the model learning, 
still it is possible for exploding gradient and vanishing 
gradient to take place. In this sense, loss graphs were utilized 
to further ensure the learning behaviour of the SSD models 
goes well throughout the fine-tuning process. 

F. Performance Evaluation 

In the field object detection, Average Precision (AP) is 
commonly used as a standard evaluation metric to evaluate the 
robustness of an object detection model. With regards to the 
object detection task, precision is computed based on the 
Intersection over Union (IoU) threshold. IoU can be defined as 
the ratio of the overlap area between the predicted bounding 
box and the ground-truth box to the union area of these two 
boxes. The concept of IoU is visualized in Fig. 3. 

 

Fig. 3. Intersection over Union (IoU). 

According to the predefined IoU threshold value, the 
predictions were then be classified as true or false. As such, 
the IoU threshold value is set to 0.5 in the present study. After 
the calculation of precision and recall, AP was then calculated 
by computing the area under the precision-recall curve with 
the expression as below: 

 P  ∑   ecalln ecalln-1 Precisionnn             (1) 

IV. RESULT AND DISCUSSION 

In this section, the results were reported throughout the 
fine-tuning process. The total loss of the models over the fine-
tuning process was visualized and discussed, followed by the 
performance evaluation of the SSD models after the fine-
tuning process. Then, the performance of the SSD models, 
particularly the AP was reported together with several 
considerable performance details. 

A. Loss Inspection via Loss Graphs 

To ensure the fine-tuning of the object detection models 
are neither underfitting nor overfitting, the learning behaviour 
of the models were monitored throughout the fine-tuning 
process via the training and validation loss graph [24], [25]. 
The training loss and validation loss graphs were plotted as in 
Fig. 4 and 5. As described in the graph legends, the orange 
line is the training loss while the grey line is the validation 
loss. Each of them corresponds to the training set and the 
validation set of the image dataset. 

From both learning curves, it can be clearly seen that the 
training and the validation losses greatly decrease at the 
beginning and end up converge at the end of the fine-tuning 
process. It is reasonable for the losses to be high in the initial 
stage because the knowledge learned from the previous 
domain is not specifically cater for the human detection task. 
However, as the training steps increase, the models had 
learned the important features for the human detection tasks, 
hence the losses decrease over the iterations. Towards the end 
of the fine-tuning process, the losses have become more stable 
suggesting that the models have converge. In addition, it is 
shown that the validation loss curve stays above the training 
loss curve for both SSD models, in turn indicates that the fine-
tuned models are neither underfitting nor overfitting. 
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Fig. 4. Learning Curve of Fine-tuned SSD_MobileNetV1. 

 

Fig. 5. Learning Curve of Fine-tuned SSD_MobileNetV2. 

B. Performance Evaluation 

The AP of the fine-tuned models is depicted as in Fig. 6 
and the performance details of the fine-tuned models are 
tabulated in Table I [26]. The SSD_MobileNetV1 is referring 
to the SSD model with MobileNetV1 as the base network 
while SSD_MobileNetV2 is referring to the SSD model with 
MobileNetV2 as the backbone network. In the performance 
evaluation stage, the SSD_MobileNetV1 achieves 94.10% 
train AP, 86.90% validation AP and 87.20% test AP with an 
inference speed of 46.2 ms. Whereas SSD_MobileNetV2 
achieves 89.40% train AP, 82.40% validation AP and 81.10% 
test AP with an inference speed of 36.6ms. For instance, 
SSD_MobileNetV1 has a model size of 4.62MB and 10.89 
million parameters, while SSD_MobileNetV2 has a model 
size of 6.46MB and 2.60 million of parameters. 

Discussing with regards to the model size and number of 
parameters, noted that although the SSD_MobileNetV1 fine-
tuned model has greater number of parameters than 
SSD_MobileNetV2, but it has a smaller model size than the 
SSD_MobileNetV2 fine-tuned model. This is because in the 
implementation of SSD_MobileNetV2, depthwise separable 
convolution technique is used for reduction of parameters. 
Still, the model size is not reduced given the fact the depth of 
SSD_MobileNetV2 is more than SSD_MobileNetV1. 

Despite the comparison of model size and number of 
parameters, AP and inference speed are the key factors to 
evaluate the performance of the fine-tuned models. From 
Fig. 6 and Table I, it can be observed that the 

SSD_MobileNetV1 has higher AP for all three train, 
validation, and test AP with a slower inference speed on RTX 
3070 GPU as compared to SSD_MobileNetV2. In fact, the 
only difference between these two fine-tuned models is the 
backbone network, hence the differences in AP and inference 
speed are most probably attributed to the architecture of the 
base network used in the fine-tuned models [27]–[30]. In a 
better context, SSD_MobileNetV2 is said to be the 
recommended fine-tuned model if inference speed comes into 
consideration before AP. Since this study has considered AP 
to be more important than inference speed as it is concerned 
with the HRI safety, SSD_MobileNetV1 is a better choice 
among these two SSD fine-tuned models. In summary, 
SSD_MobileNetV1 is proposed as the best fine-tuned model 
in this case with respect to the human detection task. 

 

Fig. 6. Average Precision of SSD Fine-tuned Models with Respect to Train, 

Validation and Test Dataset. 

TABLE I. PERFORMANCE DETAILS OF THE SSD FINE-TUNED MODELS 

SSD Fine-Tuned 

Models 

Performance Details 

Model Size 
No. of 

Parameters 
Inference speed 

SSD_MobileNetV1 4.62 MB 10.89M 46.2 ms 

SSD_MobileNetV2 6.46 MB 2.60M 36.6 ms 

V. CONCLUSION 

In the present study, the surveillance system was used to 
acquire the image dataset for human detection task. The 
human workers presented in the images were annotated with 
relevant annotation tools. According to the deep learning 
framework that has been used in this study, the dataset was 
developed to specific format that suits the framework. The 
transfer learning strategy called fine-tuning was leveraged to 
decrease the training time. In particular, the pre-trained 
weights of the base network were restored, only the prediction 
head was subjected to the fine-tuning by using the custom 
dataset. The result has shown that the SSD_MobileNetV1 
fine-tuned model has the highest AP with tolerable sacrifice of 
inference speed. 
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