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Abstract—Convolutional Neural Network (CNN), a type of 
Deep Learning, has a very large number of hyper-meters in 
contrast to the Artificial Neural Network (ANN) which makes the 
task of CNN training more demanding. The reason why the task 
of tuning parameters optimization is difficult in the CNN is the 
existence of a huge optimization space comprising a large 
number of hyper-parameters such as the number of layers, 
number of neurons, number of kernels, stride, padding, rows or 
columns truncation, parameters of the backpropagation 
algorithm, etc. Moreover, most of the existing techniques in the 
literature for the selection of these parameters are based on 
random practice which is developed for some specific datasets. In 
this work, we empirically investigated and proved that CNN 
performance is linked not only to choosing the right hyper-
parameters but also to its implementation. More specifically, it is 
found that the performance is also depending on how it deals 
when the CNN operations require setting of hyper-parameters 
that do not symmetrically fit the input volume. We demonstrated 
two different implementations, crop or pad the input volume to 
make it fit. Our analysis shows that padding performs better 
than cropping in terms of prediction accuracy (85.58% in 
contrast to 82.62%) while takes lesser training time (8 minutes 
lesser). 

Keywords—Neural networks; convolution; pooling; hyper-
parameters; CNN; deep learning; zero-padding; stride; back-
propagation 

I. INTRODUCTION 
Convolutional Neural Networks (CNNs) have proved to be 

the perfect machine learning choice for a wide range of 
application fields, such as pattern classification and analysis of 
video, image, speech, and text (natural language processing). 
However, no doubt using CNNs requires much work 
compared to other machine learning solutions such as random 
forest, Support Vector Machines, etc. This added work is 
primarily due to the vast optimization space of parameters and 
hyper-parameters, which interact with each other in a very 
complex way. Furthermore, making this problem even more 
complex is that there is still no universal, robust theory that 
supports hyper-parameters optimization. That would enable us 
to choose the right hyper-parameters for the right problem at 
hand and give the best performance with less effort and time. 
Setting hyper-parameters without robust theory is like 

working blindly, as quoted by the German philosopher 
Immanuel Kant: 

“Experience without theory is blind, but theory without 
experience is mere intellectual play”. 

Deep convolutional neural networks often have numerous 
layers piled on each other and are taught to do a specific task. 
At the end of each layer, the network learns a variety of low, 
medium, and high-level features. There are several papers in 
the literature with different approaches to setting CNN hyper-
parameters, but none of them has presented a generalized and 
robust systematic approach to the problem. Thus, hyper-
parameters optimization is not a problem that is ever entirely 
solved. This work aims to investigate empirically the impact 
of two different strategies to deal with input volume in CNN, 
that is, cropping and padding. 

II. THE CHALLENGE OF HYPER-PARAMETERS TUNING IN A 
CNN 

Setting the best CNN hyper-parameters for a particular 
classification problem could be challenging.  If the results are 
not making any sense or bad accuracy was achieved after the 
first trial, then there is no prior knowledge about what went 
wrong; anything of the following could be a reason: 

• Activation function for every layer or set of layers. 

• Learning rate. 

• Momentum. 

• Regularization type and factor value. 

• Size of filters in a specific layer(s). 

• The stride of convolution or pooling in a particular 
layer(s). 

• Padding type (e.g., zeros, first and last values, values 
repeated cyclically). 

• The number of convolution, pooling, and activation 
layers in the network. 

• Order of layers e.g., conv-conv-pool; or conv-
activation-pool-conv. 

*Corresponding Author. 

439 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 11, 2022 

• Type of cost function. 

• The approach to encoding the output is not appropriate. 

• Backpropagation gradient implementation is incorrect 
(sanity check was not done or was not efficient). 

• Dataset was not split correctly into proper ratios. 

• Not enough datasets for training. 

• Imbalanced dataset. 

• Not pre-processed the dataset, e.g., not normalized at 
all or normalized incorrectly. 

• Wrong label assignment during training could happen 
when a new split ratio is needed. 

• The performance measure metric is not appropriate for 
the given problem. 

• The mini-batch size is not appropriate for Stochastic 
Gradient Descent. 

• Different approaches to weight initialization. 

• Maybe CNN is not the right solution to the problem at 
hand. 

Moreover, often the wrong choice of one hyper-parameter 
(e.g., sigmoid activation function) will never let the network 
converge no matter how all other hyper-parameters were 
chosen. So, it is straightforward to get frustrated and lose in 
the hyper-parameter space and this makes CNN debugging a 
challenging task. Some heuristics could be used to set the right 
hyper-parameters by developing a workflow that enables 
quick debugging. These heuristics are just rules of thumb, and 
they are not guaranteed to give the best possible results 
because the behaviour of the CNN entirely depends on the 
specific dataset of a particular problem. Also, this is what 
makes it hard to establish one universal solid theory of 
defining the appropriate hyper-parameters for any given 
problem. 

A. Related Work 
In contrast to the manual search for finding an optimum set 

of hyper-parameter values, automated search approaches were 
adopted by many research works, and here we highlight a 
small portion of them: 

In [1], a grid search method and a manual search technique 
were investigated for neural networks and particularly for 
deep belief neural networks. According to their findings, the 
grid search method is not an optimal choice for setting the 
hyper-parameters of the neural networks. On the other hand, it 
was found that random search can be used to obtain a baseline 
result in order to assess the performance of the other hyper-
parameter optimization methods. In [2], the issue of hyper-
parameters tuning is addressed by formulating the problem as 
a constrained optimization task. Then, a derivative-free 
optimization technique is opted for tuning the parameters. As 
a result, a more accurate and automated technique is 
developed for tuning of the hyper-parameters. Moreover, it is 
found that this technique is not consistent to achieve the global 
optimum. In [3], the Taguchi method was utilized to obtain 

optimal hyper-parameters which can provide faster training 
and enhanced classification accuracy. In [4], the authors 
utilized a Bayesian learning technique by employing Gaussian 
process-based sampling to develop a learning model for 
designing the tuning parameters of the algorithm. It was 
reported that the proposed technique for evaluating the 
optimum values of hyper-parameters can provide significantly 
faster learning compared to the learning performance of the 
baseline methods. In [5], a probabilistic model is developed 
that can deal with early learning termination in the case a bad 
performance is detected. 

Deep convolutional neural networks often have numerous 
layers piled on each other and are taught to do the specific 
task. At the end of each layer, the network learns a variety of 
low, medium, and high-level features. 

Different variants of deep neural networks, including 
CNN, have been employed on various signal processing and 
machine learning tasks. However, their claimed performance 
is specific to a certain problem and dataset. In [6], an 
evolutionary algorithm was developed for designing of 
optimal hyper-parameter for different CNNs and their 
performance was investigated on the MNIST dataset. In [7], 
the hyper-parameters for the deep neural network were 
optimized using Nelder-Mead and coordinate search methods.  
In [8], a bandit-based strategy was proposed to solve the task 
of hyper-parameter optimization. Datasets CIFAR-10, 
MNIST, and Street View House Numbers were investigated 
and it is found that the proposed method is faster than the 
existing Bayesian optimization algorithms. Another work in 
[9] developed a faster algorithm for the tuning of 
hyperparameters by employing the strategy of Boolean 
functions analysis. Its performance was tested using deep 
neural networks on the CIFAR-10 dataset, and they proved 
that the proposed technique has much better performance than 
the existing baseline methods. In [10], a non-parametric 
regression model-based adaptive technique was designed to 
calculate the optimum value of the learning hyper-parameters 
in a short time. The proposed idea was applied on CNN and it 
was shown via various experiments that the proposed 
algorithm performs faster than the existing state-of-the-art 
techniques. In [11], Bayesian optimization-based generative 
model was developed to analyse the validation error w.r.t. the 
size of the training data. Again deep neural networks were 
utilized to test the performance of this algorithm and it was 
shown that the proposed method finds better hyper-parameters 
in lesser time. In [12], a novel technique for optimizing the 
hyper-parameters was developed which was based on the 
combination of the input features. The NMA was used with 
CNN for the CIFAR-10 dataset for testing the performance of 
the proposed model and it was shown to achieve better 
classification accuracy. In [13], the Covariance Matrix 
Adaptation Evolution Strategy was used to develop a novel 
optimization technique for designing the tuning parameters for 
CNN and it is found to be very effective. 

There are various techniques in the literature focused on 
optimizing the tuning parameters of the CNN. For example, a 
Grid Search method was proposed in [14] to optimize the 
CNN parameters. A Random Search based optimization of 
hyper-parameters of the CNN was proposed in [15]. There 
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exist optimization techniques that employ Bayesian 
optimization strategy for designing CNN parameters such as 
those proposed in [16], [17], [18]. A Differential Evolution 
based optimization algorithm was proposed in [19]. A similar 
task was obtained using the Harmonic Search method in [20]. 
Reinforcement learning-based techniques were developed in 
[21] and [22]. Recently, in [23], the Micro canonical 
Optimization algorithm was employed for the automatic 
selection of the hyper-parameters in CNN. 

In summary, all these existing works on the selection of 
hyper-parameters in CNN are concerned with the development 
of any automated algorithm that can provide optimum or near 
optimum values of these hyper-parameters. The primary 
relevant outcome of these related works is that they always 
link the accuracy and performance of the neural network to the 
hyper-parameters optimization of the micro and macro-
structural levels of the model. However, we claim that in 
addition to the structural levels of the CNN model another 
factor affects the accuracy and performance of the model. The 
factor is the way of implementation of certain inter-layer 
operations in CNN. Our preliminary results on a single dataset 
with lesser details were published in [24]. In this work, we 
provide a more detailed analysis on various datasets in this 
context. 

B. Main Contributions 
The main contributions of our work can be summarized as 

follows: 

1) In this work, we provide a framework to empirically 
investigate the effect of the way of implementation of certain 
inter-layer operations in CNN. 

2) More specifically, we compare two different inter-layer 
operations namely cropping and padding the input volume to 
make it fit for the next layer operation. 

3) Our investigation is based on analyzing the CNN 
performance in terms of classification accuracy, processing 
time, and generalization by implementing two models: one 
using crop and the second employing padding of the input 
volume on Digits, MNIST, Merch, Flowers, and CIFAR-10 
datasets. 

4) Our work provides a foundation for future investigation 
of the effects of other inter-layer operations in a CNN. 

C. Problem Definition 
A common practice in the research of deep learning is to 

use built-in CNN libraries, such as Tensorflow, Caffe, and 
Keras. However, users do not have control over the low-level 
implementation of different blocks of CNN which are 
implemented differently in different libraries. For example, in 
order to deal with input volumes when the stride hyper-
parameter value results in a non-integer pre-calculated output, 
there are two standard approaches: first is cropping the 
volume and second is padding the volume. To understand 
these approaches, consider an example where an input volume 
of 90 × 70 × 100 which corresponds to 70 channels with 
mini-batch size of 100. The pooling layer with a window size 
of  4 × 4 and a stride of 4 is used with no padding. The pre-

calculated dimension for the output of both convolution and 
pooling is given as follows (see [25] for the formula used): 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 𝑆𝑖𝑧𝑒 = 𝐼−𝐹+2𝑃
𝑆

  90−4+(2×0)
4

+ 1 = 22.5          (1) 

where: 

𝐼: Row or column size of the Input volume 

𝐹: Row or column size of the filter 

𝑃: Zero-padding 

𝑆: Stride 

It can be observed in the calculation provided in Eq. (1) 
that both the axes of the feature map gave the same measure 
(22.5). Otherwise, Eq. (1) can be used to calculate the 
dimension size separately for each case. It is to be noted that 
the calculation of Eq. (1) results in a float number (22.5) for 
this example. Thus, the pooling size used was not appropriate 
to fit the input volume. This problem can come across in any 
layer type and any layer number. Now, it is important to know 
how this issue is handled in different libraries. There are three 
possible solutions to this issue; the first is to go back to choose 
a different value of the hyper-parameter and check again its 
feasibility; the second is to crop the input volume in order to 
fit the volume for the next layer; and the third is to pad 
(usually zero-padding is employed) the volume to fit the 
volume. The question is: Are these approaches going to 
perform the same? Hence, there are Constraints on choice of 
hype-parameters in the design of CNNs. 

D. Objectives 
The issue to investigate is how both approaches will affect 

the network's performance. This will tell us whether non-
optimal performance is purely due to the wrong choice of 
hyper-parameters or is it also partially due to how the library 
is handling that type of hyper-parameters (that gives a non-
integer value for the pre-calculated output). The outcome of 
this work will be a reference for both CNN library users and 
those designing CNNs and other deep learning paradigms 
from scratch. 

Two models are going to be implemented from scratch, the 
first model implementation will involve the first approach that 
crops the input volume, and the second model will present the 
implementation of the second approach that involves zero-
padding the input. 

III. DATASETS 
The used datasets in this work are Digits, MNIST, Merch, 

Flowers, and CIFAR-10. The MNIST dataset contains 70,000 
images of handwritten digits having a size of 28 × 28. For 
machine learning applications, this dataset is split into 60%, 
25%, and 15% for training, validation, and testing, 
respectively. The dataset is almost balanced among different 
classes, so the performance measure will not be misleading, at 
least from this side. Also, different image size datasets were 
chosen with a small to a reasonably large number of images. 
The number of classes ranges from 5 to 10. Table I. shows 
some of the characteristics of the datasets used. The 
experiments for the rest of the datasets were performed using 

441 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 11, 2022 

the original images and no transformation such as conversion 
to grayscale, rotation, etc. has been performed. 

TABLE I. CHARACTERISTICS OF DATASETS USED 

Dataset Image dimension Classes Total images 

Merch 227 x 227 5 75 

Flowers 224 x 224 5 3670 

CIFAR-10 32 x 32 10 60,000 

Digits 28 x 28 10 10,000 

MNIST 28 x 28 10 70,000 

IV. TERMINOLOGIES 
There are terms used in the paper and what they entail for 

each one in the experiments. The terms are Channels, Filter, 
Stride, Padding, Dilation Factor, Output Size, Number of 
Neurons, Network Architecture, and Layer Size Calculation. 
Which are used from the MATLAB software [26]. 

We start by channels; if the number of channels is one, 
then the images are grayscale whereas it is three for colored 
images referring to the RGB spectrum. The filter convolves 
the input where a set of weights are applied to a specific image 
area. It can move either in horizontal or vertical directions or 
both at the same time. Stride determines the movement of the 
filter. The step size with which the filter moves determines the 
size of the output. Usually, the size of output reduces with 
increasing strides. The stride value is usually specified as an 
integer rather than a decimal. Padding refers to adding values 
on the border of images horizontally and/or vertically. It is 
used to control the output size of the layers. The dilation factor 
is the number of spaces used inside the filter. It expands the 

filter by inserting zeros between the filter elements. The 
adequate size of the filter can be computed as (𝐹𝑖𝑙𝑡𝑒𝑟 𝑆i𝑧e −
1) ∗ 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 + 1. A 3 × 3 filter with a dilation 
factor of 2 in horizontal and vertical directions is equivalent to 
a 5 × 5 filter having 0s between the elements. The output 
height and width of a convolutional layer can be computed 
using the following relation: 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑧𝑒 = 𝐼−(𝐹−1)∗𝐷𝐹+1+2𝑃
𝑆

+ 1           (2) 

where 𝐷𝐹 represents the Dilation Factor. This calculation 
needs to be done separately for the x- and y-direction if they 
are not the same. The output size needs to be an integer value 
and MATLAB discards the remaining part if it is not an 
integer. 

The total number of neurons in a convolutional layer is 
(ℎ ∗ 𝑤 ∗ 𝑐 + 1) ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟𝑠, where ℎ and 𝑤 are the 
height and width of the filter, 𝑐 is the number of channels and 
1 is the bias. A convolutional layer with five filters and a filter 
size of 3 × 3 for colored images has a total number of neurons 
equal to (3 × 3 × 3 + 1) × 5 = 140.  A Convolutional Neural 
Network (CNN) can have one or more layers depending on the 
size and complexity of the data. A small network with one or 
two layers is reasonable for small grayscale datasets whereas a 
complex architecture of layers is required for a dataset having 
millions of images. Considering the datasets used, we choose 
a series of 15-layer Convolutional Neural Network (CNN) 
architecture. It is an architecture of a deep network with all 
layers connected sequentially. Since we have categorical 
responses, softmax and classification layers are used at the 
end. A snapshot of this architecture when run on the Digits 
dataset in MATLAB is shown in Fig. 1. Also, the parameters 
used for such architecture are shown in Table II. 

 
Fig. 1. 15-Layer CNN Architecture on Digits Dataset. 
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TABLE II. PARAMETERS OF THE CNN USED 

Parameter Value 

InitialLearnRate 0.01 

MaxEpochs 6 

MiniBatchSize 100 

The padding and stride are considered the same in both 
directions in all experiments. The output size needs an integer 
value to cover the whole image. If it does not cover the whole 
image, then the MATLAB software ignores the remaining part 
along the right and bottom edges in the convolution. The 
objective of the experiments is to see the effect of this 
coverage on accuracies while changing the padding size and 
stride values. The dilation factor is set as one in all 
experiments. For example, suppose the image size is 32 × 32 
and the filter of 5 × 5 is used in the convolution. If the 
padding value is two and the stride is 2 in each direction, then 
the output size is calculated as. 

�32– �(5– 1) ∗ 1 + 1� + 2 ∗ 2�/2 + 1 = (32– 5 + 4)/2 + 1 = 16.5 

In this case, the output size will become 16 × 16 and some 
of the zero paddings are discarded from the right and bottom 
of the image. 

V. IMPLEMENTATION OF MODEL 1 
The initial weights are saved so that the same weights 

should be used for the implementation of both strategies. Also, 
this is to ensure that the comparison should be fair and should 
be affected by only cropping or padding and not by any other 
factors. Moreover, neither regularization nor momentum of 
any form was used for the same reason of fair comparison. 
The details of the CNN architecture employed for Model 1 in 
our implementation are provided in Table III. 

TABLE III. MODEL 1 ARCHITECTURE 

Layer 
Type Conv1 Pool1 Conv2 Pool2 FLC 

Size of 
Filter 9 × 9 2 × 2 3 × 3 3 × 3 80 × 10 

Depth of 
Filter 1 10 10 20 N/A 

Number of 
Filters 10 N/A 20 N/A N/A 

Stride 1 2 1 3 N/A 

Zero 
Padding 0 0 0 0 N/A 

Input volume size: 28 ×  28 × 1 ×  50       Pooling type: mean 

To simplify the study, hyper-parameters of the last pooling 
layer are selected to investigate the impact of padding and 
cropping (this analysis can be applied to any other layer too). 
By using Eq. (1), the pre-calculated output sizes of every layer 
are integer values except for pool2 which is a float number 
2.66. To see more details, let us run the CNN and see what the 
output size in the forward and backward pass will be and this 
is summarized in Table IV. 

TABLE IV. OUTPUT AND GRADIENT SIZES FOR MODEL 1 

Forward Pass 

Output 
size 

20 × 20
×  10 × 50 

10 × 10
× 10
× 50 

8 × 8
× 20
× 50 

2 × 2
× 20
× 50 

10 × 50 

Layer x conv1 pool1 conv2 pool2 FLC 

𝝏𝑳
𝝏𝒙

 
20 × 20
×  10 × 50 

10 × 10
× 10
× 50 

8 × 8
× 20
× 50 

2 × 2
× 20
× 50 

10 × 50 

Backward Pass 

The results of Table IV show the size of outputs at 
different layers and it can be noted that all sizes are tensors of 
order four except the first layer. The term 𝝏𝑳

𝝏𝒙
  evaluates the 

partial derivative of the loss function with respect to the output 
x which gives the expression in terms of the local error (δ𝑥) in 
that neuron (note that x here is a feature map of neurons). The 
local error of every neuron is multiplied by its input in order to 
backpropagate the error influence. This can be summarized as: 
∂𝐿
∂𝑊

= δ𝑥 ∗ 𝐼𝑛                 (1) 

For output layer  δ𝑥 = δ𝑥 × 𝑓′(𝑥)           (2) 

For any hidden layer δ𝑥 = δ𝑥+1 ∗ 𝑊𝑥+1 × 𝑓′(𝑥)           (3) 

where: 

𝑓′(. ):   the derivative of the activation function. 

𝑊𝑥+1: the weight matrix of the next layer. 

 δ𝑥: local error tensor of the current layer. 

δ𝑥+1: local error tensor of next layer. 

𝑙𝑛: is the input tensor to layer 𝑥. 
𝜕𝐿
∂𝑊

: the partial derivative of the loss with respect to the 
weights 

Eventually, the size of local errors at layer x will be equal 
to the size of its output while the error is backpropagated 
through the layers.  At this stage, we analyze what happens in 
the forward and backward pass only at the critical pool2 layer, 
as illustrated in Fig. 2. 

The original sizes of tensors utilized is of order four. 
However, in Fig. 2, it can be noted that only the first and 
second dimensions of those tensors are demonstrated as these 
are the ones that are affected by different implementations. 

1) Forward pass: During the forward pass, it can be 
noticed that the sliding 3 × 3 window with stride 3 on an 
input of 8 × 8 (which is the output size of the previous conv 
layer) can accommodate only the first six rows and columns. 
Thus, we need to truncate or crop the last two rows and 
columns to obtain a new input 6 × 6 for the pool2 layer and 
this matches the results of pool2 in Table IV. 
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Fig. 2. Backward and Forward Pass at Layer 4 for Model 1. 

2) Backward pass: For the backward pass, using Eq.(5), it 
is found that the local error or the local gradient of pool2 layer 
has a size 2 × 2 as shown in Table IV. At the same layer, the 
local error δ𝑥 of conv2 layer (previous layer) will be 
computed also using Eq. (5). The reason of doing this 
calculation at pool2 and not at the conv2 layer is the fact that 
in the forward pass from conv2 to pool2 the only process 
involves was down-sampling through pooling. Thus, there will 
be no change in weights or bias. Hence, it is easy to see that 
the local errors of conv2 can be obtained by up-sampling the 
local errors of pool2. Using Eq. (5), the local errors of conv2 
is achieved by employing up-sampling on local errors of the 
pool2 layer which is shown in Fig. 2. Now, the Conv2 local 
errors are of size 6 × 6. However, it must be the same size as 
the size of its output, i.e., 8 × 8. By employing the padding 
with zeros it is possible to accomplish the size requirement 
and this was done via a zero-padded error 8 × 8 in Fig. 2. In 
our case, all the weights connected to the right two columns 
and bottom two rows of conv2 output are not going to be 
updated because their local errors δ𝑥 = 0  and from  Eq. (3) 
∂𝐿
∂𝑊

= 0. This is due to the fact that these links did not 
contribute to the final loss as they were cropped in the forward 
pass. This is a major side effect of cropping inputs in the 
scenarios when our choice of hyper-parameter stride does not 
result in an appropriate output size. The next question to be 
investigated is how this will affect the predictive performance. 
The answer of this will be found in the ensuing section. 

VI. IMPLEMENTATION OF MODEL 2 
The architecture of this model will stay the same as the 

previous one with one change in the FLC weights size which 
will become 320 × 10. Table V contains the output sizes in 
the forward and backward pass (as before) after running CNN 
model 2. It can be noticed that the vectorized output of pool2 

has the dimension 4 × 4 × 20 =  320, which explains why 
the FLC layer weights were changed in this architecture. Fig. 
3 illustrates how the forward and backward passes are 
implemented. 

1) Forward pass: In this second strategy of hyper-
parameters implementation, the input padding with four zeros 
is employed in contrast to the cropping process used in model 
1 which results in an input of size 12 × 12. Hence, this makes 
the size compatible with the next layer. Eventually, pooling 
resulted in the output size of 4 × 4 as shown in Table V. 

2) Backward pass: Again as was done in Model 1 
implementation, the pool2 local errors are calculated using Eq. 
(5) which gave a size of 4 × 4 as shown in Table V. Next, up-
sampling was employed to obtain a zero-padded error 12 × 12 
as shown in Fig. 3. One important fact to be noted is that 
unlike the Model 1 implementation, in this case all weights of 
the neurons in conv2 are updated using Eq. (3). Hence, this 
can drastically impact on the predictive performance of model 
2. 

TABLE V. OUTPUT AND GRADIENT SIZES FOR MODEL 2 

Forward Pass 

Output 
size 

20 × 20
×  10 × 50 

10 × 10
× 10
× 50 

8 × 8
× 20
× 50 

4 × 4
× 20
× 50 

10 × 50 

Layer x conv1 pool1 conv2 pool2 FLC 

𝝏𝑳
𝝏𝒙

 
20 × 20
×  10 × 50 

10 × 10
× 10
× 50 

8 × 8
× 20
× 50 

4 × 4
× 20
× 50 

10 × 50 

Backward Pass 
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Fig. 3. Backward and Forward Pass at Layer 4 for Model 2. 

VII. EXPERIMENTS AND RESULTS 
In this section, the performance of the implemented 

Models 1 and 2 is compared in terms of loss, accuracy, and 
processing time. The objective of the experiments is to see the 
effect of padding size and stride at layer 10 which is a 
convolutional layer with the name ‘conv3’. Filter size of three 
is used at the convolution layer. Table VI shows the size of the 
three layers used for Digits dataset. Here, the size of the 
convolution layer is calculated using the formula given in Eq. 
(2). 

TABLE VI. SIZE OF LAYERS IN DIGITS DATASET 

Image 
Dimension  

Padding  
dimension 

Stride 
Size 

Conv. Layer 
Filter Size 

Actual Output 
Size 

28 x 28 

0 

1 5 x 5 5 
2 3 x 3 3 
3 2 x 2 2.33 
4 2 x 2 2 

1 

1 7 x 7 7 
2 4 x 4 4 
3 3 x 3 3 
4 2 x 2 2.5 

2 

1 9 x 9 9 
2 5 x 5 5 
3 3 x 3 3.66 
4 3 x 3 3 

The experiments were performed on several datasets to 
observe the effect of changing padding and stride on all three 
types/sets of accuracies (training, validation, testing). The 
padding values from zero to four and stride values from one to 
four are used for all experiments. It is to be noted that the 
stride value of one is a trivial case and does not cause a 

problem but we keep it for comparison purposes. To achieve 
unbiased results, we first train the architecture with specific 
parameters such as the same padding size in all layers. After 
that, we get the weights of all layers out of which we freeze 
the first nine layers’ weights and then see the effects of 
padding and stride starting from layer 10. 

Results of the first experiment reported in Fig. 4 and Fig. 5 
for Model 1 and Model 2, respectively, show that the 
algorithm is approximately converging in 20 epochs for both 
models. Next, Fig. 6 shows results at the final epoch for the 
two models. Here, it can be observed that model 1 has 
achieved a testing accuracy of 82.62% in contrast to 85.580% 
achieved by the Model 2. The same behavior can also be 
observed while comparing the training and validation 
accuracies of the two models. In Fig. 7 it is found that model 2 
took almost 2 hours 30 minutes to train in contrast to the 2 
hours 38 minutes of training by model 1. Thus, it is concluded 
that model 2 has a faster speed of convergence than model 1. 

 
Fig. 4. Implementation of Model 1 Performance Measures. 
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Fig. 5. Implementation of Model 2 Performance Measures. 

Another important observation from the results in Fig. 4 
and Fig. 5 is that validation accuracy is a bit higher than 
training accuracy, especially in Fig. 5 showing that the trained 
model are more generalized in training. 

In summary, it is observed that model 2 implementation 
has better classification accuracy, processing time, and 
generalization than the ones achieved by model 1. This is 
mainly due to the removal of the 25% conv2 neurons in the 
backward pass as cropping was employed. In contrast, 
padding with zeros used in model 2 keeps all the conv2 
neurons and hence all conv2 parameters were utilized. Hence, 
contributions from all the neurons are included which 
enhances the predictive accuracy of the model. 

Next, bar graphs are presented to see the effects of padding 
and strides in mainly the training and testing accuracies for the 
datasets used. The training accuracy is higher when the stride 
value is equal to 1, as shown in Fig. 8. In general, for all stride 
values, the training accuracy becomes better as the padding 
increases. The same is observed for testing accuracy in Fig. 9, 
and although not shown here, the validation accuracy also 
follows a similar pattern. 

 
Fig. 6. Classification Accuracy of Models 1 and 2. 

By observing Fig. 10, the difference between the training 
and testing accuracy is more when the stride value is four for 
all padding values. The difference reduces when the stride 

value is three, and it is minimum when the stride is 1. Hence, 
we can say that the minimum the stride, the lesser the 
difference between training and testing accuracy. This result is 
intuitive as well because more strides mean more skipping of 
the bits/values and less learning from the training set, which in 
turn reduces the testing accuracy. Similar results were 
observed for other datasets of Merch and CIFAR10 as can be 
seen in Fig. 11 to 13. 

 
Fig. 7. Processing Time of Models 1 and 2. 

 
Fig. 8. Training Accuracy Digits Dataset. 

 
Fig. 9. Testing Accuracy Digits Dataset. 
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Fig. 10. Training and Testing Accuracy. 

 
Fig. 11. FMNIST Accuracies. 

 
Fig. 12. Merch Accuracies. 
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Fig. 13. CIFAR10 Accuracies. 

VIII. CONCLUSION 
In this work, we investigated an important issue as to how 

the performance of a CNN is affected by choice of hyper-
parameters in the case when this choice does not fit the input 
volumes. It was investigated experimentally how the internal 
implementation of hyper-parameters particularly cropping and 
padding the input volumes are going to affect the performance 
measures of CNN. For this purpose, Digits, MNIST, Merch, 
Flowers, and CIFAR-10 datasets were analyzed and the two 
models were compared in terms of classification accuracy, 
processing time, and generalization. It was proved via various 
experiments that the model employing padding of input 
volume has higher accuracy with lesser training time in 
contrast to the model using cropping of input volume. Thus, it 
is concluded that the fair comparison of the performance for 
various CNN methods will be obtained when the hyper-
parameters are set fairly. 
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