
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Constraints on Hyper-parameters in Deep Learning
Convolutional Neural Networks

Ubaid M. Al-Saggaf1*, Abdelaziz Botalb2, Muhammad Faisal3
Muhammad Moinuddin4, Abdulrahman U. Alsaggaf5, Sulhi Ali Alfakeh6

Electricaland Computer Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia1, 2, 4, 5
Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah 21589, Saudi Arabia1, 2, 4, 5

Computer & Information Technology Dept., Dammam Community College
King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia3

Department of Internal Medicine, Child and Adolescent Psychiatrist
Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia6

Abstract—Convolutional Neural Network (CNN), a type of
Deep Learning, has a very large number of hyper-meters in
contrast to the Artificial Neural Network (ANN) which makes the
task of CNN training more demanding. The reason why the task
of tuning parameters optimization is difficult in the CNN is the
existence of a huge optimization space comprising a large
number of hyper-parameters such as the number of layers,
number of neurons, number of kernels, stride, padding, rows or
columns truncation, parameters of the backpropagation
algorithm, etc. Moreover, most of the existing techniques in the
literature for the selection of these parameters are based on
random practice which is developed for some specific datasets. In
this work, we empirically investigated and proved that CNN
performance is linked not only to choosing the right hyper-
parameters but also to its implementation. More specifically, it is
found that the performance is also depending on how it deals
when the CNN operations require setting of hyper-parameters
that do not symmetrically fit the input volume. We demonstrated
two different implementations, crop or pad the input volume to
make it fit. Our analysis shows that padding performs better
than cropping in terms of prediction accuracy (85.58% in
contrast to 82.62%) while takes lesser training time (8 minutes
lesser).

Keywords—Neural networks; convolution; pooling; hyper-
parameters; CNN; deep learning; zero-padding; stride; back-
propagation

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have proved to be

the perfect machine learning choice for a wide range of
application fields, such as pattern classification and analysis of
video, image, speech, and text (natural language processing).
However, no doubt using CNNs requires much work
compared to other machine learning solutions such as random
forest, Support Vector Machines, etc. This added work is
primarily due to the vast optimization space of parameters and
hyper-parameters, which interact with each other in a very
complex way. Furthermore, making this problem even more
complex is that there is still no universal, robust theory that
supports hyper-parameters optimization. That would enable us
to choose the right hyper-parameters for the right problem at
hand and give the best performance with less effort and time.
Setting hyper-parameters without robust theory is like

working blindly, as quoted by the German philosopher
Immanuel Kant:

“Experience without theory is blind, but theory without
experience is mere intellectual play”.

Deep convolutional neural networks often have numerous
layers piled on each other and are taught to do a specific task.
At the end of each layer, the network learns a variety of low,
medium, and high-level features. There are several papers in
the literature with different approaches to setting CNN hyper-
parameters, but none of them has presented a generalized and
robust systematic approach to the problem. Thus, hyper-
parameters optimization is not a problem that is ever entirely
solved. This work aims to investigate empirically the impact
of two different strategies to deal with input volume in CNN,
that is, cropping and padding.

II. THE CHALLENGE OF HYPER-PARAMETERS TUNING IN A
CNN

Setting the best CNN hyper-parameters for a particular
classification problem could be challenging. If the results are
not making any sense or bad accuracy was achieved after the
first trial, then there is no prior knowledge about what went
wrong; anything of the following could be a reason:

• Activation function for every layer or set of layers.

• Learning rate.

• Momentum.

• Regularization type and factor value.

• Size of filters in a specific layer(s).

• The stride of convolution or pooling in a particular
layer(s).

• Padding type (e.g., zeros, first and last values, values
repeated cyclically).

• The number of convolution, pooling, and activation
layers in the network.

• Order of layers e.g., conv-conv-pool; or conv-
activation-pool-conv.

*Corresponding Author.

439 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

• Type of cost function.

• The approach to encoding the output is not appropriate.

• Backpropagation gradient implementation is incorrect
(sanity check was not done or was not efficient).

• Dataset was not split correctly into proper ratios.

• Not enough datasets for training.

• Imbalanced dataset.

• Not pre-processed the dataset, e.g., not normalized at
all or normalized incorrectly.

• Wrong label assignment during training could happen
when a new split ratio is needed.

• The performance measure metric is not appropriate for
the given problem.

• The mini-batch size is not appropriate for Stochastic
Gradient Descent.

• Different approaches to weight initialization.

• Maybe CNN is not the right solution to the problem at
hand.

Moreover, often the wrong choice of one hyper-parameter
(e.g., sigmoid activation function) will never let the network
converge no matter how all other hyper-parameters were
chosen. So, it is straightforward to get frustrated and lose in
the hyper-parameter space and this makes CNN debugging a
challenging task. Some heuristics could be used to set the right
hyper-parameters by developing a workflow that enables
quick debugging. These heuristics are just rules of thumb, and
they are not guaranteed to give the best possible results
because the behaviour of the CNN entirely depends on the
specific dataset of a particular problem. Also, this is what
makes it hard to establish one universal solid theory of
defining the appropriate hyper-parameters for any given
problem.

A. Related Work
In contrast to the manual search for finding an optimum set

of hyper-parameter values, automated search approaches were
adopted by many research works, and here we highlight a
small portion of them:

In [1], a grid search method and a manual search technique
were investigated for neural networks and particularly for
deep belief neural networks. According to their findings, the
grid search method is not an optimal choice for setting the
hyper-parameters of the neural networks. On the other hand, it
was found that random search can be used to obtain a baseline
result in order to assess the performance of the other hyper-
parameter optimization methods. In [2], the issue of hyper-
parameters tuning is addressed by formulating the problem as
a constrained optimization task. Then, a derivative-free
optimization technique is opted for tuning the parameters. As
a result, a more accurate and automated technique is
developed for tuning of the hyper-parameters. Moreover, it is
found that this technique is not consistent to achieve the global
optimum. In [3], the Taguchi method was utilized to obtain

optimal hyper-parameters which can provide faster training
and enhanced classification accuracy. In [4], the authors
utilized a Bayesian learning technique by employing Gaussian
process-based sampling to develop a learning model for
designing the tuning parameters of the algorithm. It was
reported that the proposed technique for evaluating the
optimum values of hyper-parameters can provide significantly
faster learning compared to the learning performance of the
baseline methods. In [5], a probabilistic model is developed
that can deal with early learning termination in the case a bad
performance is detected.

Deep convolutional neural networks often have numerous
layers piled on each other and are taught to do the specific
task. At the end of each layer, the network learns a variety of
low, medium, and high-level features.

Different variants of deep neural networks, including
CNN, have been employed on various signal processing and
machine learning tasks. However, their claimed performance
is specific to a certain problem and dataset. In [6], an
evolutionary algorithm was developed for designing of
optimal hyper-parameter for different CNNs and their
performance was investigated on the MNIST dataset. In [7],
the hyper-parameters for the deep neural network were
optimized using Nelder-Mead and coordinate search methods.
In [8], a bandit-based strategy was proposed to solve the task
of hyper-parameter optimization. Datasets CIFAR-10,
MNIST, and Street View House Numbers were investigated
and it is found that the proposed method is faster than the
existing Bayesian optimization algorithms. Another work in
[9] developed a faster algorithm for the tuning of
hyperparameters by employing the strategy of Boolean
functions analysis. Its performance was tested using deep
neural networks on the CIFAR-10 dataset, and they proved
that the proposed technique has much better performance than
the existing baseline methods. In [10], a non-parametric
regression model-based adaptive technique was designed to
calculate the optimum value of the learning hyper-parameters
in a short time. The proposed idea was applied on CNN and it
was shown via various experiments that the proposed
algorithm performs faster than the existing state-of-the-art
techniques. In [11], Bayesian optimization-based generative
model was developed to analyse the validation error w.r.t. the
size of the training data. Again deep neural networks were
utilized to test the performance of this algorithm and it was
shown that the proposed method finds better hyper-parameters
in lesser time. In [12], a novel technique for optimizing the
hyper-parameters was developed which was based on the
combination of the input features. The NMA was used with
CNN for the CIFAR-10 dataset for testing the performance of
the proposed model and it was shown to achieve better
classification accuracy. In [13], the Covariance Matrix
Adaptation Evolution Strategy was used to develop a novel
optimization technique for designing the tuning parameters for
CNN and it is found to be very effective.

There are various techniques in the literature focused on
optimizing the tuning parameters of the CNN. For example, a
Grid Search method was proposed in [14] to optimize the
CNN parameters. A Random Search based optimization of
hyper-parameters of the CNN was proposed in [15]. There

440 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

exist optimization techniques that employ Bayesian
optimization strategy for designing CNN parameters such as
those proposed in [16], [17], [18]. A Differential Evolution
based optimization algorithm was proposed in [19]. A similar
task was obtained using the Harmonic Search method in [20].
Reinforcement learning-based techniques were developed in
[21] and [22]. Recently, in [23], the Micro canonical
Optimization algorithm was employed for the automatic
selection of the hyper-parameters in CNN.

In summary, all these existing works on the selection of
hyper-parameters in CNN are concerned with the development
of any automated algorithm that can provide optimum or near
optimum values of these hyper-parameters. The primary
relevant outcome of these related works is that they always
link the accuracy and performance of the neural network to the
hyper-parameters optimization of the micro and macro-
structural levels of the model. However, we claim that in
addition to the structural levels of the CNN model another
factor affects the accuracy and performance of the model. The
factor is the way of implementation of certain inter-layer
operations in CNN. Our preliminary results on a single dataset
with lesser details were published in [24]. In this work, we
provide a more detailed analysis on various datasets in this
context.

B. Main Contributions
The main contributions of our work can be summarized as

follows:

1) In this work, we provide a framework to empirically
investigate the effect of the way of implementation of certain
inter-layer operations in CNN.

2) More specifically, we compare two different inter-layer
operations namely cropping and padding the input volume to
make it fit for the next layer operation.

3) Our investigation is based on analyzing the CNN
performance in terms of classification accuracy, processing
time, and generalization by implementing two models: one
using crop and the second employing padding of the input
volume on Digits, MNIST, Merch, Flowers, and CIFAR-10
datasets.

4) Our work provides a foundation for future investigation
of the effects of other inter-layer operations in a CNN.

C. Problem Definition
A common practice in the research of deep learning is to

use built-in CNN libraries, such as Tensorflow, Caffe, and
Keras. However, users do not have control over the low-level
implementation of different blocks of CNN which are
implemented differently in different libraries. For example, in
order to deal with input volumes when the stride hyper-
parameter value results in a non-integer pre-calculated output,
there are two standard approaches: first is cropping the
volume and second is padding the volume. To understand
these approaches, consider an example where an input volume
of 90 × 70 × 100 which corresponds to 70 channels with
mini-batch size of 100. The pooling layer with a window size
of 4 × 4 and a stride of 4 is used with no padding. The pre-

calculated dimension for the output of both convolution and
pooling is given as follows (see [25] for the formula used):

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 𝑆𝑖𝑧𝑒 = 𝐼−𝐹+2𝑃
𝑆

 90−4+(2×0)
4

+ 1 = 22.5 (1)

where:

𝐼: Row or column size of the Input volume

𝐹: Row or column size of the filter

𝑃: Zero-padding

𝑆: Stride

It can be observed in the calculation provided in Eq. (1)
that both the axes of the feature map gave the same measure
(22.5). Otherwise, Eq. (1) can be used to calculate the
dimension size separately for each case. It is to be noted that
the calculation of Eq. (1) results in a float number (22.5) for
this example. Thus, the pooling size used was not appropriate
to fit the input volume. This problem can come across in any
layer type and any layer number. Now, it is important to know
how this issue is handled in different libraries. There are three
possible solutions to this issue; the first is to go back to choose
a different value of the hyper-parameter and check again its
feasibility; the second is to crop the input volume in order to
fit the volume for the next layer; and the third is to pad
(usually zero-padding is employed) the volume to fit the
volume. The question is: Are these approaches going to
perform the same? Hence, there are Constraints on choice of
hype-parameters in the design of CNNs.

D. Objectives
The issue to investigate is how both approaches will affect

the network's performance. This will tell us whether non-
optimal performance is purely due to the wrong choice of
hyper-parameters or is it also partially due to how the library
is handling that type of hyper-parameters (that gives a non-
integer value for the pre-calculated output). The outcome of
this work will be a reference for both CNN library users and
those designing CNNs and other deep learning paradigms
from scratch.

Two models are going to be implemented from scratch, the
first model implementation will involve the first approach that
crops the input volume, and the second model will present the
implementation of the second approach that involves zero-
padding the input.

III. DATASETS
The used datasets in this work are Digits, MNIST, Merch,

Flowers, and CIFAR-10. The MNIST dataset contains 70,000
images of handwritten digits having a size of 28 × 28. For
machine learning applications, this dataset is split into 60%,
25%, and 15% for training, validation, and testing,
respectively. The dataset is almost balanced among different
classes, so the performance measure will not be misleading, at
least from this side. Also, different image size datasets were
chosen with a small to a reasonably large number of images.
The number of classes ranges from 5 to 10. Table I. shows
some of the characteristics of the datasets used. The
experiments for the rest of the datasets were performed using

441 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

the original images and no transformation such as conversion
to grayscale, rotation, etc. has been performed.

TABLE I. CHARACTERISTICS OF DATASETS USED

Dataset Image dimension Classes Total images

Merch 227 x 227 5 75

Flowers 224 x 224 5 3670

CIFAR-10 32 x 32 10 60,000

Digits 28 x 28 10 10,000

MNIST 28 x 28 10 70,000

IV. TERMINOLOGIES
There are terms used in the paper and what they entail for

each one in the experiments. The terms are Channels, Filter,
Stride, Padding, Dilation Factor, Output Size, Number of
Neurons, Network Architecture, and Layer Size Calculation.
Which are used from the MATLAB software [26].

We start by channels; if the number of channels is one,
then the images are grayscale whereas it is three for colored
images referring to the RGB spectrum. The filter convolves
the input where a set of weights are applied to a specific image
area. It can move either in horizontal or vertical directions or
both at the same time. Stride determines the movement of the
filter. The step size with which the filter moves determines the
size of the output. Usually, the size of output reduces with
increasing strides. The stride value is usually specified as an
integer rather than a decimal. Padding refers to adding values
on the border of images horizontally and/or vertically. It is
used to control the output size of the layers. The dilation factor
is the number of spaces used inside the filter. It expands the

filter by inserting zeros between the filter elements. The
adequate size of the filter can be computed as (𝐹𝑖𝑙𝑡𝑒𝑟 𝑆i𝑧e −
1) ∗ 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 + 1. A 3 × 3 filter with a dilation
factor of 2 in horizontal and vertical directions is equivalent to
a 5 × 5 filter having 0s between the elements. The output
height and width of a convolutional layer can be computed
using the following relation:

𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑧𝑒 = 𝐼−(𝐹−1)∗𝐷𝐹+1+2𝑃
𝑆

+ 1 (2)

where 𝐷𝐹 represents the Dilation Factor. This calculation
needs to be done separately for the x- and y-direction if they
are not the same. The output size needs to be an integer value
and MATLAB discards the remaining part if it is not an
integer.

The total number of neurons in a convolutional layer is
(ℎ ∗ 𝑤 ∗ 𝑐 + 1) ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟𝑠, where ℎ and 𝑤 are the
height and width of the filter, 𝑐 is the number of channels and
1 is the bias. A convolutional layer with five filters and a filter
size of 3 × 3 for colored images has a total number of neurons
equal to (3 × 3 × 3 + 1) × 5 = 140. A Convolutional Neural
Network (CNN) can have one or more layers depending on the
size and complexity of the data. A small network with one or
two layers is reasonable for small grayscale datasets whereas a
complex architecture of layers is required for a dataset having
millions of images. Considering the datasets used, we choose
a series of 15-layer Convolutional Neural Network (CNN)
architecture. It is an architecture of a deep network with all
layers connected sequentially. Since we have categorical
responses, softmax and classification layers are used at the
end. A snapshot of this architecture when run on the Digits
dataset in MATLAB is shown in Fig. 1. Also, the parameters
used for such architecture are shown in Table II.

Fig. 1. 15-Layer CNN Architecture on Digits Dataset.

442 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

TABLE II. PARAMETERS OF THE CNN USED

Parameter Value

InitialLearnRate 0.01

MaxEpochs 6

MiniBatchSize 100

The padding and stride are considered the same in both
directions in all experiments. The output size needs an integer
value to cover the whole image. If it does not cover the whole
image, then the MATLAB software ignores the remaining part
along the right and bottom edges in the convolution. The
objective of the experiments is to see the effect of this
coverage on accuracies while changing the padding size and
stride values. The dilation factor is set as one in all
experiments. For example, suppose the image size is 32 × 32
and the filter of 5 × 5 is used in the convolution. If the
padding value is two and the stride is 2 in each direction, then
the output size is calculated as.

�32– �(5– 1) ∗ 1 + 1� + 2 ∗ 2�/2 + 1 = (32– 5 + 4)/2 + 1 = 16.5

In this case, the output size will become 16 × 16 and some
of the zero paddings are discarded from the right and bottom
of the image.

V. IMPLEMENTATION OF MODEL 1
The initial weights are saved so that the same weights

should be used for the implementation of both strategies. Also,
this is to ensure that the comparison should be fair and should
be affected by only cropping or padding and not by any other
factors. Moreover, neither regularization nor momentum of
any form was used for the same reason of fair comparison.
The details of the CNN architecture employed for Model 1 in
our implementation are provided in Table III.

TABLE III. MODEL 1 ARCHITECTURE

Layer
Type Conv1 Pool1 Conv2 Pool2 FLC

Size of
Filter 9 × 9 2 × 2 3 × 3 3 × 3 80 × 10

Depth of
Filter 1 10 10 20 N/A

Number of
Filters 10 N/A 20 N/A N/A

Stride 1 2 1 3 N/A

Zero
Padding 0 0 0 0 N/A

Input volume size: 28 × 28 × 1 × 50 Pooling type: mean

To simplify the study, hyper-parameters of the last pooling
layer are selected to investigate the impact of padding and
cropping (this analysis can be applied to any other layer too).
By using Eq. (1), the pre-calculated output sizes of every layer
are integer values except for pool2 which is a float number
2.66. To see more details, let us run the CNN and see what the
output size in the forward and backward pass will be and this
is summarized in Table IV.

TABLE IV. OUTPUT AND GRADIENT SIZES FOR MODEL 1

Forward Pass

Output
size

20 × 20
× 10 × 50

10 × 10
× 10
× 50

8 × 8
× 20
× 50

2 × 2
× 20
× 50

10 × 50

Layer x conv1 pool1 conv2 pool2 FLC

𝝏𝑳
𝝏𝒙

20 × 20
× 10 × 50

10 × 10
× 10
× 50

8 × 8
× 20
× 50

2 × 2
× 20
× 50

10 × 50

Backward Pass

The results of Table IV show the size of outputs at
different layers and it can be noted that all sizes are tensors of
order four except the first layer. The term 𝝏𝑳

𝝏𝒙
 evaluates the

partial derivative of the loss function with respect to the output
x which gives the expression in terms of the local error (δ𝑥) in
that neuron (note that x here is a feature map of neurons). The
local error of every neuron is multiplied by its input in order to
backpropagate the error influence. This can be summarized as:
∂𝐿
∂𝑊

= δ𝑥 ∗ 𝐼𝑛 (1)

For output layer δ𝑥 = δ𝑥 × 𝑓′(𝑥) (2)

For any hidden layer δ𝑥 = δ𝑥+1 ∗ 𝑊𝑥+1 × 𝑓′(𝑥) (3)

where:

𝑓′(.): the derivative of the activation function.

𝑊𝑥+1: the weight matrix of the next layer.

 δ𝑥: local error tensor of the current layer.

δ𝑥+1: local error tensor of next layer.

𝑙𝑛: is the input tensor to layer 𝑥.
𝜕𝐿
∂𝑊

: the partial derivative of the loss with respect to the
weights

Eventually, the size of local errors at layer x will be equal
to the size of its output while the error is backpropagated
through the layers. At this stage, we analyze what happens in
the forward and backward pass only at the critical pool2 layer,
as illustrated in Fig. 2.

The original sizes of tensors utilized is of order four.
However, in Fig. 2, it can be noted that only the first and
second dimensions of those tensors are demonstrated as these
are the ones that are affected by different implementations.

1) Forward pass: During the forward pass, it can be
noticed that the sliding 3 × 3 window with stride 3 on an
input of 8 × 8 (which is the output size of the previous conv
layer) can accommodate only the first six rows and columns.
Thus, we need to truncate or crop the last two rows and
columns to obtain a new input 6 × 6 for the pool2 layer and
this matches the results of pool2 in Table IV.

443 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 2. Backward and Forward Pass at Layer 4 for Model 1.

2) Backward pass: For the backward pass, using Eq.(5), it
is found that the local error or the local gradient of pool2 layer
has a size 2 × 2 as shown in Table IV. At the same layer, the
local error δ𝑥 of conv2 layer (previous layer) will be
computed also using Eq. (5). The reason of doing this
calculation at pool2 and not at the conv2 layer is the fact that
in the forward pass from conv2 to pool2 the only process
involves was down-sampling through pooling. Thus, there will
be no change in weights or bias. Hence, it is easy to see that
the local errors of conv2 can be obtained by up-sampling the
local errors of pool2. Using Eq. (5), the local errors of conv2
is achieved by employing up-sampling on local errors of the
pool2 layer which is shown in Fig. 2. Now, the Conv2 local
errors are of size 6 × 6. However, it must be the same size as
the size of its output, i.e., 8 × 8. By employing the padding
with zeros it is possible to accomplish the size requirement
and this was done via a zero-padded error 8 × 8 in Fig. 2. In
our case, all the weights connected to the right two columns
and bottom two rows of conv2 output are not going to be
updated because their local errors δ𝑥 = 0 and from Eq. (3)
∂𝐿
∂𝑊

= 0. This is due to the fact that these links did not
contribute to the final loss as they were cropped in the forward
pass. This is a major side effect of cropping inputs in the
scenarios when our choice of hyper-parameter stride does not
result in an appropriate output size. The next question to be
investigated is how this will affect the predictive performance.
The answer of this will be found in the ensuing section.

VI. IMPLEMENTATION OF MODEL 2
The architecture of this model will stay the same as the

previous one with one change in the FLC weights size which
will become 320 × 10. Table V contains the output sizes in
the forward and backward pass (as before) after running CNN
model 2. It can be noticed that the vectorized output of pool2

has the dimension 4 × 4 × 20 = 320, which explains why
the FLC layer weights were changed in this architecture. Fig.
3 illustrates how the forward and backward passes are
implemented.

1) Forward pass: In this second strategy of hyper-
parameters implementation, the input padding with four zeros
is employed in contrast to the cropping process used in model
1 which results in an input of size 12 × 12. Hence, this makes
the size compatible with the next layer. Eventually, pooling
resulted in the output size of 4 × 4 as shown in Table V.

2) Backward pass: Again as was done in Model 1
implementation, the pool2 local errors are calculated using Eq.
(5) which gave a size of 4 × 4 as shown in Table V. Next, up-
sampling was employed to obtain a zero-padded error 12 × 12
as shown in Fig. 3. One important fact to be noted is that
unlike the Model 1 implementation, in this case all weights of
the neurons in conv2 are updated using Eq. (3). Hence, this
can drastically impact on the predictive performance of model
2.

TABLE V. OUTPUT AND GRADIENT SIZES FOR MODEL 2

Forward Pass

Output
size

20 × 20
× 10 × 50

10 × 10
× 10
× 50

8 × 8
× 20
× 50

4 × 4
× 20
× 50

10 × 50

Layer x conv1 pool1 conv2 pool2 FLC

𝝏𝑳
𝝏𝒙

20 × 20
× 10 × 50

10 × 10
× 10
× 50

8 × 8
× 20
× 50

4 × 4
× 20
× 50

10 × 50

Backward Pass

444 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 3. Backward and Forward Pass at Layer 4 for Model 2.

VII. EXPERIMENTS AND RESULTS
In this section, the performance of the implemented

Models 1 and 2 is compared in terms of loss, accuracy, and
processing time. The objective of the experiments is to see the
effect of padding size and stride at layer 10 which is a
convolutional layer with the name ‘conv3’. Filter size of three
is used at the convolution layer. Table VI shows the size of the
three layers used for Digits dataset. Here, the size of the
convolution layer is calculated using the formula given in Eq.
(2).

TABLE VI. SIZE OF LAYERS IN DIGITS DATASET

Image
Dimension

Padding
dimension

Stride
Size

Conv. Layer
Filter Size

Actual Output
Size

28 x 28

0

1 5 x 5 5
2 3 x 3 3
3 2 x 2 2.33
4 2 x 2 2

1

1 7 x 7 7
2 4 x 4 4
3 3 x 3 3
4 2 x 2 2.5

2

1 9 x 9 9
2 5 x 5 5
3 3 x 3 3.66
4 3 x 3 3

The experiments were performed on several datasets to
observe the effect of changing padding and stride on all three
types/sets of accuracies (training, validation, testing). The
padding values from zero to four and stride values from one to
four are used for all experiments. It is to be noted that the
stride value of one is a trivial case and does not cause a

problem but we keep it for comparison purposes. To achieve
unbiased results, we first train the architecture with specific
parameters such as the same padding size in all layers. After
that, we get the weights of all layers out of which we freeze
the first nine layers’ weights and then see the effects of
padding and stride starting from layer 10.

Results of the first experiment reported in Fig. 4 and Fig. 5
for Model 1 and Model 2, respectively, show that the
algorithm is approximately converging in 20 epochs for both
models. Next, Fig. 6 shows results at the final epoch for the
two models. Here, it can be observed that model 1 has
achieved a testing accuracy of 82.62% in contrast to 85.580%
achieved by the Model 2. The same behavior can also be
observed while comparing the training and validation
accuracies of the two models. In Fig. 7 it is found that model 2
took almost 2 hours 30 minutes to train in contrast to the 2
hours 38 minutes of training by model 1. Thus, it is concluded
that model 2 has a faster speed of convergence than model 1.

Fig. 4. Implementation of Model 1 Performance Measures.

445 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 5. Implementation of Model 2 Performance Measures.

Another important observation from the results in Fig. 4
and Fig. 5 is that validation accuracy is a bit higher than
training accuracy, especially in Fig. 5 showing that the trained
model are more generalized in training.

In summary, it is observed that model 2 implementation
has better classification accuracy, processing time, and
generalization than the ones achieved by model 1. This is
mainly due to the removal of the 25% conv2 neurons in the
backward pass as cropping was employed. In contrast,
padding with zeros used in model 2 keeps all the conv2
neurons and hence all conv2 parameters were utilized. Hence,
contributions from all the neurons are included which
enhances the predictive accuracy of the model.

Next, bar graphs are presented to see the effects of padding
and strides in mainly the training and testing accuracies for the
datasets used. The training accuracy is higher when the stride
value is equal to 1, as shown in Fig. 8. In general, for all stride
values, the training accuracy becomes better as the padding
increases. The same is observed for testing accuracy in Fig. 9,
and although not shown here, the validation accuracy also
follows a similar pattern.

Fig. 6. Classification Accuracy of Models 1 and 2.

By observing Fig. 10, the difference between the training
and testing accuracy is more when the stride value is four for
all padding values. The difference reduces when the stride

value is three, and it is minimum when the stride is 1. Hence,
we can say that the minimum the stride, the lesser the
difference between training and testing accuracy. This result is
intuitive as well because more strides mean more skipping of
the bits/values and less learning from the training set, which in
turn reduces the testing accuracy. Similar results were
observed for other datasets of Merch and CIFAR10 as can be
seen in Fig. 11 to 13.

Fig. 7. Processing Time of Models 1 and 2.

Fig. 8. Training Accuracy Digits Dataset.

Fig. 9. Testing Accuracy Digits Dataset.

94

95

96

97

98

99

100

1 2 3 4

T
ra

in
in

g
A

cc
ur

ac
y

(%
)

Stride

Digits Dataset

0

1

2

3

4

91
92
93
94
95
96
97
98
99

100

1 2 3 4

T
es

tin
g

A
cc

ur
ac

y
(%

)

Stride

Digits Dataset

0

1

2

3

4

446 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 10. Training and Testing Accuracy.

Fig. 11. FMNIST Accuracies.

Fig. 12. Merch Accuracies.

91

92

93

94

95

96

97

98

99

100

1 2 3 4

T
ra

in
 a

nd
 T

es
t A

cc
. (

%
)

Stride

Digits Dataset

0 - Max of TrAvg.

0 - Max of TstAvg.

1 - Max of TrAvg.

1 - Max of TstAvg.

2 - Max of TrAvg.

2 - Max of TstAvg.

3 - Max of TrAvg.

3 - Max of TstAvg.

4 - Max of TrAvg.

4 - Max of TstAvg.

Stride0
20
40
60
80

100

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

A
cc

ur
ac

y
(%

)

Padding

MNIST

Stride TrAvg. ValAvg. TstAvg.

Stride0

20

40

60

80

100

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

A
cc

ur
ac

y
(%

)

Padding

Merch

Stride TrAvg. ValAvg. TstAvg.

447 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Fig. 13. CIFAR10 Accuracies.

VIII. CONCLUSION
In this work, we investigated an important issue as to how

the performance of a CNN is affected by choice of hyper-
parameters in the case when this choice does not fit the input
volumes. It was investigated experimentally how the internal
implementation of hyper-parameters particularly cropping and
padding the input volumes are going to affect the performance
measures of CNN. For this purpose, Digits, MNIST, Merch,
Flowers, and CIFAR-10 datasets were analyzed and the two
models were compared in terms of classification accuracy,
processing time, and generalization. It was proved via various
experiments that the model employing padding of input
volume has higher accuracy with lesser training time in
contrast to the model using cropping of input volume. Thus, it
is concluded that the fair comparison of the performance for
various CNN methods will be obtained when the hyper-
parameters are set fairly.

ACKNOWLEDGMENT
The authors extend their appreciation to the Deputyship for

Research and Innovation, Ministry of Education in Saudi
Arabia, for funding this research work through the project
number (IFPRC-118-135-2020) and King Abdulaziz
University, DSR, Jeddah, Saudi Arabia.

FUNDING STATEMENT
This research work is funded by Institutional Fund Projects

by the Ministry of Education, Saudi Arabia, under grant no.
(IFPRC-118-135-2020).

CONFLICT OF INTEREST
The authors declare that the research was conducted in the

absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

REFERENCES
[1] J. Bergstra and Y. Bengio, "Random search for hyper-parameter

optimization," Journal of Machine Learning Research, vol. 13, no. Feb,
pp. 281-305,2012.

[2] G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz, "An
effective algorithm for hyperparameter optimization of neural

networks," IBM Journal of Research and Development, vol. 61, no. 4,
pp. 9-1, 2017.

[3] J. F. Khaw, B. Lim, and L. E. Lim, "Optimal design of neural networks
using the taguchi method," Neurocomputing, vol. 7, no. 3, pp. 225-
245,1995.

[4] J. Snoek, H. Larochelle, and R. P. Adams, "Practical bayesian
optimization of machine learning algorithms," in Advances in neural
information processing systems, pp. 2951-2959, 2012.

[5] T. Domhan, J. T. Springenberg, and F. Hutter, "Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation
of learning curves.," in IJCAI, vol. 15, pp. 3460-8, 2015.

[6] E. Bochinski, T. Senst, and T. Sikora, "Hyper-parameter optimization
for convolutional neural network committees based on evolutionary
algorithms," in Image Processing (ICIP), 2017 IEEE International
Conference on, pp. 3924-3928, IEEE, 2017.

[7] Y. Ozaki, M. Yano, and M. Onishi, "Effective hyperparameter
optimization using nelder-mead method in deep learning," IPSJ
Transactions on Computer Vision and Applications, vol. 9, no. 1, p. 20,
2017.

[8] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
"Hyperband: A novel bandit-based approach to hyperparameter
optimization," arXiv preprint arXiv:1603.06560, 2016.

[9] E. Hazan, A. Klivans, and Y. Yuan, "Hyperparameter optimization: A
spectral approach," arXiv preprint arXiv:1706.00764, 2017.

[10] A. F. Cardona-Escobar, A. F. Giraldo-Forero, A. E. Castro-Ospina, and
J. A. Jaramillo-Garzon, "Effcient hyperparameter optimization in
convolutional neural networks by learning curves prediction” in
Iberoamerican Congress on Pattern Recognition, pp. 143-151, Springer,
2017.

[11] A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter, et al., "Fast
bayesian hyperparameter optimization on large datasets," Electronic
Journal of Statistics, vol. 11, no. 2, pp. 4945-4968, 2017.

[12] S. Albelwi and A. Mahmood, "Automated optimal architecture of deep
convolutional neural networks for image recognition," in Machine
Learning and Applications (ICMLA), 2016 15th IEEE International
Conference on, pp. 53-60, IEEE, 2016.

[13] I. Loshchilov and F. Hutter, "Cma-es for hyperparameter optimization of
deep neural networks," arXiv preprint arXiv:1604.07269, 2016.

[14] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,``An
empirical evaluation of deep architectures on problems with many
factors of variation,'' in Proc. 24th Int. Conf. Mach. Learn. (ICML),
2007, pp. 473_480.

[15] J. Bergstra and Y. Bengio, ``Random search for hyper-parameter
optimization,'' J. Mach. Learn. Res., vol. 13, pp. 281_305, Feb. 2012.

Stride0

20

40

60

80

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

A
cc

ur
ac

y
(%

)

Padding

CIFAR10

Stride TrAvg. ValAvg. TstAvg.

448 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

[16] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ``Algorithms for
hyperparameter optimization,'' in Proc. Adv. Neural Inf. Process. Syst.,
2011, pp. 2546_2554.

[17] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ``Sequential model-based
optimization for general algorithm con_guration,'' in Proc. Int. Conf.
Learn. Intell. Optim. Berlin, Germany: Springer, 2011, pp. 507-523.

[18] M. W. Hoffman and B. Shahriari, ``Modular mechanisms for Bayesian
optimization,'' in Proc. NIPS Workshop Bayesian Optim., 2014, pp. 1-5.

[19] B. Wang, Y. Sun, B. Xue, and M. Zhang, ``A hybrid differential
evolution approach to designing deep convolutional neural networks for
image classification,'' in Proc. Australas. Joint Conf. Artif. Intell. Cham,
Switzerland: Springer, 2018, pp. 237-250.

[20] W.-Y. Lee, S.-M. Park, and K.-B. Sim, ``Optimal hyperparameter tuning
of convolutional neural networks based on the parameter-setting-free
harmony search algorithm,'' Optik, vol. 172, pp. 359_367, Nov. 2018.

[21] B. Baker, O. Gupta, N. Naik, and R. Raskar, ``Designing neural network
architectures using reinforcement learning,'' 2016, arXiv:1611.02167.
[Online]. Available: http://arxiv.org/abs/1611.02167.

[22] P. Neary, ``Automatic hyperparameter tuning in deep convolutional
neural networks using asynchronous reinforcement learning,'' in Proc.
IEEE Int. Conf. Cognit. Comput. (ICCC), Jul. 2018, pp. 73-77.

[23] A. Gülcü and Z. KUş, "Hyper-Parameter Selection in Convolutional
Neural Networks Using Microcanonical Optimization Algorithm," in
IEEE Access, vol. 8, pp. 52528-52540, 2020, doi:
10.1109/ACCESS.2020.2981141.

[24] U. M. Al-Saggaf, A. Botalb, M. Moinuddin, S. A. Alfakeh, S. S. A. Ali
and T. T. Boon, "Either crop or pad the input volume: What is beneficial
for Convolutional Neural Network?," 2020 8th International Conference
on Intelligent and Advanced Systems (ICIAS), 2021, pp. 1-6, doi:
10.1109/ICIAS49414.2021.9642661.

[25] V. Dumoulin and F. Visin, "A guide to convolution arithmetic for deep
learning," arXiv preprint arXiv:1603.07285, 2016.

[26] “Specify Layers of Convolutional Neural Network,” Specify Layers of
Convolutional Neural Network - MATLAB & Simulink, 2022. [Online].
Available: https://www.mathworks.com/help/deeplearning/ug/layers-of-
a-convolutional-neural-network.html.

449 | P a g e
www.ijacsa.thesai.org

http://arxiv.org/abs/1611.02167

	I. Introduction
	II. The Challenge of Hyper-Parameters Tuning in A CNN
	A. Related Work
	B. Main Contributions
	1) In this work, we provide a framework to empirically investigate the effect of the way of implementation of certain inter-layer operations in CNN.
	2) More specifically, we compare two different inter-layer operations namely cropping and padding the input volume to make it fit for the next layer operation.
	3) Our investigation is based on analyzing the CNN performance in terms of classification accuracy, processing time, and generalization by implementing two models: one using crop and the second employing padding of the input volume on Digits, MNIST, Merch,�
	4) Our work provides a foundation for future investigation of the effects of other inter-layer operations in a CNN.

	C. Problem Definition
	D. Objectives

	III. Datasets
	IV. Terminologies
	V. Implementation of Model 1
	1) Forward pass: During the forward pass, it can be noticed that the sliding 3×3 window with stride 3 on an input of 8×8 (which is the output size of the previous conv layer) can accommodate only the first six rows and columns. Thus, we need to truncate or�
	2) Backward pass: For the backward pass, using Eq.(5), it is found that the local error or the local gradient of pool2 layer has a size 2×2 as shown in Table IV. At the same layer, the local error ,δ-𝑥. of conv2 layer (previous layer) will be computed als�

	VI. Implementation of Model 2
	1) Forward pass: In this second strategy of hyper-parameters implementation, the input padding with four zeros is employed in contrast to the cropping process used in model 1 which results in an input of size 12×12. Hence, this makes the size compatible wi�
	2) Backward pass: Again as was done in Model 1 implementation, the pool2 local errors are calculated using Eq. (5) which gave a size of 4×4 as shown in Table V. Next, up-sampling was employed to obtain a zero-padded error 12×12 as shown in Fig. 3. One impo�

	VII. Experiments and Results
	VIII. Conclusion
	Acknowledgment
	Funding Statement
	Conflict of Interest
	References

