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Abstract—The effective loading area decreases because of 

cracking, leading to a rise in stress and eventual structural 

failure. Monitoring for cracks is an important part of keeping 

any pipeline or building in excellent working order. There are 

several obstacles that make manual inspection and monitoring of 

subsea pipes challenging. The fundamental objective of this study 

is to create a relatively inexpensive underwater vehicle that can 

use an image processing technique to reliably spot cracks on the 

exteriors of industrial pipes. The tasks involved in this project 

include the planning, development, and testing of an underwater 

vehicle that can approach the circular pipes, take pictures, and 

determine whether there are fractures. In this project, we will 

utilize the Canny edge detection technique to identify the crack. 

The system could function in either an online or offline mode. 

Using a Raspberry Pi and a camera, the paper will discuss the 

procedures followed to locate the pipe cracks that activate the 

underwater vehicle. While Python is used for image processing to 

capture photographs, analyze images, and expose flaws in 

particular images, the underwater vehicle's movement will be 

controlled via a connected remote control. When the physical 

model has been built and tested, the results are recorded, and the 

system's benefits and shortcomings are discussed. 

Keywords—Crack detection; pipeline; underwater vehicle: 

image processing; Raspberry Pi; canny edge detection 

I. INTRODUCTION 

As certain countries start an economic growth period, a 
subsequent increase in energy demand is anticipated. The 
infrastructure that supports energy production expands to meet 
the growing needs of the world's energy consumers. Subsea 
natural gas production is gaining popularity as a means of 
accommodating this growth. As a result, there will be an even 
higher need for resources like human workers, capital, and 
expertise. These days, robots are being utilized extensively in 
a wide range of fields [1-6]. Even in the oil and gas industry, 
robotic assistance is becoming commonplace. By decreasing 
the need for human intervention while simultaneously 
boosting operational efficiency and safety, inspection robots 
are being employed to carry out inspection and maintenance 
activities on industrial property. Technology advancements in 

the field of inspection robotics have made the oil and gas 
industry more productive, secure, and dependable. 

Extraction of petroleum from subterranean sources and 
transportation to the surface is a complex process that requires 
a wide range of structures and systems to work together. 
When conducting such tasks, it is essential to do so while 
minimizing costs and environmental damage as much as 
feasible. Transmission of oil and gas across great distances is 
essential, and subsea pipelines play a key role in this process 
[7]. 

From an economic, safety, and environmental perspective, 
pipelines could be regarded as the most ideal means of 
transporting petroleum fluids from underwater structures to 
floating manufacturing plants during exploration and from 
these sites to land oil refineries. The diameter and length of 
these pipelines, as well as operating pressures, subsea terrains, 
undersea conditions, and fluid properties, all have a significant 
impact on the price of subsea pipelines. The price of building 
a subsea pipeline varies depending on these factors, from 
several hundred dollars per kilometer to many millions of 
dollars per kilometer [7]. 

Several obstacles make it hard to inspect and monitor 
underwater pipelines. The area in which a pipeline may be 
situated for decades is complex and full of potential hazards, 
and problems can occur at any time during the pipe's lifetime. 
Damage to the pipeline might be caused by debris that falls 
from the topside. The pipeline might get caught on ship 
anchors or dragged by fishing gear that drags the ocean floor. 
Erosion of the soil beneath the pipeline by ocean currents can 
lead to free spanning, in which the pipeline is no longer 
supported anywhere but at its beginning and terminus. 
Corrosion and erosion can be caused by the inner fluids, 
which are often acidic and contain abrasive sand particles 
travelling at high speeds. Cracks in the pipe wall can occur 
because of such circumstances. Significant damage can be 
avoided if the crack or fracture is monitored on a regular basis, 
and the pipe's life can be extended with good treatment. Even 
seemingly tiny cracks can expand and finally lead to serious 
structural failure [8, 9]. Therefore, inspection and monitoring 
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activities must be carried out to ensure that no cracks or 
defects develop, as this might lead to serious implications for 
the industry, such as explosions and fires caused by the 
discharge of toxic gases and liquids. 

In consideration of all these issues, it's crucial to 
constantly check pipelines and install monitoring equipment. 
Once the system is in place, it might be difficult to inspect the 
subsea pipeline due to the often-considerable water depths. 
Many useful inspection technologies cannot be delivered to 
the pipeline because they rely on costly and potentially risky 
equipment and methods. It would be impractical to strip away 
coating layers for routine inspection if the pipeline was 
multilayered and buried a few thousand feet below the ocean's 
surface. Pipelines can be inspected internally using inline 
inspection, but the benefit of doing so must be evaluated 
against the cost of shutting the pipeline down. In most cases, it 
would be preferable and more cost-effective to use a less 
invasive screening inspection or monitoring tool that provides 
a more comprehensive overview of the pipeline and 
recommends which regions may require additional attention. 

Several studies on remotely operated vehicles (ROVs) for 
maritime research have recently been published [10-14]. In 
offshore sectors, such as oil and gas, marine structures, marine 
sciences, naval security, marine renewable energy, and 
research reasons, ROVs have been employed for underwater 
intervention, repair, and maintenance activities. ROVs are 
used in submarine applications to track mines and are 
programmed to do high-risk activities by executing algorithms 
for prediction, diagnosis, and classification. Other research 
initiatives have concentrated on underwater surveillance, and 
they are set up to manage continuous tasks with defined goals 
[10]. ROVs can also be used to capture underwater 
photographs, for which there are now open research lines [10]. 
Several detection techniques utilizing image processing with 
deep learning have previously been deployed by mounting 
cameras on ROVs to detect fractures in infrastructure such as 
walls and pipelines, but results can still vary due to ambient 
factors such as illumination [15]. As a result, researchers are 
becoming more interested in crack detection investigations to 
improve detection approaches [16-20]. Despite the 
tremendous improvements made in the various fields of use 
and development of ROVs, the wide range of specialties that 
come into play in obtaining maximum performance makes it a 
rich topic for research. The accurate sensing of underwater 
applications is currently a hot issue in academia. 

The primary aim of this research is to develop a low-cost 
underwater vehicle that can accurately detect cracks on 
industrial pipe surfaces by using a Raspberry Pi as an 
embedded controller, which can be programmed using open-
source software, is inexpensive, has multiprocessing 
capabilities, and can be programmed in Python. Several 
parameters, such as the optimal distance and angle between 
the camera and the object, will be examined in the 
experimental section. At the end of the paper, two offline and 
real-time online monitoring systems will be presented and 
discussed. 

II. LITERATURE REVIEW 

Multiple mode nonlinear guided waves have already been 
investigated and published by several academics for the 
purpose of detecting fatigue cracks in pipes [21]. Guan R et al. 
provided in-depth analyses of guided wave propagation and 
interaction with microcrack in a pipe structure using numerical 
and experimental methods. The simulation model incorporated 
a third-order elastic constant and a seam crack to account for 
material nonlinearity and CAN. Piezoelectric transducers and 
a nonlinear signal collection system were employed in the 
acquisition of wave nonlinearity experiments. Both theoretical 
and empirical evidence demonstrated the nonlinearity 
produced by a 'breathing' fracture, and the identification of 
several second harmonic waves was distinct from the findings 
of a previous investigation in a plate structure. In order to 
quantify nonlinearity in pipe structures, a new nonlinear index 
has been introduced [21]. 

Concerns about the stability, longevity, and functionality 
of a structure are often prompted by the appearance of cracks. 
The effective loading area decreases as fractures develop and 
spread, leading to a rise in stress and, finally, structural failure. 
Nhat-Duc Hoang proposed a model [22] for employing image 
processing to spot fracture faults on the exterior of structures. 
When dealing with digital images for fracture analysis, 
common problems such as low contrast, uneven illumination, 
and noise pollution during image processing render the 
conventional Otsu approach useless. Min-Max Gray Level 
Discrimination is an image enhancement algorithm used in the 
new model to enhance the Otsu method (M2GLD). The newly 
developed model can recognize crack objects and assess their 
attributes like area, perimeter, width, length, and orientation. 
Experiments indicate that flaws in testing images were 
appropriately spotted. When used in conjunction with the Otsu 
technique, the M2GLD can significantly improve performance 
[22]. 

Image processing techniques such as Canny edge detection 
can find lines suggesting fractures within the pipe and split the 
images to create a new image that only shows the detected 
fractures, allowing the fractures to be studied. The Canny edge 
detection method will be used to detect the fracture in this 
project. The Raspberry Pi will be used to control the system, 
which will be attached to the underwater vehicle. When 
compared to the slow and subjective human inspection, the 
image processing method for detecting cracks and flaws can 
offer fast and trustworthy results [23-25]. Pipe inspection has 
traditionally been done visually, and there are a few 
drawbacks that may be highlighted, including the fact that it is 
difficult, time-consuming, subjective to the inspector, and only 
provides a qualitative conclusion [26, 27]. 

III. METHODOLOGY 

The areas of technology and science, as well as the world 
of computer programming, can all benefit from the use of 
robots. Developers and researchers are working to make 
robots useful in as many fields as possible [28-30]. Modern 
technology has led to a huge increase in the use of image 
processing tools in the engineering community for a variety of 
purposes, including measurement, robot navigation, and 
others. The research community and industry alike can benefit 
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from this technology. Robotics processing steps are shown in 
Fig. 1, whereas image processing steps are shown in Fig. 2. 
When the camera is activated, the robot will proceed through 
the pipe. If a camera spots a crack, it will take a picture and 
send it to the raspberry pi so it can be analyzed. If a fault or 
crack is found, it will be identified by a comparison of the two 
images. If the system detects a fracture, it will take a picture 
and record the relevant data. If no damage is found, the 
operation will restart with the camera. To begin the process of 
crack detection in Fig. 2, a camera image of the structure was 
first obtained. Prior to data saving, the captured image will be 
uploaded and processed with the Canny edge technique. 

 

Fig. 1. Process Flow for the Robot. 

 

Fig. 2. Image Processing Process Flow. 

 

Fig. 3. Process Block Diagram. 

Fig. 3 depicts the process block diagram used to identify 
pipe cracks. Capturing an image is the initial stage of the 
procedure. The online mode image is captured by the 
Raspberry Pi V2 NoIR camera, while the offline mode image 
is captured by the iPhone XR camera. The procedures will 
thereafter be used both online and offline. There won't be 
many actions taking place in the image processing phase. At 
first, the image will shift from its original RGB color mode to 
a more conventional grayscale. This brings us to our second 
topic: the logarithmic scale. During this procedure, the image 
quality improves as the number of pixels is increased by a 
factor of logarithm. Image smoothing comes last. The term 
"bilateral filter" or "blurring process" can be used to describe 
this technique as well. The edge of the break will be 
maintained during this procedure. 

Moving on to the image segmentation stage, where Canny 
edge detection takes place. Canny edge detection typically has 
three goals, but the researcher here added a fourth one to boost 
the overall image quality. The first thing to look at is the 
image's intensity gradient. Each pixel's gradient vector is 
computed at this step. Second, the suppression that is less than 
maximal. To achieve a width of one pixel, the edge must be 
narrow. Thresholding comes next. First, the morphological 
operator will be reduced, and then the artificial edge. It serves 
to patch up the hiccups to make the main crack look more 
complete. To conclude, we will extract features. SIFT, SURF, 
and ORB are the three primary methods of feature extraction. 
The Oriented Fast and Rotated Brief (ORB) format was 
employed for this study. The object recognition relies on this. 

The Raspberry Pi and ultrasonic sensor connection is 
shown in Fig. 4. The module can be powered by the Pi's 5V 
and Ground pins. In this project, the Pi's GPIO header's pins 2 
and 6 were utilized. The transmission of the ultrasonic pulse is 
started by pressing the "trigger" input pin on the module. The 
general-purpose digital input/output (GPIO) uses a 3.3V 
signal; therefore Pin 16 is directly connected to the trigger 
(GPIO23). A bit more thought must be given to the module's 
"echo" output. The output pin is low before the module does 
its distance measurement (0V). It then maintains this pin high 
(+5V) for the same amount of time that it took for the pulse to 
return. 

This pin's value must therefore be monitored by the script. 
The Pi's inputs prefer 3.3V, but the module uses a +5V level 
for a "high," which is too high. To make sure that the Pi is 
only exposed to 3.3V in this project, a straightforward voltage 
divider can be utilized. This is made with two resistors. If R1 
and R2 are identical, the voltage is divided in half. 2.5V would 
be the voltage as a result. If R2 is twice as large as R1, 3.33V 
will result. The circuit used resistors with resistance values of 
470 and 330 ohms. 

 Pin 2 is directly connected to the connection for +5V. 

 Pin 6 is included into the voltage divider for the Echo 
pin but connects directly to the GND connection. 

 Pin 18 is connected to the voltage divider's center. 

 Pin 16 is used to establish a direct connection to the 
Trig connector. 
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Fig. 4. Ultrasonic Sensor Connection. 

For analyzing digital logic signals, the Raspberry Pi has 
GPIO pins for general-purpose digital input/output. The GPIO 
pins will receive the signal from the 'Echo' output pin. The 
output voltage of the Echo pin is 5V, which is unsafe for use 
with the Raspberry Pi's GPIO pins, which operate at 3.3V. A 
voltage divider is used to divide the signal between two 
connected resistors in a ratio equal to the resistance of the 
circuit, which is then fed to the Pi to generate the required 
voltage. As can be seen in Fig. 5, when a 5V signal is supplied 
from the JSN-SR04T, 1.7V is dropped across the 1k Ohm 
resistor, and 3.3V is dropped across the 2k Ohm resistor. Fixes 
and maintenance performed on the prototype of the 
underwater vehicle are depicted in Fig. 6. 

 

Fig. 5. Voltage Divider. 

 

Fig. 6. Underwater Vehicle Prototype. 

A. Canny Edge Detection 

The basic method of edge detection has been improved 
using Canny edge detection. Edge tracking employing 
hysteresis, smoothing, gradient discovery, non-maximum 
suppression, and double thresholding are some of the stages 
that go into obtaining Canny edge detection. To remove 
camera noise, smoothing will inevitably damage the image. 
Gaussian filter application triggered the smoothing process. 
The fundamental idea behind the Gaussian filter was to use a 
standard deviation using the following equation. 
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The standard deviation is a multiplier used to determine 
how many pixels in a raw image the Gaussian filter will 
change. This matrix filter is used to convert matrix pixels 
contained inside a raw image to a raw image. By looking at 
the region with the most change in intensity, the Canny 
algorithm seeks to identify the edges of the grayscale image. 
The gradient of each pixel was handled by the Sobel-operator. 
Equations following provide illustrations of the x and y 
gradients. 
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Finite differences f (x + 1, y) f (x, y) and f (x, y + 1) f (x, y) 
were used to simplify the finite differences used to calculate 
the row and column values inside the matrix, where x and y 
were the raw image's pixel coordinates. The gradient's 
magnitude is defined in (3) as the angle from Euclidean that 
Pythagoras' law specifies. The Manhattan distance, which is 
derived by comparing the distances between the starting and 
finishing points/blocks, simplifies this calculation (4). 
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The most obvious limits are shown by the magnitudes of 
Gy and Gx. But, at times the margins were excessively large, 
making it difficult to make out exactly where the borders 
were. To get around this limitation, it is necessary to 
determine and remember the edges' orientation using the 
equation below. 

        
|  |

|  |
               (6) 

The raw picture was first blurred by smoothing, and then 
sharpened by using non-maximum suppression. The only part 
of the gradient picture that was kept was the local maximum. 
As a second step after non-maximal suppression, we used the 
improved pixels to label the remaining edge pixels in a 
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process called double thresholding. Rough surfaces can 
generate noise and color shifts, which could result in a loss of 
pixels. We performed a double thresholding method to extract 
the strongest edge from the image. In this case, only the edge 
pixels with a value higher than the thresholding value were 
kept, while the rest were discarded. Weak pixels were those 
with a threshold value between 0 and 1. In the final stage of 
edge detection, the strong edge was treated as the real thing. 
Only edges that were found to have some sort of connection to 
the real edge were weak. The idea behind it is that noise and 
other color fluctuations render a clear advantage impossible to 
achieve. After this point, Canny edge detection will be 
finished. 

IV. RESULT AND DISCUSSION 

The system may function both online and offline. 
Consequently, the user can opt to either upload an existing 
image or take a new one and process it in real time. Location 
of the camera used in the experiment is depicted in Fig. 7. 
Online mode will produce three photos, one from each of the 
three specified perspectives and distances. The offline option 
also limits users to uploading and processing just a single 
image at a time. Fig. 8 through Fig. 16 depicts the original 
iPhone XR image and the final product after The Canny edge 
detection was applied. Fig. 17 to 19 demonstrate what 
happened when we applied the Canny edge detection to data, 
we got from a Raspberry Pi V2 NoIR camera. 

A. Distance of the Camera to the Pipe (cm) and the Angle 

Taken to the Pipe 

The camera's optimal placement and distance from the 
pipe were measured. In both online and offline settings, the 
camera's angle relative to the pipe has been set at 45 degrees, 
90 degrees, and 135 degrees, as illustrated in Fig. 7. However, 
in both online and offline modes, the camera distance to the 
pipe is fixed at 18cm, 13cm, and 7cm, respectively. 

 

Fig. 7. Camera Angle for Testing. 

TABLE I. DETECTION FOR OFFLINE MODE 

Angle (°) 
Distance of the camera to the pipe (cm) 

7 13 18 

45 Detect Detect with noise Detect with noise 

90 Detect Detect Detect 

135 Detect with noise Detect Detect with noise 

Table I displays the results of the offline testing conducted 
with the various factors discussed in the introduction. Table I 
demonstrates that the outcome can be detected across a wide 
range of parameter settings. However, when testing at 7cm 
with a camera at an angle of 135 degrees, 13cm with an angle 
of 45 degrees, 18cm with an angle of 45 degrees, and 135 
degrees with an angle of 45 degrees, noise from the raw image 
is observed. A crack can be detected without any background 
noise from any distance and any camera angle. Testing in 
offline mode at a camera distance of 18cm at an angle of 90 
degrees revealed that this was the optimal configuration for 
detecting pipeline cracks. 

TABLE II. DETECTION FOR ONLINE MODE 

Angle (°) 
Distance of the camera to the pipe (cm) 

7 13 18 

45 
Detect with 

noise 

Detect with 

noise 

Detect with 

noise 

90 Detect 
Detect with 

noise 

Detect with 

noise 

135 
Detect with 

noise 

Detect with 

noise 

Detect with 

noise 

Table II displays the outcomes of the tests conducted in the 
online mode. Based on the testing, a camera positioned at a 
90-degree angle and 7 cm away produces the best results. The 
alternative setting demonstrates that the crack is still detected, 
although with background noise. The camera on the Raspberry 
Pi V2 NoIR may have needed bright light to concentrate on 
the crack, which could explain why this happened. 

B. Image Capturing with a Regular Camera for Monitoring 

in Offline Mode 

The offline mode will enable computers input and output 
data quickly. As a result, relatively slow input devices are no 
longer required. Instead, the information is kept as files on a 
fast data storage system. The primary processing computer 
does not immediately take control of and read the data from its 
input devices. The data is prepared, kept on a high-speed 
storage device separate from the computer, and then made 
available as required. In this mode, the user can select the 
preferred camera and still apply the same algorithm. From 
Fig. 8 to Fig. 16, the result may be observed in detail as 
indicated in Table I. 

Distance between the camera and the pipe (7 cm) (45°). 

The outcome for a camera to pipe distance of 7 cm and a 
45° angle is shown in Fig. 8. The results clearly demonstrate 
crack detection without any noise. 

 

Fig. 8. Camera to Pipe Distance is 7cm and Angle is 45°. 
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1) Distance between the camera and the pipe (7 cm) 

(90°): The result is shown in Fig. 9 for a camera-to-pipe 

distance of 7 cm at a 90° angle. Crack detection is plainly 

demonstrated by the results. 

 

Fig. 9. Camera to Pipe Distance is 7cm and Angle is 90°. 

2) Distance between the camera and the pipe (7 cm) 

(135°): Fig. 10 depicts the outcome with a camera-to-pipe 

distance of 7 cm and an angle of 135 degrees. The results 

indicate the detection of cracks with some background noise. 

 

Fig. 10. Camera to Pipe Distance is 7cm and Angle is 135°. 

3) Distance between the camera and the pipe (13 cm) 

(45°): The outcome for a 13 cm pipe to camera distance with a 

45° angle is shown in Fig. 11. The results demonstrate the 

crack's detection with some noise. 

 

Fig. 11. Camera to Pipe Distance is 13cm and Angle is 45°. 

4) Distance between the camera and the pipe (13 cm) 

(90°): The outcome for a 13 cm camera to pipe distance at a 

90° angle is shown in Fig. 12. The outcome demonstrates 

crack detection. 

 

Fig. 12. Camera to Pipe Distance is 13cm and Angle is 90°. 

5) Distance between the camera and the pipe (13 cm) 

(135°): The outcome with a camera to pipe distance of 13 cm 

and a 135° angle is shown in Fig. 13. The outcome 

demonstrates crack detection. 

 

Fig. 13. Camera to Pipe Distance is 13cm and Angle is 135°. 

6) Distance between the camera and the pipe (18 cm) 

(45°): The outcome for a camera to pipe distance of 18 cm and 

a 45° angle is shown in Fig. 14. The results demonstrate the 

crack's detection with some noise. 

 

Fig. 14. Camera to Pipe Distance is 18cm and Angle is 45°. 

7) Distance between the camera and the pipe (18 cm) 

(90°): Fig. 15 displays the outcome for an 18 cm camera to 

pipe distance at a 90° angle. The outcome demonstrates crack 

detection. 
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Fig. 15. Camera to Pipe Distance is 18cm and Angle is 90°. 

8) Distance between the camera and the pipe (18 cm) 

(135°): Fig. 16 displays the outcome for an 18 cm camera to 

pipe distance at a 135° angle. The results demonstrate the 

crack's detection with some noise. 

 

Fig. 16. Camera to Pipe Distance is 18cm and Angle is 135°. 

C. Image Capturing with the Raspberry Pi V2 Module NoIR 

Camera for Monitoring in Real-Time Online Mode 

When a system is connected to a computer and processing 
data files while using input, output, and storage devices, the 
process is referred to as real-time "online" processing. The 
system will take three photographs, giving each image taken a 
five-second pause period. With the same distance, the three 
photos have different angles. 

The results of an online test for a 7 cm camera distance 
from the sample are shown in Fig. 17. When the camera is at a 
90° angle, feature #2 displays the result without any noise, 
however testing at 45° and 135° results in some noise in the 
processed image. 

1) Distance between the camera and the pipe (7 cm) 

(45°), (90°) and (135°): Fig. 18 displays the outcomes of an 

online test for a 13 cm camera distance from the sample. The 

crack is visible in the photograph after evaluating it from three 

different angles, but the results have significant noise. 

Regarding Fig. 19, the testing is done at an 18 cm camera-to-

pipe distance. The crack is still detectable in the results, but 

there is significantly more noise than at a 13 cm distance. To 

compare to this chart, use the simplified data from Table II as 

a guide. 

 

Fig. 17. Camera to Pipe Distance is 7cm and Angle #1 45°, #2 90° and #3 

135°. 

2) Distance between the camera and the pipe (13 cm) 

(45°), (90°) and (135°) 

 

Fig. 18. Camera to Pipe Distance is 13cm and Angle #1 45°, #2 90° and #3 

135°. 

3) Distance between the camera and the pipe (18 cm) 

(45°), (90°) and (135°) 
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Fig. 19. Camera to Pipe Distance is 18cm and Angle #1 45°, #2 90° and #3 

135°. 

V. CONCLUSION 

The project's purpose is to help the user detect pipeline 
faults under water by developing an underwater pipe crack 
detection system for a low-cost underwater vehicle using a 
Raspberry Pi and Canny edge detection. Online and offline 
modes are the two possible techniques. The cracks on the pipe 
are detected by both modes using the same method, the Canny 
edge detection. 

The primary goal of this project is to use Python on a 
Raspberry Pi to implement the Canny edge detection crack 
technique. The algorithm Canny edge detection is employed in 
coding. Images that are captured online and those that are 
uploaded offline follow the approach depicted in Fig. 8 to 16. 
The picture segmentation step three includes the Canny edge 
detection. Canny edge detection has three fundamental steps, 
but for this project, one more step is included to make sure 
that the pipe fracture can be seen clearly. Finding the image's 
intensity gradient is the first step in the Canny edge detection 
procedure. Each pixel's gradient vector is computed 
throughout this process. The second process is called non-
maximum suppression. The edge will become narrow thanks 
to this technique, giving it a one-pixel width. Thresholding is 
the final step. The artificial edge will be reduced in this stage, 
and the next step, the morphological operator, will fill in the 
little gaps to give the main crack more character. 

The project's second goal is to create a low-cost 
underwater vehicle Remotely Operated Vehicle (ROV) 
prototype that can find cracks in industrial pipelines. 
Prototypes for vehicles are created with inexpensive but 
capable materials. The vehicle's mobility, which uses its 
propulsion system, is one of the precautions. The vehicle's 
mobility is controlled by the motor or turbine propulsion 
system. As a result, it is difficult for the user to control. 

The project's final goal is to compare the two types of 
offline and online crack detection methods utilizing image 
processing. In the system, there are two operating modes: 
online mode and offline mode. Both modes use the same 
algorithm but a distinct concept, as is mentioned below. When 
a user uploads a picture into the system via the online mode, 
the system analyses the image as described in Fig. 17 through 
Fig. 19. The system will take three photographs, giving each 
image taken a five-second pause period. The three photos are 
at various distances or angles. The user can submit an image 
into the system for offline mode, and the system will 
immediately analyze the image. However, only one image 
may be posted at a time. 

The camera utilized for the online approach to find pipe 
cracks must be improved due to the project's constraints. The 
camera cannot concentrate on the crack since the Raspberry Pi 
V2 NoIR camera required the proper lighting. The ultrasonic 
sensor is up next. It is impossible to determine the precise 
distance between the camera and the pipe with this ultrasonic 
sensor. This is due to the UT sensor's high quality. 
Consequently, it was necessary to purchase a high-quality UT 
sensor. 
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