
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

547 | P a g e

www.ijacsa.thesai.org

The Influence of Virtual Secure Mode (VSM) on

Memory Acquisition

Niken Dwi Wahyu Cahyani1, Erwid M Jadied2, Endro

Ariyanto4

Informatics Faculty

Telkom University

Bandung, Indonesia

Nurul Hidayah Ab Rahman
3

Centre for Information Security Research

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

Parit Raja, Malaysia

Abstract—Recently, acquiring the Random Access Memory

(RAM) full memory and access data is gaining significant interest

in digital forensics. However, a security feature on the Windows

operating system - Virtual Secure Mode (VSM) - presents

challenges to the acquisition process by causing a system crash

known as a Blue Screen of Death (BSoD). The crash is likely to

occur when memory acquisition tools are being used.

Subsequently, it disrupts the goal of memory acquisition since the

system must be restarted, and the RAM content is no longer

available. This study analyzes the implications of VSM on

memory acquisition tools as well as examines to what extent its

impact on the acquisition process. Two memory acquisition tools,

namely FTK Imager and Belkasoft RAM Capturer, were used to

conduct the acquisition process. Static and dynamic code

analyses were performed by using reverse engineering techniques

that are disassembler and debugger. The results were compared

based on the percentage of unreadable memory between active

and inactive VSM. Static analysis showed that there is no

difference between all applications’ functions for both active and

inactive VSM. Further Bugcheck analysis of the

MEMORY.DMP is pointed to the ad_driver.sys module in FTK

Imager that causes the system to crash. The percentage of

unreadable memory while running on active VSM and inactive

VSM for Belkasoft is about 0.6% and 0.0021%, respectively.

These results are significant as a reference to digital investigators

as consistent with the importance of RAM dump in live forensics.

Keywords—Live forensics; memory acquisition; virtualization;

virtual secure mode

I. INTRODUCTION

As defined by the Digital Forensics Research Workshop
(DFRWS), digital forensics is the use of scientifically derived
and proven methods to preserve, collect, validate, analyze, and
present admissible digital data that meet the court requirements
[1]. Digital data originated from electronic devices that have
data storage capability, including smartphones, digital cameras,
and even printers. There are two types of digital data, namely:
(i) volatile data – data that will be lost when there is no
electrical power on the devices, and (ii) non-volatile data – data
that is still stored in the device‟s storage media even though the
power is turned off. RAM forensics or memory forensics
involves collecting and examining volatile data. It becomes a
priority to undertake the live acquisition if an electronic device
is on, considering the data will be lost when the device is
turned off. Furthermore, some cyber security incidents require
RAM forensics such as malware attacks, due to its behavior

that could leave no trail on non-volatile memory [2]. As an
example, a study [3] was able to identify Advanced Encryption
Standard (AES) keys in the memory of a ransomware process
by examining memory dumps using live forensics tools. It
further indicates that artifacts from memory forensics are not
limited to evidence collection, yet they could be utilized to
minimize the impact of cyber incidents.

While there has been significant development in advanced
computing architecture, it poses challenges to memory
forensics practices. For example, the use of a recent security
feature known as Virtual Secure Mode (VSM), which was
started from Windows 10 and Windows Server 2016 operating
system, complicates the acquisition of volatile data in memory.
It has been highlighted in [4] that the use of some acquisition
tools (e.g., Magnet RAM Capturer, FTK Imager) to undertake
live forensics causes the system to crash. Subsequently, the
volatile data (i.e., the initial object of the acquisition) is no
longer available since the operating system will restart the
system [4], [5]. However, much work remains to be done in the
technical analysis such as what happens to the system when the
VSM feature is active that affects the tools during the memory
acquisition process. This motivates the direction of this study
to carry out further investigations on the VSM environment.

It has been noted that not all memory acquisition tools can
complete the acquisition process during an active VSM
environment. Therefore, this study aims to conduct a technical
analysis of the VSM effects on the live memory acquisition
process using two cases. The first case is a successful memory
acquisition by using the Belkasoft RAM Capturer tool, and the
second case is an unsuccessful memory acquisition by using
the FTK Imager tool. Reverse engineering techniques are
applied to analyze the behavior of the system. The main
methods used are static and dynamic code analysis using IDA
disassembler and Windbg debugger. Additionally, event
analysis is conducted by examining event logs collected by the
operating system to facilitate our understanding of the impact.

While previous works have been studying VSM and
identifying the BSoD for live forensic tools, our study may
become the initial research investigating the impact of VSM on
live forensics. The results are discussed with technical data
produced from reverse engineering techniques. Static analysis
results can be used to understand the tools‟ program code that
could directly lead to crash events. The dynamic analysis
could demonstrate the tools‟ behavior in their running state that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

548 | P a g e

www.ijacsa.thesai.org

may (or may not) cause the impact, and how they interact with
the operating system as the manager of the computer system
including memory. We contribute to the underlying
methodology that applies static, dynamic, and event analysis in
examining the behavior of VSM and how it impacts the
running memory acquisition tools.

The remaining of this paper is organized as follows:
Section II discusses the related work, Section III describes the
materials and methods employed in this study, Section IV
discusses the results, Section V presents the conclusion, and
Section VI highlights the limitations and future work.

II. RELATED WORK

Collecting, and preserving the data of Random Access
Memory (RAM) for forensic analysis is considered critical in
live forensics. It contains many valuable forensic interest
artifacts, including processes running on the computer.
Examples of the content‟s use are to examine security incidents
and get data from encrypted containers when it is being
opened. The importance of memory forensic acquisition has
attracted significant interest in recent years. Arfeen et al. [6]

developed a framework for memory acquisition periodically to
analyze process behavior while it is running and reside in
memory to help ransomware detection. Prakoso et al. [7]
examined how Metasploit attacks on Windows 10 can be
analyzed using live forensics techniques on the volatile
memory. The study used three well-known RAM acquisition
tools, namely: FTK Imager, Dumpit, and Magnet RAM
Capture. Volatility was used as the analysis tool. The results
showed that RAM‟s live forensics can obtain key artifacts
including the attacker‟s IP address and evidence of malware.
Kazim et al. [8] identified chat artifacts of an instant messaging
tool including master encryption keys that are encrypted by
Bitlocker and Truecrypt, from memory dumps of Windows 7
computers. The memory dump was been analyzed using
analysis tools such as Volatility and Rekall [9], [10]. The
results confirm the necessity of deploying mechanisms to
collect RAM from local and remote systems to support the
RAM acquisition, for incident responder teams.

Choosing the appropriate tools for the acquisition and
analysis of memory forensics depends upon the compatibility
between digital devices and operating systems, which may
pose challenges to investigators [11]. Therefore, many existing
studies have attempted to understand the strengths and
weaknesses of memory acquisition tools. A study in [12]
compared four tools, namely Windows Memory Reader,
Belkasoft‟s Live Ram Capturer, ProDiscover, and FTK Imager,
to examine their performance in capturing memory including
their ease of use. Another study in [13] showed the differences
in processing time, memory usage, registry key, and DLL for
FTK Imager, Belkasoft RAM Capturer, Memoryze, DumpIt,
and Magnet RAM Capturer. Similarly, [14] also examined how
the combination of Belkasoft RAM Capturer, FTK Imager, and
Winhex can be utilized to obtain data for the Line app in
Windows 8.1. Prakoso et al. [7] identified that FTK Imager,
Dumpit, and Magnet RAM Capture, have the same
performance in acquiring the targeted artifact of a Metasploit
attack in Windows 10 based on their acquisition results
comparison.

With the important role of memory acquisition and analysis
in digital forensics, it indicates that any issues that may hinder
these processes shall be examined, including VSM. VSM is a
Windows 10 technology for creating and managing a secure
operating system environment [15]. The secure environment is
designed to be a place for the execution of critical security
functions, protecting it from attacks directed against the
operating system. VSM uses virtualization as its base
[16].Virtualization on a machine run by an emulator,
commonly known as a hypervisor. Microsoft gives a particular
name to its hypervisor system which is Hyper-V, while the
virtual machine is known as a partition (e.g., Partition A and
Partition B). Hyper-V virtualizes hardware resources for each
partition and manages these virtual resources, including virtual
memory and CPU.

Details architecture of a Windows environment that
supports VSM shows that Hyper-V occupies the root partition
[16]. The partition houses two environment modes, namely: (i)
kernel, and (ii) user. Each environment operates on a separate
domain, called the Virtual Trust Level (VTL). VTL enforces
isolation in three aspects. First is memory access in which each
VTL has a set of memory access protections that prevent an
allocated VTL‟s memory from being accessed by entities in
another VTL. Second is the virtual processor state, where each
VTL has a set of private virtual processor registers associated
with it. Third, interrupt in which each VTL has a separate
interrupt system to prevent interference from entities operating
in other VTLs during sending and processing of interrupts.

A study on Windows 10 reported that Hyper-V implements
two VTLs: VTL 0 and VTL 1[16]. VTL 0 hosts a traditional
Windows environment. Users running in VTL 0 are referred to
as normal environment users, while the running kernels are
known as normal kernels. VTL 1, on the other hand, is the
place for the Windows environment to perform security-critical
functionality. The environment is referred to as a safe
environment. VTL-based memory access protection enforced
by Hyper-V can be further referred to in [16]. The study shows
the memory region‟s contents that are part of the memory
dump of a VSM-enabled Windows environment mapped to the
lsaIso.exe trustlet. The question mark character („?‟) indicates
unreadable memory because it cannot be accessed beyond the
isolation limits implemented by VTL 1, where lsaIso.exe
operates. A report in [4] discussed the effect of VSM that
causes BSoD on several tools including Magnet RAM Capture
v1.1.1 and FTK Imager Lite v3.1.1, however other tools such
as Belkasoft RAM Capturer and Passmark osforensics v
5.1.1001 were not included.

There are existing studies that have demonstrated static
code analysis and dynamic code analysis. For example, a study
by Hirst [17] showed an acquisition test on no-quiescent virtual
machines that utilized dynamic code analysis. Another study in
[18] identified memory acquisition challenges that misuse two
architectural features, which are physical address layout and
secure container. The authors acknowledged them as a new
class of anti-memory forensic techniques. Significantly, these
studies provided key guidance on the methods that can be
referred to conduct testing and observation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

549 | P a g e

www.ijacsa.thesai.org

Yehuda et al. [19] proposed a hypervisor-based memory
acquisition tool by extending the Volatility framework and
implementing it in ARM64-bit kernels. The authors showed
how their proposed tool can reduce the processor's
consumption, maintain the coherent state of the memory dump,
and generate fewer tradeoffs for network and disk acquisition.
The tool successfully conducts memory acquisition without
facing any difficulties caused by security and privilege levels
in Linux OS and ARM processors, called Trust Zone which
divides accesses into secure and non-secure ones.

Nevertheless, the study on technical analysis of the VSM
effect on the live memory acquisition process is still limited.
There have been significant studies of VSM architecture on
Windows 10, including the details of VSM initialization
activity performed by the Windows loader during the boot
process, and the communication interface on VSM [16], [20].
However, the explanation still lacks the technical impacts of
VSM on the memory acquisition process. In this study,
therefore, we attempt to examine the memory acquisition in
Windows-based OS, especially in Windows 10 that enabled the
VSM feature in Intel machines to manage virtual trust levels
for kernel and user processes.

III. RESEARCH METHOD

This study applied reverse engineering as it is a widely
recognized technique in digital forensics to process and
interpret data [21], [22]. The methods used to analyze the
impact of VSM on the memory acquisition tool are static and
dynamic code analysis using the IDA disassembler and windbg
debugger tools.

Event analysis is conducted using the operating system‟s
event logs for further correlation with the findings from the
static and dynamic code analysis. The complete research stages
are presented in Fig. 1. The hardware and software
specifications used in this research are presented in Tables I
and II, respectively.

Experiments in this study are conducted in two
environments, (1) VSM-enabled, and (2) non-VSM-enabled.
VSM feature is enabled through the BIOS by setting the “Intel
Virtualization Technology” option to “Enabled.” The BIOS
used in this study is from the American Megatrends vendor,
version 309, with VBIOS Version 1054.I021x441UAR.002.

START

Install Windows 10/11

Verify SVM enabled

Install memory acquisition

tools

Acquire RAM

Analysis (static code, event

log, dynamic code)

STOP

OS installation

Checking SVM activation via:

a. Group Policy Object Editor

b. Event Viewer

c. wevtutil

Memory acquisition tools installation: FTK Imager and

Belkasoft RAM Capturer

Acquiring RAM

Code analysis using Windbg debugger dan IDA

disassembler

Fig. 1. Research Stages.

TABLE I. HARDWARE SPECIFICATION

No Name Specification Function

1 Processor
Intel(R) Core(TM) i3-7020U

CPU @ 2.30GHz 2.30 GHz
To execute a program

2 RAM 20,0 GB (19,9 GB usable)
To store data and

instructions for a process

TABLE II. SOFTWARE SPECIFICATION

No Name Specification Function

1
Microsoft

Windows 10

Edition: Windows 10

Enterprise

Version: 21H1

OS build: 19043.1526

Experience: Windows

Feature Experience Pack

120.2212.4170.0

Operating System

2
AccessData FTK

Imager
Version 4.5.0.3 Acquisition Tools

3
Belkasoft RAM

Capturer
Modified date 22/10/2018 Acquisition Tools

4 IDA PRO 7.5 SP3 x64 Disassembler

5 Diaphora Version 2
Program diffing

tool

6 Windbg Preview Version 1.2202.7001.0 Debugger

7 Event Viewer Version 1.0 Event Viewer

The steps taken to obtain data to be analyzed are presented
in Table III.

TABLE III. EXPERIMENTS AND ANALYSIS STEPS

Static Code Analysis

No Steps

1 VSM feature setting [Active/Non-Active]

 a
Disassembling executable files of memory acquisition apps (.exe)

[FTK Imager/Belkasoft RAM Capturer] by using IDA PRO

 b

Running the diffting plugin to compare the apps‟ functions in

VSM vs. non-VSM environments by using Diaphora on IDA

PRO

2 Save the results

Note:

4 (four) files were produced:

Assembly codes for:

 FTK Imager

 Belkasoft RAM Capturer

SQLite files for:

 FTK Imager

 Belkasoft RAM Capturer

Event Log Analysis

No Steps

1
Acquiring memory by using FTK Imager and Belkasoft RAM

Capturer in active VSM and non-active VSM environments

2 Opening Event Viewer

3 Copying event log:

 a Event Application

 b Event Security

 c Event System

Note:

3 (three) files were produced: Application, Security dan System event logs

Dynamic Code Analysis

No Steps

1 Choosing the target executable files

2 Preparing the required symbols

3 Starting the debugging

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

550 | P a g e

www.ijacsa.thesai.org

IV. RESULTS AND DISCUSSION

This section presents the results of experiments and
discusses the memory acquisition, static code, event log, and
dynamic code analyses that have been carried out.

A. Memory Acquisition Analysis

It has been observed that the FTK Imager has successfully
acquired a memory dump in a non-VSM-enabled. On the other
hand, no memory dump was generated when VSM was active
because the system experienced a Blue Screen of Death
(BSoD). Meanwhile, Belkasoft RAM Capturer managed to
acquire memory dump in both VSM environments. Therefore,
this section will analyze the differences in the results of
memory acquisition from the FTK Imager application in a non-
enabled- VSM environment (non-VSM), and Belkasoft RAM
Capturer in both VSM environments.

All three memory dumps generated by the memory
acquisition applications have the same size according to the
measured memory capacity of 21.4 GB (23,068,672,000
bytes). Here, we will focus on the contents of the memory
dump, which has the value “??????????????????...??????” as a
mark of memory locations that are not readable by applications
(see Fig. 2).

The data shows that the unreadable memory space of active
VSM is larger than non-VSM (the sign … refers to the other 65
rows that are not displayed). It indicates that VSM enforces
more limitations on physical memory access than non-VSM.
The limitation can be correlated with the implementation of
memory access protection for each VTL, especially for VTL1
which runs in a safe environment [16].

By calculating the portion of memory with the value
“??????????????????...??????” (see Fig. 2), there are 122 MB
of memory size for Belkasoft in VSM-enabled mode. It is
about 0.6% of the memory size. Meanwhile, Belkasoft and
FTK Imager in non-VSM mode are 0.4 MB and 0.5 MB,
respectively. It is only about 0.0021% and 0.0025% of the
memory size. The comparison of the unreadable memory
percentage between VSM-enabled and non-VSM-enabled is
significant, as consistent with the importance of memory data
for a live forensic investigation.

B. Static Code Analysis

The analysis compares the differences between an active
VSM state and when VSM is not active. In this section, the
experiment results are grouped based on two types of memory
acquisition applications tested, namely FTK Imager and
Belkasoft RAM Capturer. The assembly codes are derived
from the machine code from the disassembler process using
IDA PRO.

A python IDA plugin called Diaphora is used to generate
an SQLite file that lists the functions identified from the
assembly code generated by IDA PRO. The main purpose of
using Diaphora is to examine differences in the functions of the
FTK Imager application for active and inactive VSM
conditions and the Belkasoft RAM Capturer application.

Fig. 2. Memory Sectors that are Unreadable by FTK Imager and Belkasoft

RAM Capturer.

Diaphora succeeded in recognizing 32483 functions from
the assembly code of the FTK Imager application. The results
were compared in terms of names, order of contents, hash
values, and relative virtual address (RVA) values of all these
functions. It is identified that all functions of these assembly
codes are equal when run in both enabled VSM and non-
enabled VSM. The number of files with the status of “100%
equal”, “Perfect match, same name,” “Same order and hash,”
and “Same RVA and hash” are 21760, 3, 6507, and 4213 files,
respectively. Likewise, for the 38 functions that have been
recognized from the Belkasoft RAM Capturer application, all
of them are also identified to be the same. It has been observed
that 15 files with the status of “100% equal”, 3 files with the
status of “Perfect match, same name,” six files with the status
of “Same order and hash,” and 14 files with the status of
“Same RVA and hash”.

Based on these findings, it can be deduced that FTK Imager
and Belkasoft RAM Capturer applications do not have
different functions in their static code for both environments
(i.e., VSM is enabled and non-enabled). This further indicates
that the VSM environment does not affect the overall running
characteristics of the application.

C. Event Log Analysis

Windows operating system generates three event logs
which are Application, System, and Security logs. In this study,
we focused on observing events from Application and System

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

551 | P a g e

www.ijacsa.thesai.org

logs because they contain key information when the system
crashes and restarts.

We identified the records of events associated with FTK
Imager application crashes during the memory acquisition
process, and when VSM is enabled from the event Application
log. Detailed information is presented in Fig. 3. It describes the
error name called BlueScreen and informs that this crash event
has the data stored in the MEMORY.DMP file.

We observed more information from the System log events.
Fig. 4 reports an event with an “error” status. This status is
captured from the second experiment scenario; when the VSM
is not activated. Detailed information can be found in the
General field, stating that the VSM feature is not activated and
the Hypervisor as a virtualization emulator fails to run. This
information confirms the environment in which we did not
activate the VSM. While this setting can be checked from the
BIOS configuration, this “error” status notified us that this
virtualization-based enablement policy should be mandatory in
Windows 10. This situation may lead to anti-forensics, where
the implementation of security control prevents digital forensic
tools to operate.

The captured information about the error when the FTK
Imager is running on the active VSM is presented in Fig. 5.

It is likely indicating the cause of the blue screen and the
record of the crash event that forced the system to reboot. The
operating system provides the information in their Bugcheck
error in Event Viewer. Bugcheck error will record the BSoD
event, and its basic error code to identify what caused the
BSoD. The fourth row in this Bugcheck provides information
that the system is rebooted and IsolatedUserMode is active.

Fig. 3. Selected Significant Events of FTK Imager in Non-Active VSM.

Fig. 4. Selected Significant Events of FTK Imager in Non-Active VSM.

Fig. 5. Selected Significant Events of FTK Imager in Active VSM.

We have the same observation about the active
IsolatedUserMode when Belkasoft RAM Capturer runs in
active VSM (see Fig. 6). Other key points in Fig. 5 are shown
in rows 5 and 6. These two rows indicate a Hypervisor failure
to handle CVE-2018-3646. Further examination of Common
Vulnerabilities and Exposure (CVE) suggests that the
vulnerability is related to the possibility of unauthorized
disclosure of information [23]. A possible explanation for this
failure could be associated with the existence of a memory
space isolation system that caused the memory acquisition
tools unable to access the information.

An additional analysis of the MEMORY.DMP file was
undertaken to obtain further information on the “Bugcheck”
event. We used the Windbg application and ran the command
!analyze -v (see Fig. 7). The Bugcheck analysis was carried out
on the MEMORY.DMP file supports that the crash is related to
the FTK Imager application. The associated module is
ad_driver, and the image name is ad_driver.sys. The file
directory is located at C:\Users\
[UserName]\AppData\Local\Temp. This is consistent with the
information on the BSoD screen, which indicates an error has
occurred in the driver.sys. Furthermore, Windbg provides more
information about this error by indicating that the driver.sys in
question is related to ad_driver.

D. Dynamic Code Analysis

Dynamic code analysis examines the application‟s behavior
while the operating system executes it. Interaction from the
user will affect the direction of execution. The dynamic code
analysis is performed on the FTK Imager application with an
active VSM environment. The aim is to observe the
application‟s behavior related to the BSoD error.

Fig. 6. Selected Significant Events of Belkasoft RAM Capturer in Active

VSM.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

552 | P a g e

www.ijacsa.thesai.org

Fig. 7. Summary of Bugcheck Analysis Results.

The analysis commenced by selecting the “Start
debugging” menu in the Windbg Preview application and
selecting the executable file from the FTK Imager application.
The debugger downloaded the symbol file “ProfUISad64.pdb”
to perform the debugging process. The following commands
are typed on the “Command” page to control the process:

 To load symbols:

- .symfix

- .reload

 To run the FTK Imager application:

- g

As a result of executing those commands, we identified that
the last module before the system crash was
C:\Windows\system32\mssprxy.dll. The module is recorded
from the debugger as a module that is loaded before the user
clicks the “Capture Memory” button. This is an unexpected
finding because the information from the event log analysis
suggests the module that caused the crash is ad_driver.sys.
Therefore, other scenarios in dynamic code analysis shall be
considered to find the very last module loaded by the operating
system before the crash happens.

V. CONCLUSION

This study aims to conduct a technical analysis of the
effects of VSM on the memory acquisition process. Two cases
were observed that are: (1) a successful acquisition process by
using the Belkasoft RAM Capturer, and (2) an unsuccessful
acquisition process by using the FTK Imager. The static
analysis results of the two applications did not show any
differences in the program code when the application machine

code disassembler was carried out, both when VSM was
enabled and non-enabled. It is concluded that the VSM
environment does not affect the program modules of the
application.

Meanwhile, Application event analysis comprises logs of
system crashes and is stored in the MEMORY.DMP file.
Bugcheck analysis of the dump file shows the cause of the
system experiencing BSoD when it executes the ad_driver.sys
module. Furthermore, results from dynamic analysis explained
the behavior of the FTK Imager application just before the
BSoD occurs, and it is identified that the application accesses
the C:\Windows\system32\mssprxy.dll module.

VI. FUTURE WORK

This study highlights the impact of VSM on the memory
acquisition process that causes the loss of memory artifacts
when the process is halted and the system restarts. However,
this study is limited to two memory acquisition tools running
on the Windows operating system, which respond differently to
the activation of the VSM feature. More importantly, the
difference opens more directions for future work. Investigating
the impact on other tools and operating systems would present
more significant results to be compared. Testing environments
should involve different scenarios in dynamic code analysis
and conduct an in-depth analysis of the ad_driver.sys module
content. This is to seek further understanding of how the
module causes the system crashes.

ACKNOWLEDGMENT

This research was supported by the Ministry of Higher
Education (MOHE) through Fundamental Research Grant
Scheme (FRGS/1/2020/ICT07/UTHM/03/1). The authors

* Bugcheck Analysis *

FILE_IN_CAB: MEMORY.DMP

BUGCHECK_CODE: 3b

BUGCHECK_P1: c0000005
BUGCHECK_P2: fffff803362939d0

BUGCHECK_P3: ffffab8f63b96c10

BUGCHECK_P4: 0

CONTEXT: ffffab8f63b96c10 -- (.cxr 0xffffab8f63b96c10)
rax=0000000000000000 rbx=0000000000000000 rcx=ffffd302a40fe000

rdx=00002cfd5c603000 rsi=0000000002600000 rdi=0000000000700000

rip=fffff803362939d0 rsp=ffffab8f63b97618 rbp=ffffd302a40fd000

 r8=0000000000001000 r9=0000000000000080 r10=7ffffffffffffffc
r11=ffffd302a40fd000 r12=ffffffffffffffff r13=0000000000001000

r14=ffffd302b2dbc160 r15=ffffd302b4030a10

iopl=0 nv up ei ng nz na pe cy

cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b efl=00050283
ad_driver+0x39d0:

fffff803`362939d0 488b440af8 mov rax,qword ptr [rdx+rcx-8] ds:002b:00000000`00700ff8=????????????????

Resetting default scope

PROCESS_NAME: FTK Imager.exe

STACK_TEXT:

ffffab8f`63b97618 fffff803`3629256a : 00000000`c00000bb fffff803`3a8e681c ffffab8f`63b976a0 01d8134d`cdf32b29 : ad_driver+0x39d0

ffffab8f`63b97620 fffff803`36291110 : 00000000`02600000 fffff803`34ff5f01 00000000`00700000 00000000`000008c4 : ad_driver+0x256a
ffffab8f`63b976b0 fffff803`34c8f825 : ffffd302`b31fe0a0 ffffd302`00000000 00000000`00000002 00000000`00000001 : ad_driver+0x1110

ffffab8f`63b97700 fffff803`35075b58 : ffffab8f`63b97a80 ffffd302`b31fe0a0 00000000`00000001 ffffd302`b40020c0 : nt!IofCallDriver+0x55

ffffab8f`63b97740 fffff803`35075957 : 00000000`00000000 ffffab8f`63b97a80 00000000`00000000 ffffab8f`63b97a80 : nt!IopSynchronousServiceTail+0x1a8

ffffab8f`63b977e0 fffff803`35074cd6 : 00000000`00000000 00000000`00000000 00000000`00000000 00000000`00000000 : nt!IopXxxControlFile+0xc67
ffffab8f`63b97920 fffff803`34e08cb5 : 00000000`00000000 00000000`00000000 00000000`00000000 00000000`00000000 : nt!NtDeviceIoControlFile+0x56

ffffab8f`63b97990 00007ffa`9ef0ce54 : 00000000`00000000 00000000`00000000 00000000`00000000 00000000`00000000 : nt!KiSystemServiceCopyEnd+0x25

00000000`006f6918 00000000`00000000 : 00000000`00000000 00000000`00000000 00000000`00000000 00000000`00000000 : 0x00007ffa`9ef0ce54

SYMBOL_NAME: ad_driver+39d0
MODULE_NAME: ad_driver

IMAGE_NAME: ad_driver.sys

STACK_COMMAND: .cxr 0xffffab8f63b96c10 ; kb

BUCKET_ID_FUNC_OFFSET: 39d0
FAILURE_BUCKET_ID: AV_ad_driver!unknown_function

OS_VERSION: 10.0.19041.1

BUILDLAB_STR: vb_release

OSPLATFORM_TYPE: x64
OSNAME: Windows 10

FAILURE_ID_HASH: {8f6b899e-895f-35a5-567c-c877346fcd6e}

Followup: MachineOwner

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

553 | P a g e

www.ijacsa.thesai.org

would like to thank Telkom University and Universiti Tun
Hussein Onn Malaysia for their assistance, and anonymous
reviewers for their constructive and generous feedback.

REFERENCES

[1] Collective work of all attendees, “Digital Forensic Research Workshop,”
in Proceedings of The Digital Forensic Research Conference (DFRWS)
(2001), Aug. 2001.

[2] A. Case and G. G. Richard, “Memory forensics: The path forward,” Digit
Investig, vol. 20, pp. 23–33, 2017, doi:
https://doi.org/10.1016/j.diin.2016.12.004.

[3] S. R. Davies, R. Macfarlane, and W. J. Buchanan, “Evaluation of live
forensic techniques in ransomware attack mitigation,” Forensic Science
International: Digital Investigation, vol. 33, p. 300979, 2020, doi:
https://doi.org/10.1016/j.fsidi.2020.300979.

[4] J. Hale, “Memory Acquisition and Virtual Secure Mode,” https://df-
stream.com/2017/08/memory-acquisition-and-virtual-secure/, 2017.

[5] H. K. Brendmo, “Live forensics on the Windows 10 secure kernel,”
Norwegian University of Science and Technology, 2017.

[6] A. Arfeen, M. Asim Khan, O. Zafar, and U. Ahsan, “Process based
volatile memory forensics for ransomware detection,” Concurr Comput,
vol. 34, no. 4, Feb. 2022, doi: 10.1002/cpe.6672.

[7] D. C. Prakoso, I. Riadi, and Y. Prayudi, “Detection of Metasploit Attacks
Using RAM Forensic on Proprietary Operating Systems,” Kinetik: Game
Technology, Information System, Computer Network, Computing,
Electronics, and Control, pp. 155–160, May 2020, doi:
10.22219/kinetik.v5i2.1037.

[8] A. Kazim, F. Almaeeni, S. al Ali, F. Iqbal, and K. Al-Hussaeni, “Memory
Forensics: Recovering Chat Messages and Encryption Master Key,” in
2019 10th International Conference on Information and Communication
Systems (ICICS), Jun. 2019, pp. 58–64. doi:
10.1109/IACS.2019.8809179.

[9] S. Anson, Ed., “Acquiring Memory,” in Applied Incident Response,
Wiley, 2019, pp. 103–131. doi: 10.1002/9781119560302.ch5.

[10] S. Anson, Ed., “Memory Analysis,” in Applied Incident Response, Wiley,
2019, pp. 235–275. doi: 10.1002/9781119560302.ch9.

[11] G. M. Jones and S. G. Winster, “An Insight into Digital Forensics:
History, Frameworks, Types and Tools,” in Cyber Security and Digital
Forensics, Wiley, 2022, pp. 105–125. doi: 10.1002/9781119795667.ch6.

[12] R. J. McDown, C. Varol, L. Carvajal, and L. Chen, “In-Depth Analysis of
Computer Memory Acquisition Software for Forensic Purposes,” J
Forensic Sci, vol. 61, pp. S110–S116, Jan. 2016, doi: 10.1111/1556-
4029.12979.

[13] M. N. Faiz and W. A. Prabowo, “Comparison of Acquisition Software for
Digital Forensics Purposes,” Kinetik: Game Technology, Information
System, Computer Network, Computing, Electronics, and Control, pp.
37–44, Nov. 2018, doi: 10.22219/kinetik.v4i1.687.

[14] I. Riadi, S. Sunardi, and M. E. Rauli, “Live Forensics Analysis of Line
App on Proprietary Operating System,” Kinetik: Game Technology,
Information System, Computer Network, Computing, Electronics, and
Control, pp. 305–314, Oct. 2019, doi: 10.22219/kinetik.v4i4.850.

[15] Microsoft, “Virtual Secure Mode,” Microsoft Learn, Jul. 07, 2022.
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-
windows/tlfs/vsm (accessed Oct. 05, 2022).

[16] A. Milenkoski and D. Phillips, “Virtual Secure Mode: Architecture
Overview,” 2019.

[17] N. W. Hirst, “The implications of virtual machine introspection for digital
forensics on nonquiescent virtual machines,” NAVAL
POSTGRADUATE SCHOOL MONTEREY CA, 2011.

[18] N. Zhang, R. Zhang, K. Sun, W. Lou, Y. T. Hou, and S. Jajodia,
“Memory Forensic Challenges under Misused Architectural Features,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 9,
pp. 2345–2358, Sep. 2018, doi: 10.1109/TIFS.2018.2819119.

[19] R. ben Yehuda, E. Shlingbaum, Y. Gershfeld, S. Tayouri, and N. J.
Zaidenberg, “Hypervisor memory acquisition for ARM,” Forensic
Science International: Digital Investigation, vol. 37, Jun. 2021, doi:
10.1016/j.fsidi.2020.301106.

[20] A. Milenkoski, “Virtual Secure Mode: Communication Interfaces,” 2019.

[21] A. M. Marshall and R. Paige, “Requirements in digital forensics method
definition: Observations from a UK study,” Digit Investig, vol. 27, pp.
23–29, 2018, doi: https://doi.org/10.1016/j.diin.2018.09.004.

[22] R. Nordvik, H. Georges, F. Toolan, and S. Axelsson, “Reverse
engineering of ReFS,” Digit Investig, vol. 30, pp. 127–147, 2019, doi:
https://doi.org/10.1016/j.diin.2019.07.004.

[23] National Vulnerability Database, “CVE-2018-3646,” The MITRE
Corporation, Dec. 28, 2017. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-3646 (accessed Oct. 05, 2022).

