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Abstract—The creation and generation of schedules that are 

free of conflicts manually every academic semester present 

higher education institutions with a duty that is laborious and 

demanding of their resources. The course timetabling 

optimization, as an education timetabling problem, is a popular 

example of an NP-hard combinatorial problem. Numerous 

attempts have been made over the course of the past few decades 

to find a solution to this problem, but no one has yet developed a 

foolproof approach that can examine all alternatives to find the 

best method. The promising swarm-based optimization 

algorithm called Whale Optimization Algorithm was 

heuristically enhanced in the present study and is called 

HEWOA. It was designed as a solution to the course timetabling 

problem discussed in the current study. HEWOA was able to 

generate an efficient timetable for the large dataset of 1700 

events for an average time of 14.92 seconds only, with an average 

generation of 7.2 and a best time of 8.38 seconds. These results 

reveal that the performance of HEWOA was better than that of 

various hybrids of the Genetic Algorithm that was compared in 

the present study. 

Keywords—Heuristics; mutation; optimization; swarm; 
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I. INTRODUCTION 

The application of automated procedures to a time-
consuming and resource-intensive task often leads to increased 
efficiency and productivity, as well as time and cost savings. 
Among these processes are the preparation and creation of 
academic schedules. Timetabling problem was solved 
manually through trial and error, but this was not the greatest 
option. At present, scientific methods are used to address the 
problem [1], [2]. Timetabling problems, better known as the 
university course timetabling problem (UCTTP), are known to 
be NP-hard, meaning the problem cannot be solved exactly in 
polynomial time as its size and complexity increase 
exponentially [3]. It involves allocating non-overlapping 
classes to given resources such as classrooms and teachers in 
space-time [4]. The number of courses, the average number of 
lectures per day, the desired free timeslots each day, and the 
targeted off-days in a week are a few of the constraints that 
influence the design of the educational timetable [1], [5]. In the 
scheduling problem, there are two types of constraints: hard 
constraints and soft constraints. Hard constraints are rules or 
restrictions that cannot be broken. Soft constraints are 
requirements that, if not violated, can improve the effectiveness 
of the timetable. A timetable is considered efficient if it is able 

to solve the problem while adhering to all of the hard 
constraints specified [6]. 

The process of scheduling classes is often carried out with 
the assistance of specialized models that are adapted to meet 
the requirements of the particular educational establishment in 
question. A significant amount of work devoted to scheduling 
makes use of streamlined models to investigate and evaluate 
the performance of various scheduling strategies. The vast 
majority of research on course scheduling focuses on modeling 
and computational results, with very little attention paid to 
actual implementation in the real world [7]. 

Several strategies have been used to solve course 
timetabling using benchmark and real-world datasets. This 
problem was solved over decades using optimization 
approaches. Heuristic approaches helped resolve timetabling’s 
complex behavior and model [8]. Evolutionary methods are 
frequently used in solving course timetabling; however, these 
existing methods were not able to quickly tests all alternatives 
to find the best solution [8]–[10]. Recently, various research 
has employed the Whale Optimization Algorithm (WOA), 
which is appreciated as a simple, flexible, and competitive 
swarm-based metaheuristic algorithm [11][12][13]. Despite its 
potential, it has inherent flaws that must be addressed before it 
can effectively address optimization issues such as course 
timetabling. WOA, like most metaheuristic algorithms, 
struggles to have a balanced local and global search. 

The present study is an application and enhancement of the 
algorithm used in the previous work of WOA [14] in solving 
course timetabling. In this work, WOA was integrated with 
heuristic mutation to improve further the performance of WOA 
in solving optimization problems such as timetabling. The aim 
of the present work is to introduce HEWOA as a heuristically 
enhanced variant of the WOA, which is used in solving course 
timetabling problems. A literature review is presented in the 
next section of this paper, which contains a discussion on 
timetabling, solutions for solving UCTTP, and WOA. The third 
section presents the particulars of the methodology, which 
includes the problem definition, the architecture, and the 
HEWOA. Section IV presented the observations, results, and 
discussions on the experiments conducted in solving the 
timetabling problem. Finally, the conclusion of this study is 
presented in Section V. 
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II. LITERATURE REVIEW 

A. Timetabling 

The process of allocating resources to discrete objects in 
space-time to achieve desired goals within a given set of 
constraints is called timetabling. Timetabling encompasses 
many research-intensive fields. In education timetabling, the 
timetabling for the course and examination is the most studied. 
It is challenging to execute a course scheduling solution with 
the same approach to a problem because each institution has 
unique characteristics and constraints or limitations [15]. 
Universities and colleges in the Philippines use a manual 
procedure to schedule classes, increasing work for program 
heads and making it difficult to analyze every timetable 
combination [16]. In each country, accrediting government and 
private agencies require state universities and colleges to 
adhere to specific policies and criteria for scheduling classes. 
One of the recommendations suggests limiting the number of 
preparations for each faculty member to no more than four 
distinct subjects so that they have just enough work to do 
during the semester. The quality of instruction may degrade if 
faculty members teach more subject courses than the university 
deems optimal [17], which also leads to student’s poor 
academic performance[18]. This case is often violated in actual 
practice. There are also cases of an unbalanced allocation of 
workloads among faculty members, in which some have more 
than four preparations while others have fewer than four. 

More research is encouraged in solving UCTTP as it is 
unique across institutions due to policies and regulations. A 
general solution that could solve all the concerns in UCTTP 
does not exist [9]. Apart from being effective, optimization 
algorithms should consider simplicity and adaptability to a 
range of varying real-world UCTTP [10]. Thus, adapting the 
implementation of state-of-the-art methods on real-world 
UCTTP is still open to be explored by researchers. 

B. Solutions in Solving UCTTP 

Over the past decade, several works have shown substantial 
advancements in timetabling techniques and algorithms. These 
methods were created to address either benchmark datasets or 
real-world datasets [9]. In terms of the quantity and hard and 
soft constraints, benchmark and real-world UCTTPs differ. 
Creation solutions for benchmark datasets are often generalized 
and intended for comparing algorithms. The benchmark 
datasets utilized in international timetabling competitions, such 
as Socha[19], ITC-02[20], and ITC-07 [21], are the most 
popular testbeds among researchers in comparing algorithms. 
Real-world UCTTP, on the other hand, emphasizes the 
applicability of solutions in academic institutions. Due to 
varied legislation, educational systems, and cultures, even real-
world UCTTP vary in terms of their criteria [10]. 

Metaheuristic methods promise precise and optimal 
timetable scheduling solutions and are popular for timetabling 
and other optimization challenges. They are simple to 
implement, faster than the standard mathematical-based 
optimization process, and achieve optimal results [11]. 
Evolutionary methods like Genetic algorithms, ant colony, 
local search, simulated annealing, and tabu search are 
frequently used in course scheduling; however, none of these 
was considered the best [8], [9]. Hybrid techniques or 

combining two or more algorithms are also prevalent and have 
produced more high-quality outcomes than other techniques, as 
proven in prior studies [22]–[24]. Hybrid methods are 
appropriate for maximizing the benefits of separate techniques. 
Single solution-based meta-heuristics and population-based 
meta-heuristics are the most popular approaches for the 
benchmark UCTTP, while in the case of real-world or actual 
datasets such as the one used in this work, the most popular 
methods used include single solution-based meta-heuristic, 
Operations Research, population-based meta-heuristic, hyper-
heuristic and hybrid approaches [9]. 

C. Whale Optimization Algorithm 

The Whale Optimization Algorithm (WOA) is a swarm-
based optimization algorithm that is inspired by the hunting 
behavior of humpback whales[13]. WOA is among the most 
promising and competitive optimization techniques [11], [25]. 
The whales, while encircling the prey, create specific bubbles 
along a circular path. The bubble-net attacking technique 
assists in exploitation. The prey for the search state of WOA 
represents the exploration phase. For exploitation, the whale 
position is updated using either spiral movement or shrinking 
encirclement. For exploration, the humpback whale finds the 
best solution and updates its position according to other 
whales. Having this inspiration, WOA is composed of three 
operators: encircling prey, bubble-net attacking method, and 
search prey. 

The following are the relevant equations implemented by 
WOA on its operations. Eq. 1-4 captures the procedures for the 
encircling prey. 

�⃗⃗� = |𝐶 . 𝑋 ∗(𝑡) − 𝑋 (𝑡)|             (1) 

𝑋 (𝑡 + 1) = 𝑋 ∗(𝑡) − 𝐴 . �⃗⃗�              (2) 

𝐴 = 2𝑎 . 𝑟 − 𝑎               (3) 

𝐶 = 2. 𝑟                (4) 

where t indicates the current iteration, 𝐴  and 𝐶  are 
coefficient vectors, and X* is the position vector of the best 
solution obtained so far. 𝑋  is the position vector, | | is the 
absolute value, and is an element-by-element multiplication, 
and 𝑟  is a random vector in [0, 1]. It should be noted that X* 
should be updated in each iteration if there is a better solution. 
The vectors 𝐴  and 𝐶  are calculated as shown in Eq. 3 and 4, 
respectively. 

Bubble-net attacking method: 

𝑋 (𝑡 + 1) = �⃗⃗� ′. 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋 ∗(𝑡)           (5) 

𝑓(𝑥) = {
�⃗⃗� 

∗
(𝑡) − �⃗⃗� . �⃗⃗� , 𝑖𝑓 𝑝 < 0.5

�⃗⃗� ′. 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗(𝑡), 𝑖𝑓 𝑝 ≥ 0.5
          (6) 

Where p represents a constant for explaining the shape of 
the logarithmic spiral and 𝑙  is a random number uniformly 
distributed in the range of [-1, 1]. 

and Search for prey: 

�⃗⃗� = |𝐶 . 𝑋 𝑟𝑎𝑛𝑑 − 𝑋 |             (7) 
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𝑋 (𝑡 + 1) = 𝑋 𝑟𝑎𝑛𝑑 − 𝐴 . �⃗⃗�              (8) 

where 𝑋 𝑟𝑎𝑛𝑑  is nominated arbitrarily from whales in the 
current iteration. 

Many recent research has employed the Whale 
Optimization Algorithm (WOA), which is appreciated as a 
simple, flexible, and competitive swarm-based metaheuristic 
algorithm [11][12][13]. Whale bubble-net hunting inspired 
WOA’s algorithm. Its effectiveness and adaptability attract 
researchers from many fields. It is used in electrical, computer, 
aeronautical, and construction engineering [26]. Despite 
WOA’s promising features, it has some unavoidable flaws, 
including being designed for continuous search space [13], 
requiring too many parameters tuning [27], having no 
theoretical convergent property [28], and having a probability 
distribution that changes with iterations [12]. It may also 
prematurely converge, trapping it in local optima [29], [30]. 
WOA, like most metaheuristic algorithms, struggles to balance 
local and global searches. The present study is an application 
and enhancement of the algorithm used in the previous work of 
WOA [14] in solving course timetabling. In this work, WOA 
was integrated with heuristic mutation. 

III. METHODOLOGY 

A. Problem Definition 

In the allocation of schedules to resources, the course 
timetabling problem must fulfill both hard and soft restrictions. 
This section presents the problem description and objective 
functions to be used in the implementation of the timetable. 
This study’s constraints and objective functions are similar to 
the previous work [14] but were implemented with a different 
algorithm to enhance WOA. 

 Timetable Guidelines 

The number of courses, the average number of lectures per 
day, the desired free timeslots each day, and the desired off-
days in a week are a few of the variables that influence the 
design of an educational timetable. Each course in a curriculum 
is a class which could be a lecture, a lab, or both. Each of these 
classes is allocated a teacher and a classroom at a time that 
should not conflict with other classes scheduled for that day. 
Classrooms are utilized either for lecture classes or laboratory 
work. The mathematical formulation must fulfill all the 
relevant variables in order to produce a timetable that is both 
efficient and feasible. The following variables have been taken 
into consideration throughout this study. Let: 

 E be the set of scheduled classes for a teacher and 
students with specified courses and classrooms, 

 S be the set of students grouped through blocks in a 
program, 

 T be the set of teachers wherein each teacher can handle 
many courses with a maximum of 4 unique subjects to 
handle, 

 C is the set of courses wherein each lecture unit in a 
course is equivalent to one hour, whereas each 
laboratory unit is equivalent to three hours of class; 

 R be the set of rooms, either lecture or laboratory, that 
will be assigned to classes, and; 

 K is the set of period slots in a day from 7:30 in the 
morning to 7:30 in the evening, wherein the days of the 
week are paired as Monday-Thursday, Tuesday-Friday, 
and Wednesday-Saturday. 

 Constraints 

The constraints in course timetabling problems are 
classified as soft and hard. Soft constraints are optional, while 
hard constraints must be satisfied completely [9], [13]. For this 
work, the minimum requirements set as policies by the 
Accrediting Agency of Chartered Colleges and Universities in 
the Philippines and the Commission on Higher Education for 
state universities such as Bicol University are also taken into 
account in these constraints. Table I presents the constraints 
considered in this study which were identified as the most 
common constraints being used in solving course timetabling 
[9]. 

TABLE I. THE CONSTRAINTS 

Code Type Description 

H1 Hard 
No teacher may be assigned to the same group of 
students in two separate classes. 

H2 Hard 
A teacher should handle only one course in one classroom 

at each time slot. 

H3 Hard 
Exactly only one class is assigned per timeslot per day in a 
classroom. 

H4 Hard The size of the classroom should be considered. 

H5 Hard 
For all required courses for a group of students must be 

given a scheduled 

H6 Hard 
All the teaching periods required in the curriculum must be 
given a schedule 

H7 Hard 
An uninterrupted period of time required for a class should 

be assigned precisely on a given day. 

S1 Soft 
At least one timeslot in a day should be vacant for a group 
of students 

S2 Soft 
The maximum number of straight classroom teaching 

hours is three in a schedule 

S3  Soft 
The total number of teaching hours in a day should not 

exceed 6 hours. 

 Objective Functions 

The degree to which the timetable can satisfy the 
constraints effectively will determine how much each solution 
will cost. In each generation of the candidate solution, a time 
slot is allotted to a pair of student and faculty groups associated 
with a classroom and a course. This is done with the goal of 
satisfying all hard requirements while keeping the expense of 
satisfying soft constraints to a minimum. The problem may 
also be expressed using the formulation that follows. Let X be 
the set of all possible solutions, 𝐻𝐶 = {ℎ1 …ℎ6} the set of hard 
constraints, 𝑆𝐶 = {𝑠1 …𝑠5} the set of soft constraints and  𝑥 ⊆
𝑋 the set of all candidate solutions. 

The goal of this procedure is to find the most efficient 
timetable with the least cost, as presented in Eq. 1 by the 
penalty charged per violation of a hard constraint: 
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ℎ𝑝(𝑥) =  ∑ 𝑓1(𝑥, 𝑡)𝑡∈𝑇 + ∑ 𝑓2(𝑥, 𝑡)𝑡∈𝑇 + ∑ 𝑓3(𝑥, 𝑟)𝑟∈𝑅 +
 ∑ 𝑓4(𝑥, 𝑟)𝑟∈𝑅 + ∑ 𝑓5(𝑥, 𝑠)𝑠∈𝑆 + ∑ 𝑓6(𝑥, 𝑠)𝑠∈𝑆 + ∑ 𝑓7(𝑥, 𝑠)𝑠∈𝑆  (9) 

TABLE II. THE OBJECTIVE FUNCTIONS FOR THE HARD CONSTRAINTS 

Function Penalty instance Purpose 

𝑓1(𝑥, 𝑡)  

Two or more classes are 

assigned to one teacher 

to handle 

Ensures no conflict in faculty 
loading 

𝑓2(𝑥, 𝑡) 
More than one teacher is 

assigned to a class 

Ensures that only one teacher is 

assigned to a class 

𝑓3(𝑥, 𝑟) 

One classroom is 

assigned with multiple 
classes. 

Ensures no conflict in the 

classroom assignment 

𝑓4(𝑥, 𝑟)  
If the classroom size is 

not considered. 

Ensures that the classroom can 

accommodate the class size 

𝑓5(𝑥, 𝑠) 
a course for a block of 

students has no schedule 

assigned 

Ensures that all courses enrolled 

by the students are assigned a 

schedule 

𝑓6(𝑥, 𝑠) 
The number of required 

hours on the curriculum 
is not satisfied. 

Ensures that the required hours 

offered in the curriculum are 
equal to the scheduled classes 

𝑓7(𝑥, 𝑠) 
More than a total of six 
hours of teaching load 

for a teacher 

Ensures that there is a balance 
distribution of workload within a 

week 

The penalty function for hard constraints is represented by 
Equation 9, and the value of the objective function for each 
solution can be determined as follows when soft constraints are 
also considered: 

𝑓(𝑥) =  (∑ 𝑓8𝑠∈𝑆 (𝑥, 𝑠) + ∑ 𝑓9(𝑥, 𝑡)𝑡∈𝑇 + ∑ 𝑓10(𝑥, 𝑡)𝑡∈𝑇 )  +
 (ℎ𝑝(𝑥) × 𝑊)            (10) 

The function 𝑓(𝑥) shown in Eq. 10 represents the sum of 
all penalties from hard and soft constraints. The function 
examines each solution for possible violations on the 
constraints wherein a value of one (1) will be given had there 
been violations; otherwise, zero (0). It can be observed that 
there is a variable W that is applied to the hard constraints 
ℎ𝑝(𝑥), where a value of three (3) will be multiplied by the 
counted violations on hard constraints. This was done so that 
the objective function would give more weight to violations on 
hard constraints. 

TABLE III. THE OBJECTIVE FUNCTIONS FOR THE SOFT CONSTRAINTS 

Function Penalty instance Purpose 

𝑓8(𝑥, 𝑠) 

There is no vacant period 
for a day to a group of 

students 

Ensures that students have at 

least one vacant period daily 

𝑓9(𝑥, 𝑠) 

The total teaching hours for 

a course totaled to more 

than 3 hours 

Ensures that the schedules are 

not straight and that having 

such would be tiresome both 

for the students and teachers. 

𝑓10(𝑥, 𝑠) 
the total teaching hours to 

be handled by a teacher is 
more than 6 hours 

Ensures that the schedules are 

distributed throughout the 
week. 

B. Architecture 

The courses and classes to be included in the scheduling 
were collected from various colleges at Bicol University. The 
lecture and laboratory rooms available for utilization and 
faculty members teaching these courses were also identified. 

These raw data were used in the generation of the timetable. 
Various sizes of datasets were considered for the 
experimentations to test the algorithms: 400, 800, 1200, and 
1700 as the largest dataset. 

Shown in Fig. 1 is the framework of the method for 
generating an optimized and fairly distributed timetable. The 
classes to be scheduled, faculty schedule, room availability, 
and specified constraints serve as the inputs. These data will be 
processed using HEWOA as objective functions. A penalty 
will be applied to violations of constraints, and the process will 
be repeated through generations until the cost approaches zero 
to produce an efficient and optimized timetable. 

INPUT 

 
 

 

PROCESS 

 

 

 

 
 

 

 
 

OUTPUT 

 

 
 

 

 

Fig. 1. Framework of the Study. 

C. The Heuristically Enhanced Whale Optimization 

Algorithm 

In this work, preliminary results implemented in solving 
course timetabling using WOA indicate that updating the entire 
solution using these traditional procedures of WOA has a 
greater likelihood of destroying rather than improving it. This 
is because the whale operator is designed to update all values 
using the same parameter values, and the event number is 
large. Additionally, the more constraints applied to a problem, 
the more complicated the search process becomes. A solution 
emerged during the experimentation: when the first procedure 
(encircling prey) was not used, the performance of WOA was 
improved. This is due to the nature of the equation, which has a 
high probability of destroying the solution. Moreover, the 
heuristic mutation operator is integrated into the process to 
enhance further WOA’s exploration and exploitation 
capability. 

Fig. 2 now depicts the pseudocode of HEWOA, taking into 
account the aforementioned modifications to the method as 
well as the section where the heuristic mutation seen in Fig. 3 
will be implemented. It is shown that the encircling procedure 
was removed from the process. 

Instead of updating the position of the current search whale 
using the encircling prey process, remove it, retaining the 
Bubble-net attacking method for the exploitation phase and 
searching for prey for the exploration phase. 

classes room
s 

faculty constraints 

Optimized 

Timetable 

HEWOA 
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Fig. 2. The HEWOA Pseudocode. 

Accordingly, in WOAs encircling prey section, search 
agents update to the best agent. It is easy to trap the algorithm 
in a local solution, causing premature convergence [31]. 
Consequently, updating the position of the current search agent 
using heuristic mutation is integrated to further improve the 
algorithm’s exploitation and exploration capability. In this 
work, the heuristic mutation focuses on invalid classes and 
repairs them using random pairs of room and period. 

 The Encoding Method 

The genetic operator avoids illegal offspring by encoding 
all events in each candidate solution in the same index, as 
shown in Fig. 3. 

 

Fig. 3. The Representation of the Solution. 

The subset of solutions in the current generation is a 3-
dimension array containing scheduled events. Each of these 
events contains the codes of other constraints such as student 
section, teacher, course, room, day, and timeslot. This data 
structure is similar to the one used in the work of [32]. In 
addition, prioritizing constraints are applied, and the events of 
the teacher who has the highest workload and the events of the 
section of students who have the most classes that need to be 
scheduled are attached to the solution first. 

 Fitness Function 

The whale’s fitness is the weighted sum of penalty cost 
based on Equations 9 and 10. Every constraint violation incurs 
a penalty of 1. However, the cost for hard constraints is 
multiplied by the weight value W such that the algorithm 
prioritizes these constraints while finding and ranking all 
candidate solutions. In addition, the impact of soft constraints 
will highlight the superior solution since it meets preferences. 
In other words, a solution with the same cost in hard 
constraints will be differentiated by the number of violations 
on soft constraints. 

 Heuristic Mutation 

Mutation modifies genes to create new individuals. The 
heuristic mutation is designed to produce better offspring 
wherein a set of chromosomes is transformed from a parent by 
exchanging some genes (neighborhood) [33]. In Fig. 4, the 
operator gets all invalid gene indexes and then mutates them. 

The operator does not implement mutation probability 
parameters in mutating invalid genes since it generates ten 
percent random genes or classes. The operator selects one of 
these randomly generated genes that fulfill stringent criteria. If 
no valid gene is found, the room or periods are altered at 
random (day and timeslots). It guarantees that randomly 
selected times are distinct from nearby occurrences in order to 
ensure diversity. Additionally, the rate of ten percent random 
genes or classes can be decreased or increased during the 
configuration or before running the algorithm. 

 

Fig. 4. Heuristic Mutation Applied to WOA. 

IV. RESULTS AND DISCUSSION 

Using real-world data, the efficiency of HEWOA was 
evaluated. These are actual datasets that include the courses to 
be scheduled for the various programs offered by Bicol 
University, Legazpi City, Albay, Philippines, as well as the 
rooms being utilized for the conduct of classes and the 
assigned faculty that will handle the class. The HEWOA uses a 
population of 10 whales and will stop generating solutions if 
all hard constraints are satisfied by any whale or when it 
reaches an iteration of 1000. 
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TABLE IV. PERFORMANCE OF THE HEWOA COMPARED TO OTHER 

METHODS 

Methods Events 
Average 

Generation 

Best 

Time 

Average 

Time 
SD 

GA Using 

Heuristic 
Mutation 

400 3.4 0.590s 1.061s 0.353 

800 5.2 2.370s 3.455s 0.650 

1200 8.0 6.430s 8.554s 1.402 

1700 15.5 16.670s 21.670s 4.247 

GA Using 
Invalid Genes 

Focused 

Random 
Resetting 

Mutation 

400 4.1 1.280s 1.595s 0.198 

800 7.0 5.145s 7.608s 1.475 

1200 14.0 16.670s 23.015s 3.979 

1700 33.9 55.700s 81.355s 16.402 

HEWOA 

400 2.4 0.458s 0.74s 0.160 

800 4.1 2.009s 3.514s 0.812 

1200 5.8 5.299s 8.362s 1.964 

1700 7.2 8.384s 14.942s 4.671 

EWOA [14] 

117 - - 3s - 

195 - - 15s - 

304 - - 270s - 

Guided GA [34] 
878 136.5 - - - 

1140 409.5 - - - 

Parallel GA and 

Local Search 
[35] 

166 900 - - - 

Greedy and 

Genetic Fusion 
Algorithm [36] 

300 900 - - - 

Table IV shows the various sizes of events or the number 
of classes used to test the various techniques. As part of the 
execution of the generating schedules in the timetable, the 
objective functions (Eq. 9) are executed, which assess penalties 
(Tables II and III) for schedules that violate the constraints 
stated in Table I. These costs determine the fitness function. 
Initial generations or runs would incur corresponding penalties, 
which would gradually decrease until they approached zero, at 
which point there would be no violations. 

The performance of the HEWOA was compared to other 
competitive methods that solved course timetabling: GA using 
heuristic mutation; GA using invalid genes focused on random 
resetting mutation; guided GA [34], parallel GA and local 
search [35]; and greedy and genetic fusion algorithm [36]. The 
result in Table IV of their performances in terms of total 
execution time is based on ten (10) runs per method. In terms 
of average generation, HEWOA was able to perform better 
compared to other work which uses Hybrid GA as the base 
method. In terms of execution time, HEWOA was also able to 
perform better except on a dataset with 800 classes. 

Fig. 5, 6, and 7 illustrate the pace at which the indicated 
techniques are approaching closer to zero, which is defined as 
the state in which no more penalties are incurred on the 
constraints. The research indicates that HEWOA is the 
approach with the fastest pace among these solutions, followed 
by GA with heuristic mutation. The least performing method is 
the GA when random resetting mutation is applied to infeasible 
genes. 

An example of manually generated faculty workloads that 
shows unoptimized class schedules and loading is shown in 
Fig. 8. It can be observed in the workload that on Tuesday and 
Friday, the faculty had teaching hours of more than 6 hours. 
Thus, violating soft constraint 3, the total number of teaching 
hours per day should not exceed 6 hours. The same scenario 
can be repeated with other faculty since that method of plotting 
schedules is manual, which is prone to errors, especially when 
the schedulers are adjusting or transferring loads from one 
faculty to another. 

Table V shows an example of faculty workloads generated 
by HEWOA. It can be seen that the workloads are equally 
distributed in the week, although the schedules do not show the 
consultation hours. It is also noted that that days are paired, 
like Monday-Thursday and Tuesday-Friday. In each timeslot, 
the total hour is one and a half hours, and the other one and a 
half hours are to be lectured on a corresponding pair day. 

 

Fig. 5. Performance of Genetic Algorithm when a Heuristic Mutation is 

Applied. 

 

Fig. 6. Performance of Genetic Algorithm when Random Resetting Mutation 

is Applied on Infeasible Genes. 

 
 

Fig. 7. Performance of HEWOA when the Heuristic Mutation is Integrated. 
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Fig. 8. Example of Faculty Workloads Generated Manually Captured from the University Database. 

TABLE V. EXAMPLE OF FACULTY WORKLOADS GENERATED BY HEWOA CAPTURED FROM THE UNIVERSITY DATABASE 

Faculty Section Course Code Room Day 
Day 

Description 
Timeslot 

Timeslot 

Description 

114 BSIS 1-105 ITE 10 18.03 1 Mon-Thu 3 10:30-12:00 

114 BSIT 2-113 IS 105 18.04 1 Mon-Thu 4 12:00-13:30 

114 BSIS 1-105 ITE 10 7.02 1 Mon-Thu 8 18:00-19:30 

114 BSIS 1-107 ITE 10 18.01 2 T-TF 3 10:30-12:00 

114 BSIT 2-113 IS 105 7.02 2 T-TF 4 12:00-13:30 

114 BSIS 3-111 IS 116 7.01 2 T-TF 6 15:00-16:30 

On room utilization, plotting classes manually can result in 
an inefficient room allocation. These would result in more 
classroom usage; it could increase the cost of maintenance and 
energy. In this work, the utilization of classrooms and 
laboratories is optimized since the HEWOA can produce 
timetables with fewer rooms compared to classrooms. For 
example, when we retrieved the schedules in one semester with 
1700 classes, the classrooms and laboratories utilized were 
more than 120 compared to schedules generated by HEWOA 
and GA, which only used 91. 

A. Implications 

Population-based metaheuristics such as Genetic 
Algorithms, Particle Swarm Optimization, and Ant Colony 
Optimization are superior to other methods in solution space 
exploration. Still, these approaches require a higher processing 
time necessary to generate solutions of high quality [37]. A 
good quality solution means no violations of the specified 
constraints whose purpose is explained and presented in 
Tables II and III. It was observed in the presented results in 
Table IV and Fig. 5, 6, and 7 that HEWOA was able to 
generate good-quality solutions that require lesser 
computational time. HEWOA is a multi-objective 
implementation of WOA and can be used for other similar 
solutions. 

The typical technique of timetabling is inefficient, manual, 
and not very robust against changes [10]. As a result, the 
number of course conflicts is considerable, which reduces the 
effectiveness of the instruction [38], [39]. The utilization of an 
intelligent approach for UCTTP has been the subject of much 
research and widespread debate worldwide. Using the method 
in the present work would aid in developing efficient software 
for course scheduling in academic institutions. 

V. CONCLUSION 

This paper introduces HEWOA, a heuristically enhanced 
Whale Optimization Algorithm designed to solve UCTTP. The 
results of the experiments on various sizes of real-world data 
indicate that both GA and HEWOA could generate a feasible 
and efficient timetable that could satisfy all the identified 
constraints set by educational institutions. Generating class 
schedules using GA and HEWOA can optimize classroom and 
laboratory utilization which could help decrease the cost of 
maintenance and energy. Optimized classroom and laboratory 
utilization could also help increase the number of students 
since there would be more available resources for classes. 
Faculty workloads also can be improved using automated 
scheduling; thus, it helps satisfy soft constraints and enhance 
the quality of schedules. 
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Moreover, it is observed that HEWOA outperformed 
Hybrid GAs [34] and other methods [35], [36] in terms of 
execution time and average solution generation for the majority 
of utilized event sizes. 

Lastly, future work would include testing the performance 
of this method using benchmark UCTTP, which provides 
different constraints than the real-world data used in this study. 
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