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Abstract—Ultrasound imaging technology is one of the most 

important clinical imaging modalities due to its safety, low cost, 

in addition to its versatile applications. The main technical 

problem in this technology is its noisy appearance due to the 

presence of speckle, which makes reading imaging more difficult. 

In this study, a new method of speckle reduction in medical 

ultrasound images is proposed based on adaptive shifting of the 

contrast sensitivity function of human vision using a bias field 

map estimated from the original image. The aim of this work is 

to have an effective image enhancement strategy that reduces 

speckle while preserving diagnostically useful image features and 

allowing practical implementation in real-time for medical 

ultrasound imaging applications. The new method is used to 

improve the visual perception of image quality of ultrasound 

images by adding a local brightness bias to the areas with speckle 

noise. This allows the variations in image pixels due to speckle 

noise to be better perceived by the human observer because of 

the visual perception model. The performance of the proposed 

method is objectively assessed using quantitative image quality 

metrics and compared to previous methods. Furthermore, given 

that image quality perception is subjective, the level of added 

bias is controlled by a single parameter that accommodates the 

different needs for different users and applications. This method 

has potential to offer better viewing conditions of ultrasound 

images, which translates to higher diagnostic accuracy. 
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I. INTRODUCTION 

Ultrasound imaging technology is one of the most 
important clinical imaging modalities due to its safety, low 
cost, in addition to its versatile soft tissue imaging applications 
that include abdominal imaging, echocardiography, and 
obstetrics and gynaecology [1]. Given that this technology 
relies on sending low intensity acoustic waves into the body 
and receiving the reflected and scattered echoes to reconstruct 
a cross sectional image of the body, it is inherently safe and 
can be considered as the safest imaging modality available 
today. This is evident by being the only imaging modality 
allowed for use on pregnant women to follow up the growth of 
the fetus and assess its biophysical profile in addition to 
detecting any anomalies present. Another advantage of 
ultrasound imaging technology is its availability in a wide 
range of forms including basic hand-held or portable units that 
cost a few thousand dollars to sophisticated dedicated 
echocardiography systems that cost hundreds of thousands of 
dollars. This allows ultrasound imaging to be popular for use 
in rural and low-income communities as well as in large, 

specialized hospitals. Future direction in this technology 
indicates that it will likely become as essential to medical 
practice as the stethoscope and it is predicted that general 
practitioners will soon have small ultrasound units in their 
clinical practice. 

Despite the many advantages of ultrasound imaging 
technology, it has a clear shortcoming in the quality of its 
image as compared to other modalities such as x-rays, 
magnetic resonance imaging or computed tomography. 
Ultrasound images generally look very noisy to the viewer and 
requires some training to correlate the anatomy to the acquired 
ultrasound images. This is mainly due to the presence of 
speckle that sometimes obscure pathological changes in the 
body and hence may cause errors in the diagnosis. Therefore, 
the problem of speckle reduction in ultrasound images has 
been the focus of research of many academic and industrial 
research groups since the early beginnings of ultrasound 
imaging and is expected to remain so given its impact on this 
technology [2]. 

Speckle noise is an unavoidable direct result of the physics 
of ultrasound imaging. Ultrasound imaging is done by sending 
an ultrasonic pulse through the body from an ultrasonic 
transducer arranged in 1D or 2D array form. This ultrasonic 
pulse propagates through the tissues and interact with its 
different components yielding reflected waves from specular 
reflectors and scattering from point reflectors [1]. The 
difference between specular and point reflectors is mainly in 
size whereas specular reflectors are larger than the wavelength 
of ultrasound waves while scatterers are significantly smaller 
than this wavelength. This wavelength is a fraction of a 
millimeter in the usual range of ultrasound imaging 
frequencies in the 2-15 MHz. Therefore, tissue interfaces and 
major blood vessels behave like specular reflectors while 
blood capillaries and cells within the extracellular space act as 
scatterers [3][4]. So, in a tissue like the liver, hepatocytes 
scatter ultrasound waves independently and the backscattered 
part is what is received by the ultrasound transducer. Given 
that such scattering depends on the ultrasound transducer 
frequency and orientation as well as the complex 3D structure 
of the tissue, the received scattered waves from the many cells 
involved interfere and produce a pattern of partial constructive 
and destructive interference points that show as random noise 
in the image. The difference between speckle noise and true 
random noise is that random noise change with time and hence 
can be reduced by simple averaging. On the other hand, 
speckle noise pattern remains the same as long as the imaging 
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conditions remain the same (i.e., probe orientation, frequency, 
and tissue being imaged). Therefore, it does not improve with 
averaging and other more sophisticated methods much be 
utilized to reduce its effect on image quality [5][6]. 

II. LITERATURE REVIEW 

Several approaches have been proposed to address the 
problem of speckle reduction. Such approaches can be broadly 
classified as acquisition and post-processing methods. The 
acquisition methods try to reduce speckle through the 
acquisition of multiple versions of the same slice with each 
acquired with different beamforming (e.g., using steering, 
different focal point, different frequency, etc.). Then, since the 
speckle pattern is different when beamforming changes, using 
simple averaging of these acquisitions will result in an image 
with reduced speckle [1][7][8]. Despite the intuitiveness of the 
approach and apparent simplicity, it practically requires 
reprogramming of the acquisition protocols of different 
applications, which adds significant cost in addition to being a 
cumbersome constraint in some applications that require high 
frame rate and/or special ordering of acquisitions such as in 
3D and 4D imaging. 

On the other hand, the second approach based on 
preprocessing was the focus of virtually all research groups 
working on this problem since the 1980s until today. Its basic 
premise is to start from the reconstructed image and apply 
different filters to improve the speckle pattern. Hence, it 
requires only a computer and access to the frame buffer of the 
ultrasound imaging system to perform its job. Moreover, with 
the advent of modern computing platforms and massively 
parallel processing hardware such graphics processing units 
(GPUs) that all became well within budget for ultrasound 
imaging systems, this approach seems like the logical starting 
point for practical purposes. From the technical point of view, 
post-processing methods can be categorized into linear, 
nonlinear, diffusion-based, and wavelet-based filtering 
methods [2]. The linear filters include such techniques as 
First-Order Statistics Filtering, Local Statistics Filtering with 
Higher Moments, and Homogeneous Mask Area Filtering 
[9][10][11]. The nonlinear filtering methods include Median 
Filtering, Linear Scaling Filter, Geometric Filtering, and 
Homomorphic Filtering [12][13][14][15]. The diffusion-based 
methods include several variants of Anisotropic Diffusion 
Filtering [16][17][18][19][20]. The wavelet-based methods 
mainly work using wavelet shrinkage using different wavelet 
families and levels of composition [21][22][23][24]. Hybrids 
between the above methods were also introduced [25][26][27]. 

Despite the relative success achieved by the present 
methods in reducing speckle in ultrasound images, there 
remains several problems that hinder the practicality of their 
use in clinical ultrasound. First, there is a gap between what 
the quality of the processed image means to researchers and 
clinicians. That is, the outcome of these methods may look 
smoother and hence better to the researchers but to the 
contrary such appearance may hide some features in the image 
that are important to the clinical sonographers. So, there is a 
need to develop better quality metrics that more accurately 
reflect the clinical view of the image quality [28]. Second, the 
focus only on reconstructed images may be the easiest way to 

address the speckle reduction problem but it certainly is not 
the optimal one. If a better solution to this problem is to be 
achieved, the different aspects of image formation must all be 
taken into consideration and optimized together to get the best 
results. This includes optimizing acquisition, beamforming, 
dynamic range compression, detection, sampling, 
quantization, scan conversion, and image reconstruction 
algorithms. Third, even though parallel processing has been 
around for a while now, very few reconstruction algorithms 
have been designed to work on parallel processing platforms. 
This is a clear disadvantage because they will not run in real-
time and/or pose a scheduling problem in the processing chain 
in ultrasound imaging systems especially in complex, time-
critical applications such as 4D imaging. 

One of the important aspects of ultrasound image quality is 
how it is perceived by a human sonographer. In particular, the 
psychophysiological aspects of human vision have a profound 
effect on such things as contrast sensitivity and details 
resolution that influence diagnostic quality [28]. In [29], 
Campbell and Robson presented the concept of contrast 
sensitivity function (CSF) that define the effects of contrast 
and spatial frequency content on the visual detectability by a 
human observer. In Fig. 1, this effect is illustrated using a 
simulated grating with different spatial frequency and contrast 
simulated based on algorithms in [30]. As can be observed, the 
variations in the grating are not detectible above the CSF 
superimposed on the grating as a dashed line. This suggests 
that reducing the contrast for high spatial frequency image 
details can reduce their detectability by a human user. In the 
context of speckle reduction, the goal is to make their less 
detectible by the sonographer. Given that the speckle noise has 
high spatial frequency content, this suggests that reducing 
their contrast would reduce their visibility by a human 
sonographer. 

 

Fig. 1. The Campbell-Robson Contrast Sensitivity Function Chart where 

Visual Detection of Variation Depends on Both Contrast and Spatial 

Frequency as Outlined by the Separation with the Dashed Line. 
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In this work, a new method of speckle reduction in 
medical ultrasound imaging is developed whereby a user-
controlled image display method adds a bias field map 
estimated from the original image that reduces speckle 
visibility. The new method relies on the contrast sensitivity 
function of the human visual perception to push the high 
spatial frequency content in speckle out of the visual 
detectability zone. This strategy does not affect the speckle 
pattern itself or change its statistical independence but rather 
allows the user to control how it is displayed to match 
subjective needs. The new method is experimentally verified 
using real ultrasound imaging data collected from a research 
system and compared to previous speckle reduction methods 
using quantitative image quality metrics. 

III. METHODOLOGY 

The speckle pattern in ultrasound images is characterized 
by a pseudo-random pattern with high contrast and high 
spatial frequency content due to its origin from the 
interference of many back-scattered waves. As a result, unlike 
random noise, it contains information about underlying tissue 
and may contribute diagnostic information in some cases. On 
the other hand, in many cases, the speckle pattern reduces the 
perceived ultrasound image quality and hence control over its 
visibility in the image is needed. In this work, it is proposed to 
take advantage of the characteristics of the contrast sensitivity 
function of the human visual system to develop a method that 
allows the visibility of speckle to be controlled by the user 
through appropriate contrast modification. This approach 
recognizes the importance of speckle as containing diagnostic 
information and addresses the subjective nature of image 
quality perception. According to this approach, reducing the 
contrast of speckle can improve image quality by reducing 
their visual detectability. The contrast is defined as the ratio of 
the maximum intensity to the average intensity. In order to 
verify this concept, a preliminary experiment was conducted 
where a speckle pattern from a real ultrasound imaging 
experiment was displayed along with the same pattern with 
different uniform intensity bias added to it. As this bias 
intensity increases, the contrast becomes lower according to 
its definition. In Fig. 2, the image to the left is the original 

speckle pattern while the other images show the same pattern 
with an increasing constant bias intensity added to the original 
as one moves to the right. As can be observed, the coarse 
visual appearance of the original speckle pattern gets finer as 
the bias intensity increases. Even though this confirms the 
validity of the concept, it is still not practical to just add a 
constant bias to the whole image because it may affect the 
contrast sensitivity of other areas of the image not containing 
speckle. A more suitable approach is to design a spatially-
variant bias map that estimates a smooth local brightness level 
in different parts of the image. In this work, using a simple 
image denoising technique such as 2D median filtering with a 
large kernel as the bias field is proposed. This allows the 
differentiation of speckle from specular reflectors in the 
image. The weighted averaging of this bias map and the 
original image would result in a variable degree of speckle 
visibility depending on how the weight is selected and allows 
the user to select the level of speckle suppression subjectively. 
Given that, the weighted average may have dynamic range 
compared to the original, a simple adjustment of the dynamic 
range is done to maintain the appropriate display quality. A 
block diagram of the new method is shown in Fig. 3. The 
method accepts an original image in the form of a 
reconstructed image or as raw data collected by the imaging 
system. The original image is fed into two processing blocks. 
The first uses one of the present image-denoising filters for 
bias map estimation. In this work, a 2D median filter was used 
with a kernel size of nine to result in a fairly constant bias 
within the speckle pattern areas while varying with major 
interfaces to maintain contrast. It is conceptually possible to 
use other techniques to estimate that local bias field that serves 
as a local estimate of average intensity in the neighborhood. 
Then, the output from the image denoising filter and original 
image are used to obtain the final image using a weighted 
average. The weight used is selected by the user depending on 
the subjective desired outcome and application and applied to 
the original image. In order to ensure that the resultant image 
is displayed properly on the imaging system monitor, the 
dynamic range of the final image is adjusted to fit the dynamic 
range of the monitors (for example, 8-bit gray scale). 

 

Fig. 2. Diagram Showing the Results of Adding a Constant Intensity Bias to the Original Image Shown to the Left. The Speckle Pattern Detectibility Decreases 

As Intensity Bias Increases From Left to Right Images. 
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Fig. 3. Diagram Showing the Steps of the Porposed Technique Whereby Intensity Bias Map is Estimated using a Simple Image Denoising Filter and then used to 

Reduce Speckle Visibility in the Original Image. 

IV. EXPERIMENTAL VERIFICATION 

The ultrasound imaging data were collected using a 
Digison Digital Ultrasound Research system (Mashreq 
Company, Egypt). The system was equipped with a custom 
research interface to control image acquisition with ability to 
access and save raw radiofrequency sampled data for each 
collected image line. In order to make sure that the images are 
representative of different applications, the images were 
collected using several ultrasound array probes including 
convex array abdominal probe, small parts linear probe and a 
tight convex array endo-cavity probe. The imaging 
experiments were done for different clinical applications on 
human volunteers, as well as on a quality control tissue-
mimicking phantom (Multi-Tissue Ultrasound Phantom CIRS 
Model 040GSE, CIRS Inc., U.S.A.). In each imaging 
experiment, a specific region was imaged using a specific 
imaging probe and a total of 10 images were collected for 
each application. The total number of imaging experiments 
done was 26 with a total number of images of 260. The 
research interface allowed the collection of raw image data at 
a sampling rate of 50 M Samples/s at 16 bits of quantization. 
Signal processing using filter-based Hilbert transformation for 
peak detection then resampling to obtain a total of 512 data 
samples per line (or stick). The number of image lines was 

128 and this 512128 array represents the stick data. The 
application of the new technique was done on the stick data 
using a bias field estimation from a 2D median filter with 
kernel size of nine and the weighting factor used to combine 
the bias field and original image was takes as 0.5. The 
dynamic range modification was done using simple 
window/level operation to ensure that the histogram of the 
combined image extends over the available display dynamic 
range of 8-bits. The image quality of output images is 
estimated using two quantitative image quality metrics of 
structural similarity index (SSIN) [31], and universal quality 
metric [32]. Given that each application may have different 
image characteristics, the image quality metrics from the 10 
images collected for each of the 26 different imaging 
experiments were averaged to provide more reliable 
comparisons. 

The final image reconstruction was subsequently 
performed using scan conversion and/or interpolation 
according to the array geometry and dimensions to display the 
image in the correct spatial format. All processing was done 
on Matlab 2022b (MathWorks, Inc.) using an educational 
license available through King Abdulaziz University. The 
computing platform consists of a personal computer with 11th 
generation Intel® Core™ i7-11700F running at 2.50 GHz 
clock and using a 64-bit Windows 11 Home Edition, with 32 
GB of RAM. 

V. RESULTS AND DISCUSSION 

The output image results from the new technique as 
compared to the original images and four representative 
techniques covering the current approaches in speckle 
reduction as applied to sample applications are shown in Fig. 
4. The previous techniques considered are wavelet denoising 
[21][23], relaxed median (RMedian) denoising [14][15], 
speckle reducing anisotropic diffusion (SRAD) [17][16][18], 
and local statistics based filtering (Lee) [9][10]. In each of 
these techniques, the original technique is implemented with 
the implementation details suggested in the most recent 
variant. As can be observed, the new technique shows finer 
speckle pattern and less blurring as compared to present 
techniques. This is particularly evident in the linear array 
example at the bottom of the page where the texture is 
significantly smoother compared to other techniques without 
having a blurring problem as found with the techniques based 
on wavelet denoising and lee filter. 

The performance of different techniques was quantitatively 
assessed using the structural similarity index and universal 
quality image quality metrics for each imaging experiment. 
The results are shown in Fig. 5. Each point on these plots 
represents the average of the respective image quality metric 
computed over the 10 images collected in each experiment. As 
can be observed, the proposed method had better metrics in 
the majority of experiments followed by SRAD and RMedian 
techniques. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 11, 2022 

579 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 4. Fig. 4. Diagram Showing the Output Image Results from the Porposed Technique as Compared to the Original Images and Four Previous Techniques. As 

Can Be Observed, the Proposed Method Offers Finer, Less Detectible Speckle Pattern Without Image Blurring.   

 

Fig. 5. The Performance Comparison of Different Techniques as Evaluated by Two Quantitative Image Quality Metrics for Each Imaging Experiment. 
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Fig. 6. Diagram Showing the Output Image for Different user Level Selections Starting from the Original Image (No Intensity Bias) on the Left With Higher 

Contribution of Bias Intensity From the Left to the Right Images. 

To demonstrate the value of user level selection over the 
speckle visibility in the output image, the output image from 
the same experiment using levels of 100% (original image 
without adding intensity bias field), 70%, 50% (used in 
generating previous results), 30% and 20% are provided in 
Fig. 6. As can be seen, the level of speckle visibility decreases 
as one moves to a lower level of original image contribution to 
the weighted average. This comes at the expense of possible 
blurring depending on how the bias field is generated. 
Therefore, a selection of a level around 50% seems to strike a 
balance between the two requirements of reduced speckle and 
blurring. This allows the sonographer to adjust the level to 
what he peceives as the optimal image quality for improved 
diagnosis. 

The challenge facing the broad adoption of the new 
methodology are mainly due to the way the implementation in 
real clinical settings. Usually, the sonographer looks at the 
real-time images on the monitor of the ultrasound imaging 
system to make the diagnosis while doing the scan. If the 
implementation is not done on the ultrasound imaging system 
itself, an external computer must be connected to the system 
to acquire the images, process them in real-time and then 
display them on a medical grade monitor. The computational 
complexity of the new method is essentially O(N2), which is 
of the same order as the image reconstruction process itself 
and does not pose any problems in real-time processing on 
modern computing platforms. The main problem in the 
external processing option lies in how the extensive 
measurements and calculations packages usually offered on 
ultrasound imaging systems can be accessed and used during 
the scan. Since asking the sonographer to use an external 
computer to control and display ultrasound images on an 
external monitor and use the built-in ultrasound imaging for 
measurements and calculations might be inconvenient to the 
doctor, the implementation as an integrated original equipment 
manufacturer module might be the best alternative. 

VI. CONCLUSIONS 

A new method of speckle reduction in medical ultrasound 
images based on adaptive shifting on the contrast sensitivity 
function of human vision is proposed. The new method offers 
an effective image enhancement strategy that reduces speckle 
while preserving diagnostically useful image features and 
allowing practical implementation in real-time for medical 
ultrasound imaging applications. The new method is used to 
improve the visual perception of image quality of ultrasound 
images by adding a local contrast bias to the areas with 

speckle noise. This allows the variations in image pixels due 
to speckle noise to be better perceived by the human observer 
as a result of the visual perception model. Furthermore, given 
that image quality perception is subjective, the level of added 
bias is controlled by a single parameter that accommodate the 
different needs for different users and applications. The new 
method is experimentally verified using real ultrasound 
imaging data from 26 imaging experiments with 10 images in 
each. The results are evaluated qualitatively by comparing 
appearance of images and quantitatively using two image 
quality metrics. The results demonstrate the performance of 
the proposed method and indicate its potential to offer better 
viewing conditions of ultrasound images, which translates to 
higher diagnostic accuracy. 
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