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Abstract—People with speech disorders could have social and 

welfare difficulties. Therefore, the silent speech interface (SSI) is 

needed to help them communicate. This interface decodes the 

speech from a human’s biosignal. The brain signals contain 

information from speech production to cover people with 

numerous speech disorders. Brain signals can be acquired non-

invasively by electroencephalograph (EEG) and later 

transformed into the features for the input of speech pattern 

recognition. This review discusses the advancement of EEG-

based SSI research and its current challenges. It mainly 

discussed the acquisition protocol, spectral-spatial-temporal 

characterization of EEG-based imagined speech, classification 

techniques with leave-one-subject or session-out cross-validation, 

and related real-world environmental issues. It aims to aid future 

imagined speech decoding research in exploring the proper 

methods to overcome the problems. 
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I. INTRODUCTION 

Communication is essential in daily human life. People 
would hardly communicate in noisy circumstances, in quiet 
environments where no sounds are allowed, in secret 
conversation, or when they have speech disorders. 

Speech disorders could negatively affect a person’s social 
life and welfare. WHO reported that in 2011 there was 3,6% of 
the world’s population experienced extreme difficulty living in 
their community due to speech disorders [1]. Moreover, they 
also were hindered from getting a job, as stated by ILO in 2017 
for 4,1% of Indonesian citizens [2]. Additionally, research 
conducted in the United States found that one in 13 adults 
experience speech disorders annually [3]. In this circumstance, 
an interface to assist communication becomes more necessary 
than ever. 

One of the interfaces intended to help people with speech 
impairments to communicate is the silent speech interface 
(SSI), which converts the biosignal into a speech. Human 
speech can be categorized into overt speech (with sound), 
silent articulation (articulator moves but no sound), and covert 
speech (no sound and movement) [4]. The latter is also called 
silent speech or imagined speech as our focus of discussion. 

The causes of speech disorders can be the absence of 

knowledge to speak experienced by deaf people, articulation 
problems, neurologic dysfunction (e.g., stroke), and paralysis 
(i.e., tetraplegia, muscular degenerative diseases, locked-in 
syndrome, or coma patients) [4]. Most causes come from brain 
disorders [5]. The applicable sensors mainly record brain 
activity, such as electroencephalograph (EEG) or electro-
corticograph (ECoG). While ECoG has a higher Signal-to-
Noise Ratio (SNR) than EEG, its invasive electrode placement 
can have a clinical risk. Moreover, ECoG only covers a 
specific area, while EEG has a broader coverage than ECoG. 
Hence, EEG is considered safer than ECoG. 

This review aims to present the development of EEG-based 
speech imagery studies and assist researchers in finding a 
solution to achieve better accuracy and solve the real problem. 
It focused on EEG application to decode imagined speech as a 
pipeline consisting of signal acquisition, signal preprocessing, 
feature extraction, classification techniques, and the real-world 
application challenges that were still unnoticed. The process 
flow of the review is in Fig. 1, and the summary of the 
discussed references is in Table I. 

 
Fig. 1. Review Processes. 
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TABLE I. EEG-BASED SSI STUDIES 

Ref. Cue Speech 
Freq. 

(Hz) 
Feature extraction Classification Validation 

[6] Audiovisual “to”, “two”, “too”, “here”, “hear” 1-20 FFT Min. least-squares CV 

[7] Visual 
0-9; NATO phonetic alphabet (a-e); 

"yes", "no", etc.; sentence 
0.9-60 STFT+LDA HMM CV 

[8] Visual “alpha”, “bravo”, …, “echo” 1-300 DTCWT, LDA HMM CV 

[9] 

Audiovisual “/ba/”, “/ku/” 

3-18 Hilbert transform, spectral feature matched-filter CV 

[10] 3-20 spot of interest (SOI) LDA CV 

[11] 4-25 AR kNN CV 

[12] 

Visual “/a/”, “/u/” 

1-45 CSP SVM CV 

[13]  
Statistics, geometric mean, energy 

sum, entropy, wavelength 
LDA CV 

[14] 8-40 MFCC kNN/SVM CV 

[15] Audio 
“/aa/”, “/ae/”, “/l/”, “/r/”, “/m/”, “/n/”, 

“/uu/”, “/ow/”, “/s/”, “/z/” 
4-28 Spectrogram LDA CV 

[16] Visual “two”, “to”, “four”, “for” N/A Voltage DT CV 

[17] Visual 

(Korean) 3 (“sam”), 5(“oo”), 9 (“gu”), 

10 (“sib”); cheek (“ppyam”), nose 

(“ko”), eye (“nun”), mouth (“ib”) 

1-100 spectrogram, STFT SVM CV 

[18] Visual (Chinese) “左” (“left”), “壹”(1) 6-30 CSP, DWT, AR SVM CV 

[19] Visual /um/ 4-20 AR LDA CV 

[20] 
Audio 

(question) 
(Arabic) “yes”, “no” 0-48 DWT SVM, SOM, LDA CV 

[21] Audio “/a/”,“/i/”,“/u/”,“/e/”,“/o/” 1-100 Statistics EL CV 

[22] 
Audio 

(question) 
(Indian & English): “yes”, “no” 0-40 Spectral power of FFT ANN CV 

[23] 

Audiovisual 

“/iy/”, “/uw/”, “/piy/”, “/tiy/”, “/diy/”, 

“/m/”, “/n/”, “pat”, “pot”, “knew”, 

“gnaw” 

1-50 Statistics SVM CV 

[24] 
 

Statistics, MFCC, nonlinear features SVM CV 

[25] DWT DNN CV 

[26] 

Visual 
“/a/”, “/i/”, “/u/”, “in”, “out”, “up”, 

“cooperate”, “independent” 
8-70 

Riemannian manifold RVM CV 

[27] channel cross-covariance (CCV) CNN+LSTM+DAE  CV 

[28] channel cross-correlation matrix LSTM CV 

[29] DWT DNN CV 

[30] 
Bag of Features (BoF) RNN LOSO-CV 

[30] 

Visual  

(Spain): “arriba” (“up”), “abajo” 

(“down”), “izquierda” (“left”), 

“derecha” (“right”), “seleccionar” 

(“select”) 

4-25 

[31] 4-25 DWT 
RF CV 

[32] 0-64 Statistics, RWE 

[33] 40-50 Bag of Features (BoF)  NB + TL CV 

[34] 

Audiovisual  

(Spain)  “/a/”, “/e/”, “/i/”, “/o/”, “/u/”, 

“arriba” (“up”), “abajo” (“down”), 

“izquierda” (“left”), “adelante” 

(“forward”), “atrás” (“backward”) 

2-40 
RWE 

RF CV 

[35] 

 

CNN CV 
[36] 

CNN layer, FBCSP 
[37] CNN + TL LOSO-CV 

[38] word embedding + Siamese encoder kNN CV 

[39] Visual “/a/”, “/e/”, “/i/”, “/o/”, “/t/” 0.5-220 phase per band (Hilbert transform) SVM CV 

[40] Audio 
“/a/”, “/e/”, “/i/”, “/o/”, “/u/”, “yes”, 

“no”, “left”, “right”. 
0.1-70 RMS, zero-crossing rate, moving 

window average, kurtosis, and power 

spectral entropy 

RNN CV 

[41] Audio 
“Hi Bixby”, “Call Mom”, “Open 

Camera”, “What’s the weather”. 
0.5-70 

[42] Audio  

“ambulance”, “clock”, “hello”, “yes”, 

“light”, “help me”, “pain”, “stop”, 

“thank you”, “toilet”, “TV”, “water”. 

0.5-40 CSP LDA CV 

[43] Audio “go”, “back”, “left”, “right”, and “stop” 0.5-60 covariance and MaxLCor ELM CV 

[44] Audio 
“hello”, “help me”, “stop”, “yes”, 

“thank you” 
0.5-128 DWT, MaxLCor SVM CV 

[45] Visual 
ten words for every vowel: “a” (“can”, 

…, “tap”), “e” (“bed”, …, “vex”), etc. 
0.5-50 

coherence, PDC, DTF, transfer 

entropy 
DBN LOSO-CV 

ANN = artificial neural network (NN), AR = autoregression, CNN = convolutional NN, CSP = common spatial pattern, DAE = Deep Autoencoder, DNN = deep NN, DT = decision tree, DTCWT = Double-Tree 

Complex Wavelet Transform (WT), DTF = direct transfer function, DWT = Discrete WT, ELM = extreme learning, FBCSP = filter bank CSP, FFT = Fast Fourier Transform (FT), HMM = hidden Markov model, 

kNN = k-nearest neighbour, LDA = linear discriminant analysis, LSTM = long short-term memory, MaxLCor = Maximum Linear Cross-correlation Coefficient, MFCC = Mel Frequency Cepstral Coefficients, NB = 

naïve Bayes, PDC = partial directed coherence, RF = random forest, RMS = root mean square, RNN = recurrent NN, RVM = relevance vector machine (VM), RWE = relative wavelet energy, SOM = self-organizing 

map (clustering), STFT = Short Time FT, SVM = support VM, TL = transfer learning. 
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This paper did not compare the accuracies quantitatively 
between studies due to the different techniques, datasets, or 
computation environments. Hence, the comparison would not 
be apple-to-apple. Discussing techniques and challenges is 
more worthwhile than the accuracy comparison to find the 
right solutions. The remainder of this review is organized as 
follows. Section II discusses the data acquisition process. 
Section III describes the signal processing used in the reviewed 
studies. Section IV deals with Spectral, Spatial and Temporal 
analysis. Section V explains the classification and feature 
extraction techniques that were categorized further into non-
deep learning and deep learning, including the modified 
validation method. This paper describes the challenges of the 
application of EEG-based SSI in Section VI. Finally, Section 
VII draws some conclusions. 

II. DATA ACQUISITION 

The research subjects were given the cue of speech (vowels 
or words) shown from the monitor, heard from the earphones, 
or both (audiovisual cue). If the cue presentation was before 
the speech imagery, they had to memorize the cue, and this 
would separate the imagined speech task from the 
reading/listening task. While in the simultaneous cues, subjects 
performed the imagined speech task with the reading/listening 
task at the same time. Besides, the most active brain parts for 
listening and reading are different, i.e., the listening process 
involves the temporal lobes, and the reading process involves 
the occipital lobes. Thus, cue format and presentation 
regarding the time of imagined speech can affect different 
active brain areas. 

The acquisition protocol of the Arizona State University 
dataset [26] used only visual cues, as illustrated in Fig. 2. The 
cue presentation was simultaneous with the imagined speech 
recording. The subject performed speech imagery at each 
"beep" sound and continued the same pattern until the visual 
cue disappeared (7 x T second). They used three short words 
(“in”, “out”, and “up”) and two long words (“cooperate” and 
“independent”). For the longer words, T is more than one 
second. This protocol was applied to 15 subjects (11 males, 
one left-handed, age 22-32) and the EEG signals recording 
used 60-channel EEG at 1000 Hz and two-channel 
electrooculography (EOG) to capture ocular artefacts. They 
applied Common Spatial Pattern (CSP) to get the most active 
brain areas. The results showed that brain activity almost 
entirely focused on the left frontal, middle and parietal sides of 
the brain, as the location of the motor cortex and Broca and 
Wernicke’s area. Even in the rest state, the brain remains 
highly active. 

The other previous study that used visual cues presented the 
cues separately from the imagined speech state [23], as shown 
in Fig. 3, named the KARAONE dataset. The goal was to 
differentiate between the pronounced speech performed in the 
cue state and the imagined speech after the cue state. They used 
seven phonemes; “/iy/”, “/uw/”, “/piy/”, “/tiy/”, “/diy/”, “/m/”, 
“/n/”, and four words from Kent’s list [46], i.e. "pat", "pot", 
"knew", and "gnaw". This protocol was conducted on 12 
subjects (8 males, all right-handed, age 27.4±5) and recorded 
with 62-channel EEG at 1024 Hz. They found that central brain 
areas in temporal locations had discriminative features. 

A different protocol was employed by Coretto et al. [34], as 
illustrated in Fig. 4. They used both audio and visual cues 
before subjects performed imagined speech. No specific reason 
why they decided to use both cue types. They employed five 
vowels; “/a/”, “/e/”, “/i/”, “/o/”, “/u/”, and five Spanish words; 
“arriba” (“up”), “abajo” (“down”), “izquierda” (“left”), 
“derecha” (“right”), “atrás” (“backward”), and “adelante” 
(“forward”). This protocol was conducted on 15 subjects (8 
males, one left-handed, averaged age 25) and recorded with 
six-channel EEG at 1024 Hz. Moreover, there was still no 
further study with spatial analysis to observe which brain parts 
are more involved in both cues. 

On the other side, a Brain-Computer Interface (BCI) open 
dataset [47] for the speech imagery study only employed audio 
cues. They used five common words; “hello”, “help me”, 
“stop”, “thank you”, and “yes” and conducted this protocol on 
15 subjects using 64-channel EEG at 256 Hz. The cue 
presentations were given independently from the imagined 
speech state, as shown in Fig. 5. 

 
Fig. 2. Arizona State University Dataset’s Acquisition Protocol. 

 
Fig. 3. KARAONE Dataset’s Acquisition Protocol. 

 
Fig. 4. Coretto Dataset’s Acquisition Protocol. 

 
Fig. 5. BCI 2020 Track 3 Dataset’s Acquisition Protocol. 

Besides the cue format and its presentation timing, the 
duration of each state is an important issue. In the KARAONE 
dataset, the length of the imagined speech state was five 
seconds with no repetition. Meanwhile, Arizona State 
University’s dataset [26] and Coretto’s [34] applied repetition 
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during one imagined speech state using the beep sound. The 
Arizona State University dataset had seven repetitions in one 
imagined speech state. Coretto et al. applied repetition only for 
words, but not vowels, i.e., the subject must complete the task 
within four seconds of the vowel imagined speech state. BCI 
dataset [47] also used repetitions, but rather than using the beep 
sound, it applied a fixation cross shown from the monitor. The 
purpose of repetition block use was to maintain focus 
consistency [8]. Moreover, the longer the duration of the 
imagined speech, the easier for the subject to get sleepy 
because they performed the imagined speech state in silence. 

While performing imagined speech, subjects were asked to 
refrain from moving articulation, swallowing, moving their 
eyes, or blinking. These restrictions aim to reduce the muscular 
and ocular artefacts as the significant artefacts in the EEG 
signal. These artefacts are generated by the signal from muscle 
activity surrounding the head, particularly the region near the 
articulator and eye activity. The range of muscular and ocular 
signals has intersected with the range of EEG signals [48]. 

The previous studies used different types of speech, such as 
vowels [26], phonemes [23], syllables [10], words [6]–[8], 
[16]–[18], [23], [26], [31], [32], sentences [7], and binary 
questions [20], [22]. The use of speech parts (vowels, 
phonemes, and syllables) mainly was to observe the brain 
when planning to produce the sound of words. Meanwhile, 
using words or binary questions to observe the brain when 
planning to respond/send a message earlier than sound 
production. Thus, the former is more syntactic, whereas the 
latter is more semantic. The distribution of the speech used in 
this related research is shown in Fig. 6. 

Using syllables or vowels as the cue was for their 
discriminative sounds or articulator movements. To maintain 
the number of nasals, plosives, and vowels, Zhao and Rudzicz 
[23] used phonemes and short words with similar sounds. 
DaSalla et al. [12] only used the vowels “/a/” and “/u/” because 
of their articulation differences; “/a/” with an opened mouth 
regulated by digastricus muscles and “/u/” with rounded lips 
controlled by orbicularis oris muscles. On the other side, 
Nguyen et al. [26] utilized vowels to discover the relationships 
between vowel voices and model accuracies. They reported 
that different voices had an impact on the performances. Then, 
the use of the syllables “/ba/” and “/ku/” [9], [10] was mainly 
to classify the rhythm. 

Most SSI studies employed the word cues for several 
reasons. It represents natural communication, such as asking, 
responding, or making a statement [18], [32] and semantically 
differentiates homonyms [6], [16], [17], e.g., "two" and "to". 
Additionally, employing words with different lengths could 
help the model to differentiate words (such as “in” and 
“cooperate”) [26] or repetition [8] affected the model and use 
words as commands for moving the cursor on the monitor 
(“up”/”down”) [31]. 

 
Fig. 6. Used Speech Cues. 

Wester [7] also applied several words grouped based on 
their usability; digits (0-9), alpha corpus, phone-related words, 
MP3 player commands, Graduate Record Examination (GRE) 
Corpus, and Lecture Corpus. The alpha corpus consists of 
“alpha”, “beta”, “theta”, “delta”, and “echo”. The phone-
related words covered some phone communication words, such 
as "yes", "no", "accept", "deny", and "wait". The phrases for 
MP3 player commands were "start", "back", "next", "louder", 
and "turn down". GRE Corpus represent the rarely used words 
like "brittle" or "profundity". Lecture Corpus to examine the 
sequence of words as a sentence such as "good afternoon, 
ladies and gentlemen, welcome to the interact centre. My name 
is …, thank you for your attention, any questions." 

The cognitive aspect is vital in the question cue because 
subjects must first comprehend the question. Then, different 
questions with the same answer could raise other cognition. 
For example, the answer to "Are you a scholar?" and "Are you 
a human?" are assumed to be "yes", but the cognition is 
different. Furthermore, the brain activity to respond with a 
"yes" is different from saying a "yes" with no intention. It will 
need the adaptability of the model to overcome the difference. 

The multilanguage issue represents the other chance for SSI 
study. Many languages have been applied, e.g. English [6], [7], 
[16], [23], [26], Chinese [18], Hindi [22], Arabic [20], Korean 
[17], and Spanish [31]. Suppose the model can classify words 
from one language and their equivalent in another. In that case, 
this sparks the chance to build a complete set of EEG-based 
imagined speech datasets, regardless of the source languages of 
speech. 

III. SIGNAL PREPROCESSING 

Even though some restrictions, e.g. to move, were applied 
in the recording protocol, artefacts and noises are still 
unavoidable in EEG signals acquisition because of the low 
frequency and voltage, which are easily interfered with 
muscular/ocular artefacts and other noises. It still becomes a 
challenging issue for EEG studies in data cleaning without 
losing significant information/features for later analysis or 
pattern recognition. The noise removal must be performed 
before the downsampling step to prevent the downsampled 
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values from being falsely interpreted as noise. Previous studies 
used Independent Component Analysis (ICA) [49], [50] or 
artefact detectors based on the joint use of spatial-temporal 
features (ADJUST) [51]. 

If EEG acquisition used a high sampling rate, e.g., 1000Hz, 
most studies applied the downsampling process to lower the 
computational complexity. According to the Nyquist theorem 
and the brain signal frequency range of 0.5-100 Hz [48], 256 
Hz covers more than twice the commonly observed maximum 
frequency. From the 37 reviewed studies, only seven studies 
used it ([11], [12], [17], [21], [26], [34], [42]). There will be 
thread off for the downsampling; the smaller the sample size, 
the lower the needed computation resources, but the more 
important features lost. Thus, using the original sample size 
could help observe the discriminative speech recognition 
features while also considering the available resources. 

IV. SPECTRAL, SPATIAL, AND TEMPORAL ANALYSIS 

Choosing only certain frequency bands, such as the alpha 
and beta bands, could decrease the number of features [20] 
because alpha and beta bands contain discriminative 
information. Statistic calculation (e.g. maximum value, 
average, standard deviation, kurtosis, and others) in beta, delta, 
and theta gave higher accuracy than the other bands in 
imagined vowel classification [13] with 81.25-98.75% 
accuracy for classifying the combined task, e.g., features from 
imagined speech state of “/a/” was combined with rest state, 
“/a/” and “/u/”, and so on. However, the higher gamma band is 
not discriminative for speech imagery [11], [18], [31], [39] 
since muscular artefacts produce high gamma activity [52]. 
Additionally, from the reviewed papers, only a few studies (8 
of 37) used it, as shown inFig. 7. Two of them reported that the 
gamma did not provide discriminative characteristics to decode 
speech [39] except for a speech with articulation [21]. 

When observing which frequency bands give the highest 
accuracy, there are some considerations about physiological 
activities associated with the specific bands. The high-
frequency bands, e.g., beta or gamma, are dominated by 
muscular artefacts. Even though these waves correspond to the 
concentration or active attention [53], thus, they could have 
information for imagined speech recognition. Meanwhile, the 
low-frequency bands do not correlate with concentration [54]. 
The alpha waves correspond to relaxed awareness, the theta 
waves appear when the consciousness moves to drowsiness, 
and the delta waves are further away from concentration since 
they relate to deep sleep. Furthermore, low-frequency bands 
often get interferences with ocular artefacts or lead movements 
[55]. Since cognitive task, e.g. imagined speech, requires 
concentration, the role of low-frequency bands that yield 
higher accuracy than the high ones needs more examination. 

EEG spatial analysis can give a better insight into which 
brain area has essential information for imagined speech 
recognition; the electrodes can be selected further. When a 
conversation happens, the most active regions are the auditory 
cortex, motor cortex, Broca’s area, and Wernicke area [56]. 
Broca’s area is in the inferior frontal gyrus, while Wernicke’s 
area is in the superior temporal gyrus, with the arcuate 
fasciculus connecting both of them to build auditory-motor 
interaction [57], as illustrated inFig. 8. Some SSI research has 

validated this brain region [7], [18], [22], [26]. Furthermore, in 
early speech production, the auditory potential existed in the 
superior temporal gyrus (STG) [58], located in the temporal 
area in both hemispheres. 

Most of the reviewed studies reported high accuracy 
achievement by using the features extracted from frontal lobes 
(location of the Broca’s area) [9], [10], [17], [26], [42] and 
temporal lobes (location of the Wernicke’s area) [17], [21], 
[39], [42], followed by parietal lobes [9], [17], [26]. The others 
found that occipital lobes contributed to achieving the highest 
accuracy, which is obvious since they employed visual cues in 
their protocols [10], [39]. 

Suppose the EEG signals were treated as an event-related 
potential (ERP) during imagined speech production. The 
signals can be aligned to the onset of imagined speech 
production and then averaged to focus between the preceding 
and following onset time [59]. Previous studies have examined 
it and found that the potential in the left hemisphere arises one-
two seconds before speech production [36] and appears a 
moment before cued speech is produced [60]. One study 
reported that speech-related ERP reached the peak at 350ms 
after the cue [12], and the highest significant level (from the 
paired t-test) existed between 400-600ms after the cue in the 
frontal area [17]. Moreover, from the five alphabets (“/a/”, 
“/e/”, “/i/”, “/o/”, and “/t/”) classification result, data in 100-
600ms after the cue gave the highest accuracy of 46.61% 
(chance level of 20%) [39]. 

 
Fig. 7. Observed Frequency Bands in EEG-Based SSI. 

 
Fig. 8. Language Organization in the Left Brain Hemisphere [57]. 
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V. CLASSIFICATION AND FEATURE EXTRACTION 

TECHNIQUES 

A. Non-Deep Learning 

Most features were the result of the transformation to the 
frequency domain, as shown inFig. 9, e.g., Fourier, Wavelet, or 
Hilbert-Huang Transform. Common Spatial Patterns (CSP) and 
Principal Component Analysis (PCA) are other extraction 
methods. Filter bank CSP (FBCSP) [61] was the state-of-the-
art for feature selection [35] or classification [36], [37], [62]. 

Since EEG signals are also time-series data, some studies 
applied auto-regression (AR) [11], [18], [19] or Mel Frequency 
Cepstral Coefficient (MFCC) [24], [41]. MFCC was more 
discriminative than the AR coefficient for vowel recognition in 
DaSalla’s dataset [12] by yielding an accuracy of 75% [14] and 
performed better than statistics and nonlinear features in the 
KARAONE dataset [23]. MFCC gained an accuracy of 19.69% 
(chance level of 9.09% for 11 classes), while the accuracy of 
statistics features was 15.91%, and the accuracy of nonlinear 
features was 14.67% [24]. Several studies also treated EEG 
signals as a sequence of words by applying the Bag of Features 
(BoF) [30], [33]. In text pattern recognition, BoF was often 
used to represent a word existence using the feature values 
calculated from its previous words. 

The other feature types are connectivity features, which 
relate to the brain's neural pathways when subjects perform a 
specific task, such as imagined speech production. They are 
structural [63], functional [64], and effective connectivity [65]. 
Structural connectivity refers to the tracts of white matter that 
physically interconnect brain regions. Functional connectivity 
refers to the statistical dependence (i.e. correlation) of time-
series data between a pair of brain regions influenced by 
structural connectivity. Meanwhile, effective connectivity 
refers to a causal model representing the interactions between 
connected neurons. 

Few studies of imagined speech recognition have 
considered applying functional or effective connectivity 
features. Qureshi et al. [43] used functional connectivity 
features fed into an extreme learning machine (ELM) to 
classify imagined speech of five words. These features were 
covariance and maximum linear cross-correlation coefficient 
(MaxLCor), with the same calculation for phase-only time-
series data. MaxLCor is one of the spatial connectivity features 
to measure functional connectivity and extract EEG 
characteristics by calculating the normalized product of two 
time-series signals and then measuring their similarities [66]. 
They reported that covariance features yielded the highest 
accuracy of 87.90% on binary classification. Pawar et al. [44] 
also used MaxLCor combined with DWT features to classify 
imagined speech words [47] and achieved an accuracy of 
40.64±2.45% (chance level 20%). Furthermore, Chengaiyan et 
al. [45] identified vowels and consonants by applying brain 
connectivity features on each frequency band; coherence [67] 
as functional connectivity and partial directed coherence (PDC) 
[68], direct transfer function (DTF) [69], and transfer entropy 
[70] as effective connectivity. They fed the features into deep 
learning methods, a Recurrent Neural Network (RNN) and a 
Deep Belief Network (DBN), where RNN gave lower accuracy 
of 72% than DBN with an accuracy of 80%. 

Many different features were classified with Support 
Vector Machine (SVM) ([17], [18], [20], [39]) or Linear 
Discriminant Analysis (LDA) ([7], [13], [20]) as shown in Fig. 
1, since both are good at separating discriminative values. 
Meanwhile, the Decision Tree (DT) [16] and its ensemble 
variant called Random Forest (RF) [31], [32], [34] were used 
due to their capability to distinguish between the classes and 
process a large number of features. The RF feed with Wavelet 
features outperformed SVM in the same dataset [31], [32]. 

 
Fig. 9. Features in EEG-Based SSI. 

 

Fig. 10. Classification Methods in EEG-Based SSI. 
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Another classification technique formerly used in imagined 
speech classification was k-Nearest Neighbor (kNN). When 
combined with MFCC features, it gained higher accuracy than 
SVM and the Hidden Markov Model (HMM) to identify the 
vowel of “/a/” and “/u/” from the DaSalla’s dataset [12] with 
kNN’s averaged accuracy of 86.89% compared with 75.83% 
and 70.56% respectively [14]. It also still outperformed SVM 
in classifying “/a/”, “/e/”, “/i/”, “/o/”, and “/u/” in the additional 
datasets of the same study [14]. Since kNN depends on the 
centroids for the k classes derived during training and the test 
dataset was classified based on the majority class of its 
neighbours, new samples may require k-NN retraining. 

The shallow Artificial Neural Network (ANN), in the form 
of ELM, was also applied due to its architecture of layers and 
nodes that can achieve good generalization. With only using 
statistical values of the signals to classify vowels, ELM’s 
accuracy was higher than SVM or LDA, in which ELM’s 
accuracy was 87.07% compared with 51.07% for SVM and 
81.98% for LDA [21]. Furthermore, with average power 
features to classify “yes” and “no”, ANN also performed better 
than SVM and RF, with 92.18% compared with 83.07% and 
79.95%, respectively [22]. 

The ANN’s capacity for generalization motivated further 
research using deep learning (DL). While non-DL techniques 
depend on the features input, DL uses its layers to learn the 
data characteristics directly. 

B. Deep Learning 

Several attempts employed deep learning (DL) to extract 
features, e.g., Convolutional Neural Network (CNN) to extract 
spatial features and Recurrent Neural Network (RNN) for 
temporal characteristics [27]. These feature vectors were 
concatenated in the form of a channel covariance matrix as the 
input for Deep Autoencoder (DAE) classifier. Siamese 
Network increased the distance of different labelled samples 
and vice versa, which gave higher accuracy (31.40 ± 2.73%) 
[38] than the baselines [33], [34], [37], [62] by using the same 
Coretto’s dataset [34]. 

Although DL has become the common feature and 
representation learning method, it is also well-known for being 
data-hungry. A small-size dataset might generate a final model 
that overfits. Therefore, only a few previous studies have used 
DL compared with non-DL, e.g., SVM or LDA. Furthermore, 
it is impossible to cover the whole language corpus, as subjects 
would feel uncomfortable for more than 30 minutes of EEG 
recording. 

C. Model Evaluation 

Although many reported models and their features claimed 
their highest accuracy, different datasets and experiment 
environments caused the accuracies to be incomparable since 
those factors can affect the chosen discriminative features and 
the model training process. Furthermore, the cognitive variance 
across subjects [71] needs more consideration since it caused 
the recognition model’s accuracy to be more accurate when it 
was trained and tested in one specific subject’s data but lower 
accuracy when it was tested to recognize the other’s. This 
problem is called the inter-subject case. Hence, the model's 
accuracy in most brain signal studies was evaluated by each 

person, i.e., the accuracy was calculated for each subject before 
the whole-averaged accuracy was reported. From the reviewed 
collected references, the validation was categorized into three 
versions. 

The first type of validation is the usual cross-validation 
(CV) in machine learning treated subject-wise. The subjects’ 
datasets were gathered into one massive dataset. Then it was 
split into training, validation, and testing parts with the 
configurable percentages for each part, e.g., training and 
validation took 60% and 20%, respectively, for k-fold cross-
validation. The remaining 20% for each subject was kept 
unlabeled for the model to later predict in the testing session. In 
this type of CV, the training of the model uses the features 
from all subjects that could make the model achieve very high 
accuracy because it also learned a part of data whose the same 
variance as the testing dataset. Still, it became weak when 
facing the subjects’ cognitive variance as an inter-subject 
problem exists. This case is essential to be solved but still 
unnoticed by many previous studies. 

The second type is leave-one-subject-out cross-validation 
(LOSO-CV). It is similar to leave-one-out cross-validation 
(LOOCV) by using one subject’s dataset as a validation 
dataset. This method aimed to measure the robustness of the 
trained model related to the inter-subject issue. It can prevent 
the model from peeking at the test dataset variance and 
overfitting. This method aimed to measure the robustness of 
the trained model related to the inter-subject issue. It also can 
be extended to be the leave-N-subject-out CV. Only a few 
gathered studies, listed in Table I, employed LOSO-CV. 

The third type is leave-one-session-out cross-validation 
(LOSeO-CV) to face the intra-subject problem, i.e., the 
model’s accuracy degrades when recognizing a new recording 
dataset of the same subjects whose datasets were used for 
training the model before. This validation type is the 
modification of LOSO-CV with a different perspective. Even 
though some studies were aware of the intra-subject problem 
[7], [15], they did not apply LOSeO-CV since their goal was to 
get higher accuracy than the baseline with the current data 
distribution only. 

It is essential to note that the comparison of the higher 
accuracy achieved from the general CV with the lower 
accuracy gained from LOSO-CV was irrelevant. It is because 
LOSO-CV aimed to prepare the model to become adaptive to 
different subjects’ data distribution due to the cognitive 
variance. Besides, the general CV only considers the current 
data distribution and potentially peeks distribution information 
from the same subject in the testing dataset. Thus, the model 
tends to be overfitting. 

On the recognition of Arizona State University’s dataset 
[26] in Table II, the researchers could train their model using 
the general CV on the deep learning model, and they achieved 
higher accuracy than the baseline (49%), with the highest 
accuracy being 96,79 ± 4.19% [28] for vowel recognition only. 
Another study also used deep learning with the general CV that 
boosted the accuracy of long-word recognition to 81.65%, 
higher than the baseline of 66.20%. Although, for short-long 
word discrimination, a deep learning implementation [29] still 
did not achieve higher accuracy than the baseline (77.60% of 
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80.10%). Meanwhile, another research [30] used LOSO-CV 
while recognizing only the long words. It reported a lower 
accuracy of 62,99 ± 4.78% than the reported accuracy in Table 
II. There was still no further observation for short-word 
classification with higher accuracy than the baseline. 
Moreover, deep learning also successfully yielded higher 
accuracy on the KARAONE dataset [23] for multi-class 
classification (i.e. not a binary classification), as shown in 
Table III, with an accuracy of 57.15% [25] higher than the 
baseline (33.3%) [24]. These KARAONE dataset classification 
studies used the general CV for validation. 

Before the development of Coretto’s dataset, Torres-Garcia 
et al. constructed an EEG-based imagined speech dataset [31] 
with five similar words to Coretto’s dataset; Torres-Garcia 
used “seleccionar” (“select”) rather than “adelante” 
(“forward”) and “atrás” (“backward”). The non-deep-learning 
model achieved the highest accuracy (70.33%) for this dataset, 
with a general CV for its validation, as shown in Table IV. One 
deep learning implementation [30] with a transfer learning 
approach still gained slightly lower accuracy (65.65%) 
validated by LOSO-CV. 

Similar to Arizona State University’s dataset, the studies on 
Coretto’s dataset also achieved the highest accuracy by 
implementing a deep learning model (30% for vowel 
classification [35] and 62.37% for word classification [36]). It 
was validated by a general CV, as shown in Table V. Further 
research validated the deep learning model with LOSO-CV to 
classify the vowels. It successfully yielded higher accuracy 
(32.75%) [37] than the baseline (30%) [35] in recognizing 
vowels. Thus, the model became quite robust since it could still 
accurately recognize the unseen subject’s dataset. 

The other reviewed studies used a general CV for 
validation; DaSalla’s EEG-based imagined speech dataset 
consists of “a” and “u” speech [12], and Dzmura’s consists of 
“ba” and “ku” [9]. There was still no deep learning exploration 
for DaSalla’s dataset. Although, the researchers can achieve 
higher accuracy than the baseline for binary classification, as 
shown in Table VI, by using different feature extraction 
algorithms. Meanwhile, the baseline study of Dzmura’s dataset 
still had the highest accuracy (74.25%) with the spectral feature 
and matched-filter classification. 

From observing several EEG-based imagined speech 
datasets, some deep-learning studies yielded higher accuracy 
than the baseline studies validated by general CV, e.g. in 
Arizona State University’s, Torres-Garcia’s, Coretto’s, and 
KARAONE datasets. Although, the deep learning models 
gained lower accuracy with LOSO-CV, e.g. in Arizona State 
University’s dataset, Torres-Garcia’s dataset, and Coretto’s 
dataset. Some studies applied the transfer learning approach to 
build a more robust model with LOSO-CV validation; one 
successfully gained higher accuracy [37], but the other still got 
slightly lower accuracy [30]. Nevertheless, the transfer learning 
approach could have the capability to train the robust model. 
Additionally, the non-deep-learning models could gain higher 
accuracy when the informative features fed into them, as in 
DaSalla’s and Dzmura’s datasets. The accuracy of the trained 
models from the same datasets validated with the general CV 
in Table II-VII can become the benchmark for further studies. 

TABLE II. ACCURACY WITH GENERAL CROSS-VALIDATION  FOR 

ARIZONA STATE UNIVERSITY’S DATASET 

Ref. 

Accuracy (%) 

Vowel Short word Long word 
Short vs long 

word 

[26] 49.00 50.10 66.20 80.10 

[27] - - 81.65 - 

[28] 96.79 - - - 

[29] - - - 77.60 

TABLE III. ACCURACY WITH GENERAL CROSS-VALIDATION  FOR 

KARAONE DATASET 

Ref. 

Binary-class Accuracy (%) Multi-class 

Accuracy 

(%) 

Bila-

bial   
Nasal C/V /uw/ /iy/ 

[23] 56.64 63.50 18.08 79.16 59.6 - 

[24] - - - - - 33.3% 

[25] - - - - - 57.15% 

TABLE IV. ACCURACY WITH GENERAL CROSS-VALIDATION  FOR TORRES-
GARCIA’S DATASET 

Ref. Accuracy (%) 

[31] 41.21 

[32] 70.33 

[33] 61.02 

TABLE V. ACCURACY WITH GENERAL CROSS-VALIDATION  FOR 

CORETTO’S DATASET 

Ref. 
Accuracy (%) 

Vowel Word 

[34] 22.72 19.60 

[35] 30.00 24.97 

[36] - 62.37 

[38] - 31.40 

TABLE VI. ACCURACY WITH GENERAL CROSS-VALIDATION  FOR 

DASALLA’S DATASET 

Ref. 
Binary-class Accuracy (%) 

/a/-rest /u/-rest /a/-/u/ 

[12] 72.33 78 62.67 

[14] 75.00 93.83 91.83 

[13] 75.83 77.5 72.5 

TABLE VII. ACCURACY WITH GENERAL CROSS-VALIDATION  FOR 

D’ZMURA’S DATASET 

Ref. Accuracy (%) 

[9] 74.25 

[10] 58.05 

[11] 68.83 

VI. CURRENT CHALLENGES 

A. Laboratory Environment 

In the imagined speech decoding research, EEG signals 
were recorded in a conducive laboratory environment with a 
proper procedure to minimize the noise and artefacts. When the 
interface is intended to be practical, e.g., for patients at the 
hospital or as an in-house assistive tool, it will face a noisier 
environment and inevitable artefacts. 

The previously discussed artefact removal approaches still 
require validation since they only focused on increasing the 
accuracy without reexamining the effectiveness of artefact 
removal. The acquisition should have relaxed restrictions, such 
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as allowing subjects to swallow or blink during imagined 
speech production, to validate the result of artefact removal. 

B. Related Channels 

Much spatial information could be observed using many 
electrodes, but it will be less convenient, less impractical, and 
have bigger feature dimensionality. This issue also happens in 
motor imagery BCI. Several approaches to overcome it are 
channel selection, spatial filter, and feature selection [32]. 
Feature selection aimed to select the most discriminative 
features, spatial filter to extract characteristics from channels 
employed, and channel selection to choose several channels 
with similar/better accuracy as the whole channels. 

C. Time-Lock 

In EEG signals, there is temporal information related to the 
onset time and spatial features related to the brain area. Spatial 
and temporal information of overt speech and imagined speech 
correlated [42]; the spatial pattern is not significantly different, 
but the temporal one is. It is due to the difficulty in determining 
the time-lock of the imagined speech, compared with the overt 
speech whose time-lock is easily detected from the voice. 
Besides, the time-lock can be different in the different sessions. 

D. Intra-Subject and Inter-Subject Problem 

One main problem of EEG-based imagined speech studies 
is the limited speech data. Should the recording cover the 
whole vocabulary in a language, the subjects will be exhausted, 
and it will need a very long time. Besides, there are different 
patterns produced even if a person imagines the same speech, 
i.e., the inter-subject issue [15], [41], or if he imagines the 
same speech at a different time, i.e., the intra-subject problem 
[42]. Thus, the model must be adaptive to recognize new data 
from new sessions/subjects without training from scratch. 

One approach to solving the adaptation issue is transfer 
learning (TL). Traditional machine learning assumes that the 
distribution of the present learned data and the future data are 
the same. In contrast, TL assumes their domain is different, or 
the future labelling task may differ. Some studies reported that 
TL did not decrease the accuracy [36], [37]. However, as the 
accuracy was still poor (35-60%), it needs further observation. 

E. Connectivity 

The brain works as a neural pathway, and its existing 
connectivity can contain informative features for cognitive 
tasks, including speech imagery. Functional connectivity 
(correlation between brain areas) and effective connectivity 
(the causal model of brain areas’ interaction) become potential 
characteristics to help identify imagined speech. 

F. Subject Limitation 

Current SSI studies were limited to healthy subjects. The 
subjects’ brains must be in good condition to record signals. 
When the study includes brain-impaired participants, the 
problem-related brain area might affect the data acquired and 
its recognition accuracy, which needs more profound 
observation. Additionally, observing subjects with health 
issues, such as the locked-in syndrome (LIS) patient, was also 
challenging. The moment the LIS subject began producing the 
speech could not be identified precisely, although the subject 
has been instructed to confirm the speech production attempt 

[72]. Other health disorders, e.g., Aphasia, Apraxia, Dysarthria, 
laryngectomy (i.e. removal of the larynx by operation 
procedure), and tracheostomy, also have specific conditions. 
For example, the brain activity in speech production for a new 
laryngectomy patient may differ from a one-year patient. 

G. Online Learning 

There would be a requirement for online learning where the 
model training is simultaneous with EEG recording. It could 
exploit the users’ feedback to retrain the model and recognize 
the pattern more accurately. Moreover, the subjects could also 
be trained to modify their brain waves to adapt to BCI [73]. 
Currently, most studies used the offline training (, i.e., outside 
the recording session). Although few studies performed online 
learning [7], [20], the performance was low and inconsistent. 

VII. CONCLUSIONS 

This review discussed the pipeline of EEG-based SSI, 
which consists of signal acquisition, signal preprocessing, 
feature extraction, and classification, to see problems that often 
arise in each step. The acquisition process needs a proper 
design of subject inclusion, cue format, and speech types 
according to the purpose of the study, including the challenges 
that need answers to apply the decoding in the real world while 
maintaining the high accuracy achieved in a lab environment. 
These challenges deal with handling noises and artefacts, the 
trade-off between the number of channels and spatial features 
and onset time determination to gain discriminative temporal 
characteristics. Besides, variance shifts due to different 
recording sessions or users that demand an adaptive model and 
its validation need consideration. The inclusion of brain-
impaired subjects and the potential of online learning could 
make the interface more applicable. To conclude, this review 
suggests that it is crucial to start by building the proper pipeline 
and taking problems in each step into consideration to 
overcome the challenges. High accuracy is insufficient to make 
the model applicable in the real world. 
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