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Abstract—Edge-cloud computing is increasingly prevalent for
Internet-of-Thing (IoT) service provisioning by combining both
benefits of edge and cloud computing. In this paper, we aim
to improve the user satisfaction and the resource efficiency by
service caching and task offloading for edge-cloud computing.
We propose a hybrid heuristic method to combine the global
search ability of the genetic algorithm (GA) and heuristic local
search ability, to improve the number of satisfied requests and
the resource utilization. The proposed method encodes the service
caching strategies into chromosomes, and evolves the population
by GA. Given a caching strategy from a chromosome, our method
exploits a dual-stage heuristic method for the task offloading. In
the first stage, the dual-stage heuristic method pre-offloads tasks
to the cloud, and offloads tasks whose requirements cannot be
satisfied by the cloud to edge servers, aiming at satisfying as many
tasks’ requirements as possible. The second stage re-offloads tasks
from the cloud to edge servers, to get the utmost out of limited
edge resources. Experimental results demonstrate the competitive
edges of the proposed method over multiple classical and state-
of-the-art techniques. Compared with five existing scheduling
algorithms, our method achieves 11.3% to 23.7% more accepted
tasks and 1.86% to 18.9% higher resource utilization.

Keywords—Cloud computing; edge computing; genetic algo-
rithm; service caching; task offloading

I. INTRODUCTION

Internet-of-Thing (IoT) devices have become ubiquitous in
our lives. IoT services are becoming increasingly needed in
both the number and variety, as revealed by the Cisco Annual
Internet Report [1]. Eventhough some resources are equipped
on various IoT devices, they are not enough for satisfacting all
requirements of users, due to the limited resource of a device.

To address the issue, mobile cloud computing (MCC)
exploits the cloud computing with aboundent computing re-
sources to extend the service ability of IoT devices, by
offloading some tasks to the cloud [2]. But the cloud has a poor
network performance as it deliveries services over wide area
networks (WANs), and thus, it usully cannot process delay-
sensitive request tasks. Therefore, edge computing is proposed
to address the problem, by placing some resources close to user
devices [3] to provide services with low latency.

By combing both benefits of edge and cloud computing,
edge-cloud computing (ECC) has begun to be used more
and more in both industrial and academic [4]. While the
cooperation between the edge and cloud computing needs to
be further enhanced for improving the resource efficiency and
user satisfaction [5]. The purpose can be achieved by a joint

task offloading and service caching strategy for edge-cloud
computing.

unfortunately, the joint task offloading and service caching
problem (TOSCP) is NP-hard [6], and there is no available
method providing the optimal solution within a reasonable
time for a large-scale ECC system. There mainly two kinds of
ways to solve the TOSCP for providing an accepted solution
in polynomial time, heuristics and meta-heuristics. Heuristics
uses local search strategies for local optimal solutions with a
very few time consumption. On the contrary, meta-heuristics
exploit global search strategies inspired by natural and social
phenomena. Meta-heuristics usually have better performances,
but require much more time costs, compared with heuristics. In
this paper, we design a hybrid heuristic method by combining
the genetic algorithm (GA), a representative meta-heuristic
method, and a dual-stage heuristic search strategy which is
designed for improving the cooperation between edge and
cloud computing. The introducing of the heuristic method can
improve both the quality of chromosomes and the convergence
velocity for GA. Different from existing related works [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], the main advantages of
our work include the awareness of the heterogeneity between
edge and cloud resources, providing the joint solution of the
service caching and task offloading, and the integration of the
dual-stage heuristic into GA.

The rest of this paper is organized as follows. Section II
formulate the TOSCP concerned in this paper. Section III
presents our proposed hybrid heuristic method. Section IV
evaluates our proposed method by simulated experiments. And
finally, Section V concludes the paper.

II. PROBLEM STATEMENT

As shown in Fig. 1, in edge-cloud computing, the service
provider uses multiple edge servers (ESs) and a cloud to
provide various services for its users, where the cloud provide
its resources in the form of virtual machine (VM). Due to a
very limited resource, each ES can be deployed only a few
services at a time. On the contrary, the cloud has seemingly
infinite resources, and can be provide all services all the time.
In general, an ES has local area network connections to users
close to it. While the cloud provides its services over wide
area network, e.g., Internet. Thus, the cloud has a much poorer
network performance than ESs. Briefly, the cloud has abundant
computing and storage resources but a high data transmission
delay, but ESs have limited resources with low network delays.
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Fig. 1. The Architecture of the Edge-Cloud Computing System.

To deliver services efficiently, the service provider should
carefully design the service caching and task offloading strat-
egy, where the service caching decides which services each
ES provides with its limited resources, and the task offloading
strategy provide the computing node (ES or VM) where each
user’s request is processed. In this paper, we aim at designing
a hybrid heuristic method for solving the TOSCP formulated
as followings.

Given an edge-cloud computing system, there are E ESs,
and the cloud provide V VMs. Without loss of generality, we
use E + V computing nodes, n1, ..., nE and nE+1, ..., nE+V ,
to represent these ESs and VMs, respectively. For a computing
node, say nj , it has gj computing capacity and bj downlink
bandwidth. For each ES, say nj (1 ≤ j ≤ E), it has mj

storage capacity for service deployments.

The service provider provide S services, s1, ..., sS , by
the edge-cloud computing system. The storage requirement of
service sk is rk. There are T request tasks, t1, ..., tT , to be
processed in the system. Each task require one of S services.
We use the binary constants, ai,k (1 ≤ i ≤ T , 1 ≤ k ≤ S),
to represent the service that each task requires, where ai,k
represents that task ti require service sk. For its processing,task
ti needs ci computing resource, and has hi amount of input
data to be processed. The deadline of ti is di, i.e., ti must be
completed before di.

For the formulation of TOSCP, we define binary variables
by Eq. (1) to indicate the solution, where xi,j = 1 means that
ti is scheduled to nj for its processing. xi,j = 0 represents ti
is not scheduled to nj .

xi,j =

{
1, if ti is scheduled to nj for its processing
0, else ,

1 ≤ i ≤ T, 1 ≤ j ≤ E + V. (1)

As no more than one computing node that each task can
be processed,

E+V∑
j=1

xi,j ≤ 1, 1 ≤ i ≤ T. (2)

In addition, we use binary variables yj,k to represent the
service cache strategy for ESs, where yj,k = 1 indicates service
sk is cached (deployed) on ES nj (1 ≤ j ≤ E). Noticing that
if a task is scheduled on an ES to be processed, its required

service must be cached (deployed) on the ES. Then, following
equations hold.

yj,k = min{1,
T∑

i=1

(xi,j · ai,k)}, 1 ≤ j ≤ E, 1 ≤ k ≤ S. (3)

For each ES, the total storage space of all services cached
on it cannot be larger than its storage capacity, i.e.,

S∑
k=1

(yj,k · rk) ≤ mj , 1 ≤ j ≤ E. (4)

For tasks scheduled on a computing node, their finish time
can be calculated using the pipeline execution model with the
deadline decrease order [10], as shown by Eq. (5). where fti,j
is the finish time of ti when it is scheduled on nj , and fti,j = 0
if ti is not scheduled on nj . As the output data is usually much
less than the input data for a task, this paper ignores the latency
of the output data transfer.

fti,j = xi,j ·max{max
dii<di

ftii,j +
ci
gj

,

max
dii<di

(ftii,j −
hii

bj
) +

hi

bj
+

ci
gj

},

1 ≤ i ≤ T, 1 ≤ j ≤ E + V. (5)

Then, the deadline constraints can be formulated as Eq. (6).

fti,j ≤ di, 1 ≤ i ≤ T, 1 ≤ j ≤ E + V. (6)

For each computing node, its usage time is the latest finish
time of tasks scheduled on it, which is

utj = max
1≤i≤T

{fti,j}, 1 ≤ j ≤ E + V, (7)

and thus, the occupied resource of each node is

orj = utj · gj , 1 ≤ j ≤ E + V. (8)

For a computing node, the amount of resources used for
processing tasks is the accumulated resources required by these
tasks, i.e.,

urj =

T∑
i=1

(xi,j · ci), 1 ≤ j ≤ E + V. (9)

The resource utilization of each computing node and the
overall resource utilization of the edge-cloud computing can
be calculated by Eq. (10) and (11), respectively.

Uj =
urj
orj

, 1 ≤ j ≤ E + V. (10)

U =

∑E+V
j=1 urj∑E+V
j=1 orj

. (11)

Based on the above formulations, TOSCP can be modelled
as following optimization objective with constraints (1)–(11).

Maximizing N + U (12)
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Where N =
∑T

i=0

∑E+V
j=1 xi,j is the number of tasks

processed by the edge-cloud computing system. Noticing that
U is no more than 1, and thus, the major objective is max-
imizing the number of processed tasks, and the utilization
maximization is the minor one. Due to the discreteness of
decision variables, this optimization problem is hard to be
solved exactly for large-scale problems, as its complexity is
exponentially increased with the number of decision variables.
Thus, we present a hybrid heuristic method for solving this
problem with a reasonable time.

III. GENETIC ALGORITHM WITH DUAL-STAGE
HEURISTIC

Our proposed method, DGA, exploits the global search
ability of GA, where each chromosome represents a service
caching solution for the edge-cloud computing, as shown
in Algorithm 1. Meantime, DGA uses a dual-stage heuristic
method, as shown in Algorithm 2, to solve the task offloading
problem.

As shown in Algorithm 1, first, DGA initializes a popu-
lation, a set of chromosomes, randomly (line 1). Then DGA
repeats the evolution of the population using crossover, muta-
tion, and selection operators (lines 5–7). After the maximum
repeat time is reached, DGA provides a service caching and
task offloading strategy by decoding the best chromosome with
the best fitness. Where the fitness function used by DGA is
the optimization objective (12), i.e., the finished task number
plus the overall resource utilization.

Each chromosome corresponds to a service caching solu-
tion. The length of the chromosome, i.e., the number of genes,
is the number of ESs. Genes have a one-to-one relationship
with ESs, and the value of a gene indicates which services
are cached on the corresponding ES. There are S services,
then a gene is a binary string with length S, where binary
bits have a one-to-one relationship with services to indicate
whether services are cached on the ES (i.e., yj,k for ES nk

in Eq. 3). For example, in an edge-cloud computing, there
are 5 services and 2 ESs. The chromosome (00111b, 11100b)
indicates that the first three services are cached on the second
ES, and the last three services are cached on the first ES.

To increase the rate of convergence, DGA see each gene
value as an integer for the population evolution. To ensure
the population diversity for large-scale systems, DGA uses
uniform crossover, uniform mutation, and tournament selection
operators to evolve the population.

Given a chromosome, DGA uses a heuristic method with a
dual-stage to map the chromosome into a service caching and
task offloading strategy, and calculates its fitness, as shown in
Algorithm 2. There are two stages for a task. In the first stage,
for each task, DGA finds whether a VM that can finish the
task within its deadline. If there is such a VM, the task is pre-
scheduled to the VM (lines 3–9). Otherwise, DGA searches
whether there is an ES that caches the task’s requested service
and satisfies the task’s deadline constraint. If there is such an
ES, the task is scheduled to the ES (lines 10–18). Otherwise,
the task cannot be processed by the edge-cloud computing
for satisfying its requirements, and thus is rejected. After the
first stage is completed, the next stage aims at improving the
overall resource cost by re-scheduling some tasks from VMs

Algorithm 1 DGA: The Improved GA with a Dual-Stage
Heuristic Search
Input: The information of tasks, services, ESs, and cloud VMs;
Output: A service caching and task offloading strategy;

1: Randomly initializing chromosomes;
2: while the maximum iteration number is not reached do
3: For each chromosome, calculating its fitness value using

Algorithm 2;
4: Updating the best fitness and the best chromosome;
5: Executing uniform crossover operator for chromosomes;
6: Conducting uniform mutation operator on each chromosome;
7: Selecting chromosomes by the tournament selection operator;
8: Increasing the iteration number by one;
9: end while

10: return the service caching and task offloading strategy decoded
from the best chromosome by Algorithm 2;

to ESs (lines 20–26). For each task pre-scheduled to VMs, the
second stage looks up an ES that can satisfy requirements of
the task. If there is such an ES, the task is re-scheduled to the
ES. Otherwise, the task will be processed by the VM where it
is pre-scheduled.

Algorithm 2 The Decoding by a Dual-Stage Heuristic Search
Input: A chromosome;
Output: The service caching and task offloading strategy, the fit-

ness;
1: Decoding the chromosome into the service caching strategy;
2: for Each task do
3: for Each VM do
4: if The VM satisfies requirements of the task then
5: Pre-scheduling the task to the VM;
6: Accumulating the processed task (N ) and the used re-

source amount (urj) based on Eq. (9);
7: break;
8: end if
9: end for

10: if The task isn’t Pre-scheduled to a VM then
11: for Each ES do
12: if The ES satisfies requirements of the task then
13: Scheduling the task to the ES;
14: Accumulating the processed task and the used resource

amount;
15: break;
16: end if
17: end for
18: end if
19: end for
20: for Each task pre-scheduled to VMs do
21: for Each ES do
22: if The ES satisfies requirements of the task then
23: Scheduling the task to the ES;
24: end if
25: end for
26: end for
27: Calculating the resource utilization (U ) by Eq. (11);
28: Calculating the fitness: N + U ;
29: return the service caching and task offloading strategy, the

fitness;

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DGA based
on a simulated edge-cloud system, to verify the high efficiency
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Fig. 2. The Normalized Numbers of Finished Tasks, Achieved by Various
Methods.

of DGA in solving TOSCP.

A. Experiment Design

In the simulated edge-cloud system, we randomly generate
1000 tasks, 100 services, 10 ESs and one VM type. The
computing resource required by a task is randomly set between
0.5GHz and 1.2GHz. The input data amount of each task is
generated randomly in the range of [5MB, 6MB]. These two
parameters are referring to [11]. The deadline is set to [1, 5]
seconds for each task. Referring to [12], the storage space
required by a service is in the range of [40, 80]GB, randomly.
Each ES has 20GHz computing capacity. The network band-
width between an ES and a user device is 60Mbps. The VM
type is configured with 5GHz computing capacity and 15Mbps
network bandwidth.

There are five benchmark methods in our experiments,
First Fit (FF), Earliest Deadline First (EDF), Popularity-based
Service Caching (PSC) [13], Particle Swarm Optimization
(PSO) [5], and Genetic Algorithm (GA) [14]. The metrics
used for the performance evaluation include the finished task
number (the number of tasks whose requirements are satisfied)
and the overall resource utilization, which used frequently
to quantify the user satisfaction and the resource efficiency,
respectively.

We repeat our experiment 100 times. In each repeat,
we first generate an edge-cloud system with randomly set
parameters. Then, we test the performance of our method and
the five benchmark methods, respectively, in the generated
system. To highlight the relative performance among these
methods, we normalize each metric value of each method by
dividing it by that of FF. In the following, we report the average
normalized value for each metric and each method.

B. Experiment Results and Analysis

Fig. 2 shows the normalized numbers of tasks whose
requirements are satisfied, when applying various methods. As
shown in the figure, we can see that DGA can finish 11.3% to
23.7% more tasks than other methods. This verifies that our
method has a better performance in optimizing the user satis-
faction, compared with other method. This is benefited from
the high population diversity of GA and the high efficiency of
the dual-stage heuristic.

The normalized performances of various methods in re-
source utilization are shown in Fig. 3. From the figure, we
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Fig. 3. The Normalized Resource Utilization Achieved by Various Methods.
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Fig. 4. The Improvement of the Dual-Stage Heuristic for Various Methods

can see that DGA achieves 1.86% to 18.9% high resource
utilization than other methods. Thus, our method has a better
resource efficiency.

One of the main advantages of our method is exploiting the
dual-stage heuristic. The dual-stage heuristic can be applied
for improving the performance of other methods, e.g., FF,
PSO. Next, we conduct experiments for evaluating the im-
provement of the dual-stage heuristic for various methods, by
comparing the performance differences between FF/PSO/GA
and DFF/DPSO/DGA, where DFF/DPSO/DGA is the method
of integrating FF/PSO/GA with the dual-stage heuristic. The
results are shown in Fig. 4. DFF/DPSO/DGA can finish
10.8%/10.5%/11.6% more tasks than FF/PSO/GA. Thus the
dual-stage heuristic can improve performance by about 10
percent for various methods.

V. CONCLUSIONS

We studied the service caching and task offloading problem
for edge-cloud computing in this paper. We first formulated
the problem as an binary non-linear programming with two
optimization objectives, the finished task number and the re-
source utilization. Then, for solving the problem in polynomial
time, we proposed a hybrid method which integrates GA
and a dual-stage heuristic. Finally, we conducted extensive
simulated experiments to evaluate the performance of our
proposed method. Experiment results showed that our method
can finish up to 23.7% more tasks and achieves up to 18.9%
higher resource utilization, compared with five of classical and
latest works.

In this paper, we focus on independent tasks without
any data or logic dependency relationship. In the future, we
will extent our work to support the workflow applications
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consisting of interdependent tasks. In addition, we will exploit
more global and local heuristic searching strategies to improve
the performance of our method.
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