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Abstract—Cloud computing provides on-demand access to a
diverse set of remote IT services. It offers a number of advantages
over traditional computing methods. These advantages include
pay-as-you-go pricing, increased agility and on-demand scalabil-
ity. It also reduces costs due to increased efficiency and better
business continuity. The most significant barrier preventing many
businesses from moving to the cloud is the security of crucial data
maintained by the cloud provider. The cloud server must have
complete access to the data to respond to a client request. That
implies the decryption key must be sent to the cloud by the
client, which may compromise the confidentiality of data stored
in the cloud. One way to allow the cloud to use encrypted data
without knowing or decrypting it is homomorphic encryption.
In this paper, we focus on improving the Paillier cryptosystem,
first by using two protocols that allow the cloud to perform the
multiplication of encrypted data and then comparing the two
protocols in terms of key size and time.
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I. INTRODUCTION

Cloud computing opens up previously untapped possibil-
ities for storage and computation outsourcing. Many people
are interested in using this technology since it gives flexi-
bility, accessibility, and cost savings [1], [2], [3]. Over the
last two decades, a surge in data has been generated and
stored due to the creation of the internet of things, artificial
intelligence and cloud computing [4]. However many authors
have proposed solutions to optimize the offloading decision
and the computing resource allocation to minimize the overall
tasks processing time and energy [5], [6], many users are
hesitant to commit sensitive data to the cloud due to concerns
about privacy and security, making cloud security a critical
matter. Indeed, cloud security literature has proposed and
evaluated different encryption schemes [7], [8]. Particularly
intriguing is homomorphic encryption, which allows any data
to remain encrypted while being processed and manipulated.
The organization of this paper is described as follows: Section
2 will mention some related works to secure the cloud. Section
3 begins with a summary of Paillier’s cryptosystem. Section 4
goes on to describe the two protocols that we use to perform
multiplication on encrypted values, followed by our conclusion
in Section 5.

II. RELATED WORKS

Research efforts are directed toward several types of homo-
morphic encryption to secure the cloud, including partially ho-
momorphic encryption. These schemes allow for the execution
of a single operation on encrypted data, mainly addition, as in
Goldwasser-Micali [9] and DGK [10], or multiplication, as in
El Gamal [11] and unpadded RSA [12]. This paper will focus
on the well-known additively homomorphic Paillier scheme
[13]. It enables the computation of sums on encrypted data,
which is useful in a variety of applications, such as encrypted
SQL databases [14], machine learning on encrypted data [15],
and electronic voting [16]. The authors in [17] address issues,
possibilities, and potential improvements related to homomor-
phic encryption. They describe how we can use homomorphic
encryption to process computations in big data. The authors
of [18] provide a comprehensive assessment of homomorphic
encryption, highlighting current application needs and future
potential in areas such as security and privacy. This paper will
present two protocols to improve Paillier’s encryption scheme
and allow the cloud provider to perform multiplication on
encrypted data.

III. PAILLIER’S CRYPTOSYSTEM

A. Background

Paillier [13] proposes a new probabilistic encryption
method relying on group computations based on calculations
over the group Zn2 , where n is an RSA modulus. This
scheme is captivating because it is homomorphic, enables
the encryption of many bits in a single operation with a
constant expansion factor, and enables effective decryption.
As a result, it has the potential to be suitable for a variety
of cryptographic protocols, such as electronic voting and mix-
nets. This approach is similar to Okamoto and Uchiyama’s
voting and mix-nets cryptosystem [19], in which the group
Z∗

p2·q is used, where p and q are large primes. The principal
difference is that the homomorphic property of this scheme
necessitates that the sum of the messages being added be
less than p, which is unknown. Because the homomorphic
computations in Paillier’s method are simply modulo n, this
problem is avoided.
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B. Paillier Original Algorithm

In [13], Paillier describes two partially homomorphic cryp-
tosystems, schemes 1 and 2. Scheme 1 is the basic Paillier
scheme, while scheme 2 is a quicker decryption variant.
The Paillier scheme’s security relies on the n-th residues in
Zn2 and the toughness of integer factorization. Therefore, we
only concisely review the fundamentals and comment on key
generation and parameter selection here. Finally, we refer to
the original article [13] for more information on the scheme’s
security. The multiplicative group Zn2 , for n = pq and two
prime numbers p and q serve as the setting for the Paillier’s
scheme. Notice that Zn2 has |Zn2 | = ϕ(n2) = n · ϕ(n) =
(p − 1)(q − 1)n elements. The Carmichael’s function on n,
λ(n), is short-handed to λ .

1) Scheme 1: In Table. I, Paillier’s method is provided in
it’s most basic form:

TABLE I. PAILLIER’S SCHEME 1

Parameters prime numbers
n = p.q

λ = lcm(p − 1, q − 1)
g, g ∈ Zn2 the order

of g is a multiple of n
Public key n, g
Private key p, q, λ
Encryption plaintext m < n

select a random r < n
such that r ∈ Z∗

n2 ,
ciphertext c = gmrnmodn2

Decryption ciphertext c < n2

plaintext m =
L(cλmodn2)

L(gλmodn2)
modn

Following the notation of [14], L(u) = u−1
n , for u =

1modn. This function is only used on input values u that
actually satisfy u = 1modn.

2) Scheme 2: This is a faster version of the original Paillier
algorithm. We work in the subgroup < g > generated by an
element g of order αn rather than the entire group Z∗

n2 .This
enables exponentiation decryption using the exponent alpha
instead of lambda, which speeds up decryption depending on
the size of alpha. Scheme 2 is described in Table II:

TABLE II. PAILLIER’S SCHEME 2

Parameters prime numbers
n = p.q

α divisor of λ = lcm(p − 1, q − 1)
g, g ∈ Zn2 ,the order of g is a multiple of αn

Public key n, g
Private key p, q, α
Encryption plaintext m < n

select a random r < α
ciphertext c = gm(gn)rmodn2

Decryption ciphertext c < n2

plaintext m =
L(cαmodn2)

L(gαmodn2)
modn

C. Paillier’s Cryptosystem Propreties

Paillier’s homomorphic encryption has the following Pro-
preties as it is shown in Fig. 1:

• As it’s a public key system, anyone with the public
key can encrypt, but decryption requires the private
key, which is only known to a trustworthy individual.

• It is based on probabilities.It means, an attacker cannot
tell whether two ciphertexts are encryptions of the
same plaintext or not.

• For addition, it includes the homomorphic properties
listed below:

E[(m1 +m2)]modn = E[m1] · E[m2]modn2 (1)

E[(a ·m)]modn = E[m]a modn2 (2)

Fig. 1. Paillier Homomorphic Multiplicative Properties.

In which m is the encryption modulus and one of the public
key elements. The key generation scheme is as follows:

• Choose p and q as two huge prime numbers such that:

gcd(p · q, (p− 1) · (q − 1)) = 1 (3)

This condition is guaranteed if p and q have the same
bit lengths.

• Calculate n = p · q and λ = lcm(p− 1, q − 1)

• Choose a random integer g from Z∗
n2

• Ensure n divides the order of g by determining
whether the following modular multiplicative inverse
exists: µ = (L(gmodn2))−1 modn where L(u) is
the quotient of the Euclidean division of u−1

n

• The public encryption key is g and n

• The private encryption key is µ and λ

The following operations can then be used to encrypt the
message: m1 +m2 modn

• Let m represent a message that has to be encrypted
from Zn.

• Choose a random r from Z∗
n

• Calculate ciphertext as:

E[m] = c = gmrnmodn2 (4)
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The decryption is basically one exponentiation modulo n2 :

m = L(cλ modn2) · µmodn (5)

The decryption takes advantage of the fact that discrete
logarithms are simple to compute,for example if g is chosen
as g = n + 1 then L(gx)modn2 = xmodn. Proof can be
provided using the binomial. theorem.

IV. APPLYING RUSSIAN MULTIPLICATION AND
LOGARITHM PROTOCOLS

In this section, we will describe two protocols that make the
Paillier encryption scheme act like fully homomorphic encryp-
tion by allowing multiplication of two encrypted values: the
Russian multiplication and the continuous logarithm protocols.

A. Paillier Encryption and the Russian Multiplication Protocol

The Russian Peasant Multiplication Method is a common
practice in Russian communities. This approach substitutes the
frequently used multiplication procedure and only needs the
usage of the table of twos. This theorem is currently included
in many number theory textbooks [20]. To proceed, multiply
the partial products on the left by two and divide the partial
products on the right by two. It is similar to expressing the
multiplier in base two and then doing multiplications and
additions by two. It’s a variation of the ancient Egyptian
multiplication method. This method’s algorithm is as follows:

Algorithm 1 Russian Multiplication
Input: m1,m2,table tab
Output: m1 × m2
1: while m1 > 0 do
2: if (m1%2 = 1 ) then
3: e2 = encrypt(m2, pubKey)
4: Add e2 to tab
5: end if
6: m1 = m1//2
7: m2 = m2 ∗ 2
8: end while
9: return tab

We used sockets that allow remote machines to communi-
cate with each other using their IP addresses. When a client
machine needs a service, it contacts a server machine. This is
known as the client-server logic. One asks, the other answers,
as illustrated in the sequence diagram Fig. 2:

Fig. 2. Russian Multiplication Protocol Sequence Diagram.

Once the Server accepts the connexion, the client request
multiplication of m1 times m2. Let’s take the example where
m1 = 73 and m2 = 96. The client interface will transform
73× 91 by 91, 728 and 5824 using the Russian multiplication
algorithm, encrypt those values and send them to the cloud
provider. The cloud can easily add those encrypted values
using the Paillier algorithm and then return the result to the
client, who could use his private key to see the plaintext. As
is shown in the following algorithm:

Algorithm 2 Russian Multiplication Protocol
Input: m1,m2,table tab
Output: m1 × m2
1: {Client Side}
2: while m1 > 0 do
3: if (m1%2 = 1 ) then
4: e2 = encrypt(m2, pubKey)
5: Add e2 to tab
6: end if
7: m1 = m1//2
8: m2 = m2 ∗ 2
9: end while

10: send tab
11: R = socket.recieve {result send by the cloud}
12: {Cloud Side}
13: R tab = socket.recieve(tab)
14: sum = 0
15: for x in R tab do
16: sum = sum + x
17: end for
18: socket.send(sum)

B. Paillier Encryption and Continuous Logarithm

Without logarithms, many of our modern technological
advances would be nearly impossible. We take advantage of the
intriguing rule that transforms multiplication into an addition.

log(a× b) = log(a) + log(b) (6)
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Algorithm 3 Continuous Logarithm Multiplication
Input: m1,m2
Output: m1 × m2

1: l1 = log(m1)
2: l2 = log(m2)
3: e1 = encrypt(m1)
4: e2 = encrypt(m2)
5: e = e1 + e2
6: decrypt(e)
7: prod=exp(m)

Lets e1 and e2 be the respective encryption of m1 and m2
in Fig. 3, by applying the continuous logarithm protocol, the
client will be able to compute m1 times m2 just by sending
e1 and e2 to the cloud.

Fig. 3. Continuous Logarithm Protocol Sequence Diagram.

Once the Server accepts the connexion, the client request
multiplication of m1 times m2, and the client interface will
apply logarithms on both values. Then, encrypt them and send
them to the cloud provider. The cloud will add those encrypted
values using the Paillier algorithm and then return the result to
the client interface, which could decrypt and apply exponential
to display the answer for the client. For a better understanding,
we provide the algorithm of the logarithm protocol that allows
the cloud to compute production on encrypted values:

Algorithm 4 Continuous Logarithm Multiplication
Input: m1,m2
Output: m1 × m2
1: {Client Side}
2: l1 = log(m1)
3: l2 = log(m2)
4: le1 = encrypt(l1)
5: le2 = encrypt(l2)
6: send(le1,le2)
7: sum=socket.receive
8: m=decrypt(sum)
9: message=exp(m)

10: {Cloud Side}
11: sum=0
12: c1=socket.receive(le1)
13: c2=socket.receive(le2)
14: sum = c1 + c2
15: socket.send(sum)

C. Implementation and Results

In this section, we propose a description of an implemen-
tation of a desktop interface that will allow clients to encrypt
a database and request the cloud provider to make calculations
on the encrypted data as it is shown in Fig. 4:

Fig. 4. The Client Desktop Interface Sequence Diagram.

The client desktop interface encrypts the database and
sends it to the cloud server. Since the database is stored all
encrypted in the cloud, the client sends a request to perform
an operation or processing to benefit from the storage and
calculation capacity of the cloud servers. Then, the client
application decrypts it and returns the same result as if the
operation is performed on the data in clear. We validate the
applicability of our approach in different cloud solutions by
implementing and managing encrypted database operations on
a real cloud Hetzner. The current version of our prototype
supports TinyDB databases. We chose TinyDB [21] because
of the following advantages:

• Written in pure Python

• No dependencies

• Python2 and Python3 compatible

• Easy to use, very clean API Lightweight ( 2000 lines
of code)

To improve security, we encrypted the database name, table
names, and field names. This technique will allow us to do a
variety of tasks without revealing any information about what
we want to accomplish or the contents of our database. Which
can be beneficial in many fields, such as medicine to protect the
privacy of patients’ information [22] or finance and Banking
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[23]. To provide additional flexibility to the client so that he
does not need to encrypt the whole database, especially if the
vital data is on a single column. The client might use the
following algorithm to encrypt just that single column:

Algorithm 5 Encrypt Column

Input: column names table
Output: encrypted column

1: Function encryptcolumn(id)
2: if column type is String then
3: encrypt column using RSA
4: else
5: encrypt column using Paillier
6: end if

Fig. 5 illustrate the result that the cloud gets after a client
decided to encrypt all the database using the Algorithm 6.

Fig. 5. Encrypted Database Received by the Cloud.

To encrypt the entire database we used the following
algorithm:

Algorithm 6 Encrypt All Database
Input: Xtable table ,checked ele String
Output: encrypted database
1: if Xtable exists then
2: for non encrypted column do
3: checked ele = id of nonencryptedcolumn
4: encryptcolumn(checked ele)
5: end for
6: else
7: create table Xtable
8: for each column in Xtable do
9: if column type is String then

10: encrypt column using RSA
11: else
12: encrypt column using Paillier
13: end if
14: end for
15: end if

Table III describes the comparison of the two protocols,
using sockets, in terms of time and key size:

TABLE III. RESULT AND COMPARISON OF THE TWO PROTOCOLS USING
SOCKETS

Key Length Russian Multiplication Protocol( ms) Logarithm Protocol(ms)
N=64 3.3 2.3

N=128 3.6 2.5
N=256 5.3 5.0
N=512 19.7 23.6
N=1024 66.4 60.4
N=2048 425.6.6 409.0
N=4096 2936.0 2830.0

With a tiny key size, we notice that both algorithms provide
the same result in about the same amount of time. However,
when the key size is increased, the Product encryption protocol
employing Russian multiplication takes longer but performs
better than the continuous logarithm method. As a result, if
the operations performed on the cloud require precision, we
should use the Russian multiplication protocol. Still, we can
use the continuous logarithm protocol if we want speed with
approximate values.

V. CONCLUSION

In this paper, we focused on improving Paillier’s method
by implementing two protocols that allow the cloud to conduct
multiplication on encrypted data by including two protocols
that transform multiplication into addition. To show the ef-
fectiveness of our approach, we created a desktop interface
that enables users to benefit from the cloud while protecting
the security of sensitive data held on remote servers and
controlled by cloud providers. The client interface adds an
extra layer of security to a database by encrypting the names
of columns and tables in the database. The proposed solution
would have a significant economic effect due to the assurance
of data security, confidentiality, and data protection through its
use. Additionally, this would encourage more businesses and
financial institutions to keep their data in the cloud.
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