(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 11, 2022

Parallelizing Image Processing Algorithms for Face
Recognition on Multicore Platforms

Kausar Mia'
Department of CSE
Daffodil International University
Dhaka, Bangladesh

Tariqul Islam?
Department of CSE
Daffodil International University
Dhaka, Bangladesh

Md. Abdur Razzak”
Department of CSE
Daffodil International University
Dhaka, Bangladesh

Abstract—A good face detection system should have the ability
to identify objects with varying degrees of illumination and
orientation. It should also be able to respond to all the possible
variations in the image. The image of the face depends on the
relative camera face pose such as the nose and one eye. The
appearance of a face is directly influenced by the facial expression
of a person and partially occluded by objects around it. One of the
most important and necessary conditions for face recognition is to
exclude the background of reliable face classification techniques.
However, the face can appear in complex backgrounds and
different positions. The face recognition system can mistake
some areas of the background for faces. This paper solves some
face recognition problems including segmenting, extracting and
identifying facial features that are thought to face from the
background.

Keywords—Image processing; multi-core platforms; machine
learning; face recognition; parallelizing

I. INTRODUCTION

People have an excellent ability to analyse images and
we can recognize the face very reliably. Indeed, humans can
easily find the surrounding face despite difficult situations
such as obscure parts of the face or heavy lightning. Facial
recognition is considered a prerequisite for many computer
vision applications such as security, surveillance, and content-
based image search. So much research has been done to
automatically replicate this process on machines [1]. For face
detection methods, several authors have defined a vast range of
methods for face detection [2]. The feature-invariant approach
is primarily aimed at finding structural features that are present
even when “the pose, the angle of view, or lighting conditions
change”. People are expected to easily recognize faces, so they
need constant properties or capabilities for these fluctuations.
The problem with this approach is that lighting, noise, and
occlusion can severely damage image features. The template
matching process defines some standard patterns for the face.

Mr. Md Assaduzzaman®
Department of CSE
Daffodil International University
Dhaka, Bangladesh

Tajim Md. Niamat Ullah Akhund*
Department of CSE
Daffodil International University
Dhaka, Bangladesh

Arnab Saha®
Department of CSE
Daffodil International University
Dhaka, Bangladesh

Sonjoy Prosad Shaha®
Department of CSE
Daffodil International University
Dhaka, Bangladesh

Angkur Dhar®
Department of CSE

Daffodil International University

Dhaka, Bangladesh

These patterns are stored in templates to describe the entire
face or individual facial features. The correlation between the
entered pattern and the saved pattern is calculated for recog-
nition. In the appearance-based method in contrast to template
matching, the model is trained from a series of training images
aimed at capturing typical variations in facial appearance.
One of the problems with this approach is that training the
model can take hours or even days. Face recognition method
considerations represent the boundaries between knowledge-
based methods and template comparison methods. The latter
is usually because it implicitly requires human knowledge to
define a face template.

The aim of this work is to implement parallelize Image
Processing Algorithms for Face Recognition on Multi-core
Platforms. In order to reach our goal we started by analyzing
the challenges associated with face detection which involves
factors such as pose, presence or absence of structural compo-
nents, facial expression and imaging conditions. When the face
detection methods were analyzed, it was determined that the
ones based on learning algorithms (appearance-based) provides
better results. Because these methods eliminate the possibility
of modeling error, which can occur when face knowledge is
either insufficient or inaccurate.

II. RELATED WORKS

Face recognition techniques based on learning algorithms
(appearance-based) have recently received a lot of attention
to eliminating potential modelling errors due to incomplete
or inaccurate face knowledge. A neural network-based face
recognition framework developed by Rowley et al. [3] pro-
posed, reasonably connected NN (neural network) examines
small windows in the image to determine if each window
contains a face. Fig. 1 shows Neural network face detection.

Authors of [1] ilustrated the understandings of computer
vision and image processing. Authors of [2] mentioned many

www.ijacsa.thesai.org

798 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Input image pyramid Extracted window Correct lighting Histogram equalization
(20 by 20 pixels)

Receptive fields
Hidden umits

I/ \
||~

fntuininy

\
\
|
\aiuiuy
SS\BAWY

-8 ® ® 20by 20
pixels I\

i —= s »
R 3
- V

Preprocessing

Neural network

Fig. 1. Neural Network Face Detection.

approach of detecting face in an image. Authors of [4] used
deep learning for image recognition. Authors of [3] used
neural network for face detection. Authors of [5] showed an
improved algorithm in this aspect. Authors of [6] showed GPU
performance in computer vision aspect. Authors of [7] worked
on Parallelizing face detection. High perfomance computing
for image processing is analysed by authors of [8]. Haar-
like features were implemented by authors of [9] and [10].
For face detection CNN can be used [11][12] for robust face
detection. Multiple faces can be detected with adaboost and
Camshaft algorithms [13]. Moreover, artificial intelligence and
internet of things based solution can make changes in medical
sectors [14], hotel sectors [15], covid-19 patient management
sectors [16], and many other sectors [17]. Remote sensing
[18] makes a great change in virus-affected people monitoring
[19]. IoT-based systems are also secure [20]. These systems
can also help in agriculture [21], poultry farm [22], disable
people management [23], electronic voting [24], gaming [25],
farming [26], nursing [27], remote data sensing [28], virus
affected area monitoring [29][30] from remote places [31]. IoT
based irrigation systems are helping farmers [32] and farming
[33]. Robotics and IoT are doing great in medical fields
also [34][35]. So, in multicore platform parallelizing image
processing algorithm should work better for face recognition
and help mankind.

III. FACE DETECTION OPTIMIZATION

We would like to optimize the face detection task to
reduce its computation time [4][3]. To do so it’s important to
understand how it works inside. The face recognition task first
creates an image pyramid, which is a multi-scale representation
of the image. This makes the face recognition scale invariant
and it recognizes faces in the same recognition window. Fig.
2 shows Pyramid of scales.

On each scale it is important to notice that the size of the
detection window is the same in all the scale. This process
is such that smaller faces are detected on early scales while
bigger faces are detected later. Fig. 3 shows Detection window
(sub-window).

A. The Scale Factor

It allows the creation of the image pyramid, by re-scaling
the input image we can resize a larger face to a smaller one.
Each scale will reduce the size by 10% concerning the previous
one. The algorithm works leisurely since a lot of scales are
created. It is possible to grow 1.40 for faster detection with

Vol. 13, No. 11, 2022

scales

Fig. 3. Detection Window (Sub-Window).

the missing some faces altogether. To precisely detect the face,
all the scales that return a face result are merged into one final
result. In Fig. 4, 46 scales were generated. Scales (1 - 35) and
(43 - 46) did not find any face, scales (36 - 42) did find a face
(left image), and all the scales that found a face are merged
into one final result in the right image.

Fig. 4. 46 Scales were Generated. Scales (1 - 35) and (43 - 46) did not find
any Face, Scales (36 - 42) did find a Face (Left Image), and All the Scales
that found a Face are Merged into One Final Result in the Right Image.

B. Minimum and Maximum Object Size

The standard for this parameter is usually [30, 30] pixels,
and for bigger objects than the size, we want this to be
ignored. Now that the parameters are known, we would like
to work with the low scale factor (1.1) so that all the possible
faces are detected but also with a few numbers of scales. The
stopping condition for the creation of scales is based on the
two parameters defined above (min and max object size). Fig.
5 shows Stopping condition for the creation of scales. The size

www.ijacsa.thesai.org

79 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

J’ Is Max Face Size
YES Defined NO

Frame > MFS Q Frame > DW
NO

NO

o |
[| l l

Scale] Stop

MFS: Max Face Size
DW: Detection Window

Fig. 5. Stopping Condition for the Creation of Scales.

of the detection window is defined as double the min object
size. So only objects that a greater than the min object size
and smaller than the detection window are considered. Fig.
6 shows the detection window. By experiment was possible

Detection window

Min object size

Fig. 6. Detection Window.

to notice that the most important factor to optimize the face-
detection is the min object size, as it directly affects the size
of the detection window and the number of scales [5]. A final
optimization solution for a stream of images can be seen as:
first, we start by considering the worst-case scenario in which
the parameter for min face size is (30, 30) and a scale factor of
10% which will generate a lot of scales once a face is found,
adjust the detection window to the size of the face for the next
frames (min_face_size = real_face_size *0.8). This process
allows reducing drastically the number of scales as they are
determined based on the previously detected face dimensions
as it’s possible to see from Fig. 7. As it is possible to notice

DETECTION
WINDOW FRAME 0 NUMBER OF SCALES
D|1|2|3|“.|44|45|46|\{

FRAME 1 NUMBER OF SCALES ‘
[olofsfafs]elr]

Fig. 7. Optimized Solution.

from Fig. 8, the computation time decrease drastically as the
min face size gets closer to the real face size and the number
of scales is reduced.

Vol. 13, No. 11, 2022

Time in Ms to detect face

Min face size

eal face size 0= 281281 (img 1) ©- 507x507 (img 2) o= 615x615 (img 3)

Fig. 8. Computation Decreased as the Min Face size Gets Closer to the Real
Face Size.

This face detection optimization should be applied only
for cases where the goal is to find exactly one face or at most
multiple faces that are somehow equidistant from the camera.
When the algorithm is applied for the first time (left image),
we do not have any a priori knowledge of the size of the
faces, and almost all of them are found [36]. Because of the
image pyramid of scales, the smallest faces (the ones much
farther away from the camera) are the first to be found. Then
the intermediate faces (the ones in the center) and finally the
largest faces (the ones in the front line). In this way, the largest
faces are the last ones to be found, so they will set the threshold
of what size of face to look for. When the algorithm is applied
for the second time (right image) only the front-line faces are
found. Table (I) shows the Styles Summary.

TABLE 1. STYLES SUMMARY

Font Spacing | Spacing

Paragraph Style Name (MS Word) Size Before Afier

Title_text 20 (B) 0 pt. 24 pt.
Authors_name 12 (B) 0 pt. 12 pt.
Authors_aff 10 0 pt. 0 pt.
Abstract 10B) | 0pt 4 pt.
Keywords 10 12 pt. 12 pt.
Body_text 10 0 pt. 0 pt.

Section_heading
Subsection_heading

10 (B) | 12 pt. T pt.
10(B) | 12 pt. T pt.

Equations Eqn 12 pt. 12 pt.
Figure 10 12 pt. 0 pt.
Figure_no 10 () 6 pt. 12 pt.
Table 10 pt. 0 pt. 12 pt.
Table_no 10 (I) 12 pt. 6 pt.
Reference 10 0 pt. 3 pt.

IV. PARALLEL IMPLEMENTATION

We will start by studying the parallel patterns and tools
that will be applied later on to parallelize the application. The
potential sources of parallelism of the Viola-Jones algorithm
[37] will be also analysed followed by a detailed study of
the OpenCV parallel implementation [6]. An improvement to
the OpenCV parallelism will also be addressed along with the
GPU implementation of the Viola-Jones algorithm. We will
discuss techniques for the design of parallel computations and
the tools that allow implementing such techniques [38].

www.ijacsa.thesai.org

800 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

A. Pipeline Paradigm

This paradigm is defined for the stream of computations
only. It is applied when we have a computation that can be
expressed as a composition of functions. The service time of
the pipeline depends on the slowest stage. This paradigm is
generally characterized by a latency (time between the input
of a data and the output of its result after processing) worst than
the sequential version due to the communication between the
stages. The Pipeline may be used to improve the service time,
however, to remove application bottlenecks with this paradigm
we must ensure that the number of functions is equal to or
greater than the optimal parallelism degree and the stages are
somehow balanced. Fig. 9 shows the Pipeline process.

DDD@

Fig. 9. Pipeline Process.

(52— 53 }—("ss)
NN

B. Embarrassingly Parallel Paradigm or Farm

This is a streaming paradigm that replicates the same
function that distinct stream elements can be processed by
DIM in parallel. This paradigm is composed of three modules:
“Emitter, Workers, and Collector”. The emitter provides to
send every received input stream to one of the workers
according to a certain policy. Each input element is transmitted
to exactly one worker. Each worker applies the function F to
the received data and sends the result to the collector which
transmits each of them to the output stream. To apply the
farm paradigm the function F must be a pure function, that’s
it without an internal state. The farm paradigm is good for
applications where the order of the output is not so important
as the relative speed of the workers can be different. In Fig.
10, we can see the farm as a three-stage Pipeline, in which the
emitter is the first stage, the workers in the second, and the
collector in the last stage.

~10
O
O

Fig. 10. Embarrassingly Parallel or Farm.

_¥e ©

C. Map or Parallel for Paradigm

This is a data-parallel paradigm that can be applied on
streams as well as on single data values. This paradigm is
characterized by data partitioning and by function replication.
For stream-based computations, besides service time, it also
optimizes latency and memory capacity [39] which is not
the case with the paradigms introduced above. During the
execution of function F, each of the functions on its local data
exclusively in the Map paradigm, without any collaboration

Vol. 13, No. 11, 2022

with the other workers. Parallel for is a paradigm characterized
by parallelizing sequential iterative for loops with independent
iterations [7]. Fig. 11 shows the Map paradigm.

]

O

4

Fig. 11. Map Paradigm.

D. Fast Flow (FF)

Fast Flow is a C++ parallel programming framework that
focuses on high-level, pattern-based parallel programming. It
supports streaming and data parallelism. It allows expressing
the combination of different patterns which increases the
parallelism exploitation possibilities [8].

V. PARALLEL IMPLEMENTATION OF OPENCV

OpenMP is a programming framework that greatly simpli-
fies writing multi-threaded programs in Fortran, C, and C++.
This programming framework provides loop parallelization
with parallel for. Besides being able to implement parallel
loops when iterations are independent, it also has the notion of
task parallelism which allows assigning different dependent or
independent tasks to different threads. To write efficient pro-
grams with OpenMP, we need to understand all the additional
parameters of the OpenMP pragmas and also the concurrent
accesses performed on shared data structures. To implement
parallelization, OpenCV uses a hierarchy of tools [9]. The
first tool found in the user machine is the one that is going
to be applied. For our specific case, all the parallelization
implemented by OpenCV was performed with OpenMP. For
the object detection task, OpenCV automatically parallelizes
the data in each scale with a row-wise Parallel which divides
the computation space into a collection of detection windows.
Each detection window is calculated independently without
any need for synchronization. If the user doesn’t specify the
number of threads to be used, OpenCV will automatically
use all of the available threads. Fig. 12 shows the OpenCV
parallelization inside each scale.

A. Convert an RGB Image to a Grayscale

There is no data dependency between the three channels
composing an RGB image when performing the grayscale
conversion [40]. In this way, we can exploit the Map paradigm
to parallelize this task. Synchronization is needed to have the
equivalent grayscale of each channel. The final step is to merge
the three-channel grayscale images into a single one. Fig. 13
shows the process of Converting an RGB image to a grayscale.

www.ijacsa.thesai.org

801 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

A
Thread 1
for each scale
——y parallel for each row Thread 2
——> for each column
v Thread n

Fig. 12. OpenCV Parallelization Inside each Scale.

Fig. 13. Converting an RGB Image to a Grayscale.

B. Histogram Equalization

When performing histogram equalization, it’s possible to
exploit the Map paradigm in which the image is split to
compute the histogram H of the source [11]. A synchronization
point is needed to have the final histogram H. The computation
of the histogram integral image is performed using a pair of
recurrences. Transforming H” as a look-up table can also be
performed independently by applying the Map paradigm. Fig.
14 shows the process of Histogram equalization.

histogram H Compute the integral
of src of the histogram

&
S

Caiculate the histogram H for src

Transiorm the image using H 4
as a look-up table:

dst(x,y) = H’(src(x,y))

Fig. 14. Histogram Equalization.

C. Detection Window

The face detection computation space is partitioned into a
set of detection windows, which can be computed indepen-
dently without the need for synchronization. The schema for
this case is the same as Fig. 11 showed for the Map paradigm

Vol. 13, No. 11, 2022

in which the input image is partitioned and detection windows
would be applied in parallel in each of the partitions.

D. Haar-Feature Calculation and selection

Inside each detection window no data dependence on the
feature value calculation and selection in such a way that
each feature can be calculated and selected in a completely
independent way [12][10]. All the selected features are sent to
the cascade of classifiers shown in Fig. 15.

Calculate
haar-features

—

“=O—0—=0—

Cascade of
classifiers

Select features
Detection window

Fig. 15. Haar-Feature Calculation and Selection.

E. Feature Evaluation

All the chosen functions are evaluated through the levels of
the cascade classifiers which may be parallelized to the usage
of the pipeline paradigm. Map paradigm in which each feature
instead of being partitioned is sent entirely to all the filters.
This process is known as multicast. A synchronization point
is needed to compute the outcome of the stage. The detection
window is automatically discarded if the outcome of one of
the stages is negative. The face detection cascade of classifiers
has 22 stages. The number of filters for each stage can be seen
in Fig. 16 below.

Stage |0 1 2 3 4 3 6 7 3 9 10 11 12

"]
-
=
(3]
=
s
=]
s
L
S
=
i

(=]
L

=4

Filters 36 71 30 103 | 111

Stage | 13 14 15 16 17 18 1% 20 21

Filters | 102 [133 | 137 | 140 | 15% | 177 | 181 (210 | 213

Fig. 16. Stages of Face Detection Classifier.

Fig. 17 shows Cascade of classifiers.

F. Feature Evaluation

We must scale down the input picture according to the
supplied scale factor until it is the same size as the detection
window to locate all potential faces of various sizes. Without
the requirement for synchronization, each scale of the incom-
ing picture may be handled in parallel. The schema for this
case is the same as the figure shown on the Farm paradigm
in such a way that each scale would be sent to a worker. The
overall parallelization scheme can be seen in Fig. 18 below
which the red circles represent.

www.ijacsa.thesai.org

802 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Filters

C) READ FRAME
1
() CONVERT RGB IMG TO GRAYSCALE
T
'@ EQUALIZE HISTOGRAM
A

DETECT FACE(S)
T frame scales
A *
partition of each scale

global result with all detected face(s)

-

— DETECT FEATURES

—— —
TN Mows) Nose

¢

Y

!

‘ Determine the probability of being a face according with the number of features found ‘

Fig. 18. Overall Parallelization Scheme.

VI. ADDITIONAL PARALLELISM TO THE OPENCV
VIOLA-JONES IMPLEMENTATION

We will focus on providing additional parallelism to the
OpenCV implementation of the Viola-Jones algorithm. We
will also discuss ways of improving the existing OpenCV
parallel implementation. The most straightforward approach
to parallelizing a stream computation made up of phases that
must be executed serially is to implement a pipeline paradigm.
One important aspect to take into account when using the
pipeline paradigm is that the stages must be somehow balanced
to exploit all the benefits of this parallelization. The proposed
pipeline stages are in Fig. 19. For the results that support this
pipeline configuration to implement this paradigm, we will

Vol. 13, No. 11, 2022

Stage 0 Stage 1 Stage 2 Stage 3

Grayscale Detect Face

Histogram Detect

getNext Frame Video Writer

Fig. 19. Stages.

use FastFlow. The pipeline completion time depends on the
slowest stage which in this specific case is stage 2. This stage
completion time can be approximated by the face detection
task time, so the cost model of the pipeline can be derived as
Tc = N x face_detection() where N is the size of the stream.
Therefore, to fully exploit the pipeline paradigm and take into
account the completion time of each task, it becomes very
important to be able to parallelize the face detection procedure
internally.

A. Face Detection Task Parallelization

The face detection task processes a pyramid of scales of the
same frame. The image pyramid allows face detection to be
scale-invariant. There is no dependency between the processing
relative to the different scales, they can be executed in parallel
without any need for synchronization. The computation time
is different between the scales due to their different size while
applying the same detection window. Fig. 20 shows Image

pyramid.
/\

Fig. 20. Image Pyramid.

B. Considerations about OpenCV Parallel Implementation

OpenCV internally parallelizes the computation relative to
each scale using the parallel paradigm. Externally, the scales
are executed sequentially, one after the other. Even though the
image scales are of different sizes, the same number of threads
is assigned to compute all of them. For this specific case, the
face detection task generated an image pyramid of 46 scales.
We measured the time of each scale using a thread number
between 1 and the maximum number of threads available (24
in this case). As evidenced in Fig. 21, the scalability achieved
with 24 threads is very significant for scales of bigger size
while on the other hand is negligible for scales of smaller
size. If we consider the efficiency, it decreases as the number

www.ijacsa.thesai.org

803 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

21

20 /\

19

[=
2 / \’\/\/\
17
16 A \’—\/\
15
14 - \
13
12
11 \

10 N—

1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Fig. 21. Scalability Achieved with 24 Threads.

of threads increases Fig. 22. When considering the efficiency
of each scale with 24 threads Fig. 23, it decreases drastically
from the second half (from scale 24 to 46 of Fig. 23).

Efficiency

1

0.9 ~—
08 I

0.7

0.6

0.5

0.4

0.3 T T T T T T T T T T T]
0 2 4 6 8 10 12 14 16 18 20 22 24

Threads

Fig. 22. Efficiency Achieved (1).

0.8

0.7

0.6 A‘
s 1AL

Vol. 13, No. 11, 2022

—— for scale 1 to 23
[_. parallel for each row
—— for each colamn

Alternative

|—b parallel for scale 24 to 46
—— for each row
Alternative — for each column

Fig. 24. Parallel Implementation.

overhead, the computation time can be roughly approximated
to the time spent to execute the slowest scale (which is scale
24) with 20.62 milliseconds. But if we take the OpenCV
approach which executes the scales serially while performing a
row-wise parallel computation inside each scale, the execution
time from scale 24 to 46 with 24 threads is roughly the sum
of the times of each scale on this range which is 44.437
milliseconds. So, with the optimized approach, we can get
about 2.15x speed up for the OpenCV approach. Assigning
computation of different scales to different threads would
fall under the category of embarrassingly parallel or farm
paradigm. A dynamic load balance technique can be applied
in this case such that when each scale finishes its execution,
it frees the resource. In all circumstances when the exact
quantity of labor of activities cannot be exactly stated before
the activities take place, this strategy may provide better
load balancing. Based also on other performed tests which
demonstrated similar (scalability) results like the ones shown
before, we divide the total number of scales by half. The
heavy-sized scales in the first half would be parallelized using
a row-wise parallel, while the light-sized scales in the second
half would be parallelized by computing each scale in parallel.
From Fig. 25 is possible to notice that the face detection
parallelization is rather coarse-grained as the best scalability
was achieved while the smaller one achieved the worst result.

0.3

0.1

scales

0.4 \/\

02 |

=

1 3 5 7 911131517 1921 23 25 27 29 31 33 35 37 39 41 43 45

Fig. 23. Efficiency Achieved (2).

C. Improvement to the OpenCV Parallel Implementation

Analyzing deeply the results obtained from the Fig. 23
above, it’s possible to realize that we can optimize the par-
allelization with 24 threads in the following alternative ways
shown in Fig. 24.

Since in both alternatives we are parallelizing for loops,
OpenMP is the most suitable parallelization tool. We can
see that executing in parallel from scale 24 to 46 but inside
executing serially each scale, without taking into account any

Parallelism degree

M ideal OimaG1 HIMG2 oimG3

Fig. 25. Face Detection Parallelization.

www.ijacsa.thesai.org

804 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

D. Specific Approach: Single Face Detection

For this specific case, before finding a face the paralleliza-
tion technique is the same as the one described above in the
proposed heuristic solution. Once the face is found, taking
advantage of the optimization, where the number of scales and
the computation time is reduced drastically, as it is possible
to see from the Table (II) below, the parallelization paradigm
that could be applied is the farm where each scale would
be assigned to a specific number of the worker. One could
argue that after finding a face no further parallelization is
needed taking into account that the number of scales and the
computation time of each scale is reduced drastically. For our
specific case, we can see from Table (II) that the sequential
implementation would take as much as 4.01 milliseconds to
complete while in the best-case scenario, without overheads,
the parallel implementation would take 0.95 milliseconds. It
is worth remembering that the results of the Tab. 2 were
obtained with the largest image of our experiments (Size
2448 x 2448) which represents the worst case of the face
sizes. When introducing further parallelization to this part, we
need to take into account the trade-off between the gains of
the parallelization and the additional overheads that it comes
with as even in the best-case scenario the gains can be very
negligible (around 3 ms for our case).

TABLE II. OPTIMIZED RESULTS FOR SINGLE FACE DETECTION

Scale Size 1-thread[ms]
2348x2348 | 0.87
2134x2134 | 0.95
1940x1940 | 0.80
1764x1764 | 0.76
1604x1604 | 0.44
1458x1458 | 0.18
1325x1325 | 0.01

| | | | W 9 —

E. Feature Detection Parallelization

In this case, we are not interested in parallelizing each
feature detection phase internally, as the optimization proposed
already allows for achieving higher speed up. The important
point is to run all the features (eyes, mouth, and nose) in
parallel using the MISD pattern which is a variation of the
Map paradigm where each worker computes in different codes.
Fig. 26 shows Feature detection parallelization.

A possible approach for detecting features in parallel for
multiple faces could be applying the Farm paradigm in which
each face would be assigned to a certain work and inside each
worker [41], the MISD paradigm would compute the features
in parallel in Fig. 27.

VII. RESULTS AND DISCUSSION

Our authors saw the testing on this application, and it was
determined that splitting the face did not improve performance,
therefore we opted to use the four-stage pipeline. When using
the Multiple Face Detection Approach to test the application,
the smallest image was able to achieve real-time processing
with the GPU (around 38 FPS) and quasi-real-time processing
with the CPU parallelized version (around 10 FPS), while the
intermediate size image was able to achieve quasi-real-time
processing with GPU (Around 17 FPS) [42]. The least and
intermediate photos were able to achieve real-time processing

Vol. 13, No. 11, 2022

/.EI O detect righ eye

T

_R
,{:@ O detect mouth
} O detect nose

Fig. 26. Feature Detection Parallelization.

detect left eve

Detect face

face 0

left eve

>

Detected faces

face_n-1

Fig. 27. Detecting Features in Parallel for Multiple Faces.

with all implementations save the originally sequential one
when we ran the same trials with the Single Face Detection
Approach. With the parallel CPU and GPU implementations,
the largest image was able to accomplish real-time processing
[43] [44]. When the application was tested on video frames,
it was discovered that the size of the face had a direct impact
on the sequential and parallel CPU implementations optimized
for single face detection. We demonstrated that for the largest
image size, the optimization introduced, allowed to decrease
in the number of scales from 46 to 7 and the number of
processed sub-windows from 8 443 722 to 704 which implies a
reduction of 99.99% of processed sub-windows. The reliability
tests showed that our application is very reliable in different
scenarios such as distance, light conditions, occlusion, and
rotation [45]. We demonstrated that it is possible to coexist
the two parallel programming frameworks utilized in our
application (Fast Flow and OpenMP) to exploit all the available
resources on CPU Multi-Core Platforms.

www.ijacsa.thesai.org

805 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

VIII. CONCLUSION

This paper aimed to Parallelize Image Processing Algo-
rithms for Face Recognition on Multicore Platforms. The
heavy-sized scales in the first half would be parallelized using
a row-wise parallel, while the light-sized scales in the second
half would be parallelized by computing each scale in paral-
lel. When the face detection methodologies were analyzed,
was concluded that the ones based on learning algorithms
(appearance-based) allow for achieving better results because
eliminate the potential modeling error as a result of incomplete
or inaccurate face knowledge. The state-of-the-art algorithms
can process images extremely rapidly based on three innovative
contributions: “The integral image, the AdaBoost learning
algorithm, and a cascade of classifiers”. The Viola-Jones
algorithm is still not optimal as the detector becomes unreliable
for faces with a certain rotation, the detector may fail when the
faces are very dark while the background is relatively light and
the detector fails on significantly occluded faces. To render the
face detection process faster two optimizations were proposed.
The first optimizes the face detection task based on the size of
the face found on the previous frame. This optimization allows
decreasing drastically the computation time. The drawback of
this optimization is that it should be applied only for one face,
or at most multiple faces that are somehow equidistant from
the camera. The second optimization also allows decreasing the
computation time as the size of the facial features to look for is
based on a ratio to the size of the face found. To parallelize the
entire face detection process, it was shown that the pipeline
paradigm is the most suitable solution as the whole process
is performed in a sequence of phases. To take advantage of
the face detection parallelization on GPUs specifies that we
need to minimize access to devise memory, transfers to and
from the GPU must be timed to coincide with computation,
and memory accesses to the GPU’s global and shared memory
must prevent bank conflicts, and branching inside kernels
should be kept to a minimum. Our tests have demonstrated
that our application can achieve real-time processing rates in
different scenarios and it is reliable in various situations. A
theoretical study on the reasons why the Viola-Jones algorithm
may not allow multi-core platforms to be exploited to their
full capacity. Future work includes studying in more detail the
aspects and implementing them to verify their efficiency. Also,
a more detailed analysis of some of the principles mentioned
to take full advantage of the GPU hardware requires further
investigation.

REFERENCES

[1] E. Hjelmas and B. K. Low, “Face detection: A survey,” Computer vision
and image understanding, vol. 83, no. 3, pp. 236-274, 2001.

[2] M.-H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in
images: A survey,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 24, no. 1, pp. 34-58, 2002.

[31 H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based
face detection,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 20, no. 1, pp. 23-38, 1998.

[4] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “From facial parts responses to
face detection: A deep learning approach,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 3676-3684.

[5] G.-W. Kim and D.-S. Kang, “Improved camshift algorithm based on
kalman filter,” Adv. Sci. Technol. Lett, vol. 98, pp. 135137, 2015.

[6] D. Hefenbrock, J. Oberg, N. T. N. Thanh, R. Kastner, and S. B.
Baden, “Accelerating viola-jones face detection to fpga-level using

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Vol. 13, No. 11, 2022

gpus,” in 2010 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines. 1EEE, 2010, pp. 11-18.

M. W. Joshua Miguel, Jordan Saleh. Parallelizing
face detection in software. [Online]. Available:
DepartmentofElectricalandComputerEngineering, Universityof Toronto,
2013.

M. Vanneschi, “High performance computing: parallel processing mod-
els and architectures,” in High performance computing. Pisa University
Press, 2014, pp. 1-552.

H. Commin, “Robust real-time extraction of fiducial facial feature points
using haar-like features,” arXiv preprint arXiv:1505.04286, 2015.

R. Lienhart and J. Maydt, “An extended set of haar-like features for
rapid object detection,” in Proceedings. international conference on
image processing, vol. 1. 1EEE, 2002, pp. I-1.

1. Kalinovskii and V. Spitsyn, “Compact convolutional neural network
cascade for face detection,” arXiv preprint arXiv:1508.01292, 2015.

P. Viola and M. J. Jones, “Robust real-time face detection,” International
Journal of computer vision, vol. 57, no. 2, pp. 137-154, 2004.

S. Ash with Kumar and S. Kubakaddi., “Multiple face detection
and tracking using adaboost and camshaft algorithm,” Int. Journal of
Research Studies in Science, Engineering and Technology, vol. 1, no. 1,
pp. 8-8, 2014.

N. U. Akhund, T. Md, M. Mahi, J. Nayeen, A. Hasnat Tanvir, M. Mah-
mud, and M. S. Kaiser, “Adeptness: Alzheimer’s disease patient man-
agement system using pervasive sensors-early prototype and preliminary
results,” in International conference on brain informatics. Springer,
2018, pp. 413-422.

T. M. N. U. Akhund, W. B. Jyoty, M. A. B. Siddik, N. T. Newaz, S. A.
Al Wahid, and M. M. Sarker, “Iot based low-cost robotic agent design
for disabled and covid-19 virus affected people,” in 2020 Fourth World
Conference on Smart Trends in Systems, Security and Sustainability
(WorldS4). 1EEE, 2020, pp. 23-26.

T. M. N. U. Akhund, M. A. B. Siddik, M. R. Hossain, M. M. Rahman,
N. T. Newaz, and M. Saifuzzaman, “Iot waiter bot: a low cost iot
based multi functioned robot for restaurants,” in 2020 8th International
Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions)(ICRITO). 1EEE, 2020, pp. 1174-1178.
F. I. Suny, M. R. Fahim, M. Rahman, N. T. Newaz, T. M. Akhund,
N. Ullah et al., “lot past, present, and future a literary survey,” in
Information and Communication Technology for Competitive Strategies
(ICTCS 2020). Springer, 2021, pp. 393-402.

T. M. N. U. Akhund, N. T. Newaz, and M. R. Hossain, “Low-cost
remote sensing iot based smartphone controlled robot for virus affected
people,” 2020.

T. M. Akhund, N. Ullah, N. T. Newaz, M. Rakib Hossain, and
M. Shamim Kaiser, “Low-cost smartphone-controlled remote sensing
iot robot,” in Information and Communication Technology for Compet-
itive Strategies (ICTCS 2020). Springer, 2021, pp. 569-576.

N. T. Newaz, M. R. Haque, T. M. N. U. Akhund, T. Khatun, M. Biswas,
and M. A. Yousuf, “lot security perspectives and probable solution,” in
2021 Fifth World Conference on Smart Trends in Systems Security and
Sustainability (WorldS4). 1EEE, 2021, pp. 81-86.

M. Biswas, T. M. N. U. Akhund, M. J. Ferdous, S. Kar, A. Anis, and
S. A. Shanto, “Biot: Blockchain based smart agriculture with internet
of thing,” in 2021 Fifth World Conference on Smart Trends in Systems
Security and Sustainability (WorldS4). 1EEE, 2021, pp. 75-80.

T. M. Akhund, N. Ullah, S. R. Snigdha, M. Reza, N. T. Newaz,
M. Saifuzzaman, M. R. Rashel et al., “Self-powered iot-based design
for multi-purpose smart poultry farm,” in International Conference on
Information and Communication Technology for Intelligent Systems.
Springer, 2020, pp. 43-51.

T. M. Akhund, N. Ullah, G. Roy, A. Adhikary, A. Alam, N. T. Newaz,
M. Rana Rashel, M. Abu Yousuf er al., “Snappy wheelchair: An
iot-based flex controlled robotic wheel chair for disabled people,” in

Information and Communication Technology for Competitive Strategies
(ICTCS 2020). Springer, 2021, pp. 803-812.

M. M. Sarker, M. A. I. Shah, T. Akhund, and M. S. Uddin, “An approach
of automated electronic voting management system for bangladesh

using biometric fingerprint,” International Journal of Advanced Engi-
neering Research and Science, vol. 3, no. 11, p. 236907, 2016.

www.ijacsa.thesai.org

806 |[Page

[25]

[26]

[27]
[28]

[29]

[30]

(31]

[32]

[33]

[34]

(IJACSA) International Journal of Advanced Computer Science and Applications,

M. Biswas, N. U. Akhund, T. Md, M. Mahbub, S. Islam, S. Md,
S. Sorna, M. Shamim Kaiser et al., “A survey on predicting player’s
performance and team recommendation in game of cricket using
machine learning,” in Information and Communication Technology for
Competitive Strategies (ICTCS 2020). Springer, 2022, pp. 223-230.
M. A. Hasan and T. Akhund, “An approach to create iot based
automated smart farming system for paddy cultivation.”

T. Akhund, “Study and implementation of multi-purpose iot nurse-bot.”

T. Akhund, I. A. Sagar, and M. M. Sarker, “Remote temperature
sensing line following robot with bluetooth data sending capability,”
in International Conference on Recent Advances in Mathematical and
Physical Sciences (ICRAMPS), 2018.

T. Akhund, N. T. Newaz, and M. M. Sarker, “Posture recognizer

robot with remote sensing for virus invaded area people,” Journal of

Information Technology (JIT), vol. 9, pp. 1-6, 2020.

T. Akhund, “Remote sensing iot based android controlled robot,”
Methodology, vol. 9, no. 11, 2018.

T. M. N. U. Akhund, N. T. Newaz, and M. R. Hossain, “Low-cost
remote sensing iot based smartphone controlled robot for virus affected
people,” 2020.

T. M. Akhund, N. Ullah, N. T. Newaz, Z. Zaman, A. Sultana, A. Barros,
and M. Whaiduzzaman, “Iot-based low-cost automated irrigation system
for smart farming,” in Intelligent Sustainable Systems. Springer, 2022,
pp. 83-91.

M. Suny, F. Islam, T. Khatun, Z. Zaman, M. Fahim, M. Roshed,
M. Islam, R. Jesmin, T. M. Akhund, N. Ullah et al., “Smart agricultural
system using iot,” in Intelligent Sustainable Systems. Springer, 2022,
pp. 73-82.

A. H. Himel, F. A. Boby, S. Saba, T. M. Akhund, N. Ullah, and K. Alj,
“Contribution of robotics in medical applications a literary survey,” in
Intelligent Sustainable Systems. Springer, 2022, pp. 247-255.

[35]

[36]

(371
[38]

[40]
[41]

[42]

[43]

[44]

[45]

Vol. 13, No. 11, 2022

T. M. N. U. Akhund, M. Hossain, K. Kubra, Nurjahan, A. Barros, and
M. Whaiduzzaman, “Iot based low-cost posture and bluetooth controlled
robot for disabled and virus affected people,” International Journal of
Advanced Computer Science and Applications, vol. 13, no. 8, 2022.
[Online]. Available: http://dx.doi.org/10.14569/1IJACSA.2022.0130879

O. T. C++. Histogram equalization of grayscale or color image.
Accessed: April, 2022. [Online]. Available: http://opencv-srf.blogspot.
it/2013/08/histogram-equalization.html

R. Ladu, “Gpu: A formal introduction.”

O. T. C++. Histograms - 2: Histogram equalization. Accessed: April,
2022. [Online]. Available: http://docs.opencv.org/3.1.0/d5/daf/tutorial_
py_histogram_equalization.html{\#}gs

C. U. C. for Advanced Computing. Memory coalescing. Accessed: May,
2022. [Online]. Available: https://cvw.cac.cornell.edu/gpu/coalesced?
AspxAutoDetectCookieSupport=1

OpenCV. The opencv reference manual.

M. Danelutto. Distributed systems
paradigms and models. [Online]. Available:
TeachingmaterialofLaureaMagistraleinComputerScienceandNetworking
NVidia. What is gpu computing. Accessed May, 2022. [Online].
Available: http://www.nvidia.com/object/what-is-GPU-computing.html

G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

N. Prabhakar, V. Vaithiyanathan, A. P. Sharma, A. Singh, and P. Singhal,
“Object tracking using frame differencing and template matching,”
Research Journal of Applied Sciences, Engineering and Technology,
vol. 4, no. 24, pp. 5497-5501, 2012.

A. Jain, J. Bharti, and M. Gupta, “Improvements in opencv’s viola jones
algorithm in face detection-tilted face detection,” International Journal
on Signal and Image Processing, vol. 5, no. 2, p. 21, 2014.

www.ijacsa.thesai.org

807 |[Page

