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Abstract—Implementation of Rao-blackwellized Particle Filter
(RBPF) in grid-based Simultaneous Localization And Mapping
(SLAM) algorithm with range sensors commonly developed by
using sensor with dense measurements such as laser rangefinder.
In this paper, a more cost convenient solution was explored where
implementation of array of infrared sensors equipped on a mobile
robot platform was used. The observation from array of infrared
sensors are noisy and sparse. This adds more uncertainty in
the implementation of SLAM algorithm. To compensate for the
high uncertainties from robot’s observations, neural network was
integrated with the grid-based SLAM algorithm. The result shows
that the grid-based SLAM algorithm with neural network has
better accuracy compared to the grid-based SLAM algorithm
without neural network for the aforementioned mobile robot
implementation. The algorithm improves the map accuracy by
21% and reduce robot’s state estimate error significantly. The
better performance is due to the improvement in accuracy of
grid cells’ occupancy value. This affects the importance weight
computation in RBPF algorithm hence resulting a better map
accuracy and robots state estimate. This finding shows that a
promising grid-based SLAM algorithm can be obtained by using
merely array of infrared sensors as robot’s observation.

Keywords—Simultaneous Localization And Mapping (SLAM);
occupancy grid map; Neural Network; Rao-Blackwellized Particle
Filter; infrared sensor

I. INTRODUCTION

Sensor is an important element in mobile robot. Sensor
such as vision sensor, range sensor and depth sensor are
commonly serves as robot’s observation of the world. De-
pending on the environment and task of the robot, different
sensor have different advantages. For example, for underwater
applications, acoustic based sensor such as sonar sensor is
widely applied [1] while for drone navigation, vision sensor
is more suitable [2]. Similar to other fields, a cost-effective
solution is also a fundamental requirement in mobile robot
implementation. Although, current sensors are very reliable
for autonomous navigation, but to implement these fast and
high accuracy sensor comes with significant cost. Hence, there
is research that focuses on developing low-cost navigational
method [3]. To achieve this objective, sparse and noisy sensors
such as ultrasonic sensor or infrared sensor modules is an
alternative to reduce the overall cost [4], [5]. Infrared sensor
is commonly used in array configuration on robot’s platform

to avoid obstacles using obstacles avoidance algorithm such
as Braitenberg algorithm [6]. This configuration gives sparse
measurements as the measurements only available at certain
angles. In contrast to range sensor such as laser ranger finder
or ratating infrared sensor that gives more dense measurements
at much higher cost.

There are previous works in robot’s simultaneous localiza-
tion and mapping or SLAM that uses sparse and noisy sensors
with neural network as a method to evaluate cells’ occupancy
in grid map [7], [8], [9]. Using neural network to interpret
sensor measurements into occupancy grid cell gives multiple
advantages on noisy and sparse sensors implementation. The
first one is that from the training data, neural network can
generally distinguish erroneous sensor measurements or also
called “maximum range” readings. These readings can be
caused by poor reflecting surfaces such as glass materials [10]
and in situations where no obstacle is within the measurement
range of the sensor. Neural network is a simpler approach
compared to identify the properties of surface’s reflection and
compute angle of incidence of sensor’s beam to differentiate
erroneous measurements [11]. Another advantage is that, the
noise caused by injective and non-linear sensor model of
infrared sensor can be reduced based on training data [9]. Other
than that, neural network can interpret multiple sensors reading
concurrently rather than interpreting range measurements inde-
pendently. This way, the correlation between adjacent sensors
can be exploited. This can gain more information for sensors
in ring or array formation [7], [12].

To implement grid-based SLAM with array of infrared sen-
sors, the proposed method is to counterbalance the limitation
of sparse measurement produce from array of infrared sensor
by expanding or extrapolating the sensor measurements. Thus,
in this research, the integration of neural network with grid-
based SLAM algorithm were developed and experimented with
array of infrared sensors.

Overall in this paper, Section 2 describes the method used
to carry out the experiments, which consists of the framework
for Rao-blackwellized Particle Filter algorithm and neural
network configuration. Next, Section 3 reports the results
of neural network training, robot’s state estimate and map
estimate of the SLAM algorithm described. The analysis of
the algorithm performance is included as well. Lastly, Section
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4 concludes the results of this paper.

II. METHOD

In this section, the Rao-blackwellized Particle Filter
(RBPF) algorithm with neural network are explained and elab-
orated. This consists of the method applied in each component
of the RBPF framework.

A. Rao-Blackwellized Particle Filter Algorithm

The Rao-Blackwellized Particle Filter uses particles to
estimate robot’s state, like the particle filter algorithm. Here,
each particle maintains a hypothesis of robot pose that assume
its position is correct. Each particle build a map based on
its trajectory which is also their own version of the map [13].
The algorithm of learning grid maps using RBPF or grid-based
SLAM algorithm is described as follows:

1) Sampling: Sample ith particle, x[i]
t to generate cur-

rent set of particles, Xt by sampling from a proposal
distribution.

2) Importance weighting: Calculate the importance
weight of ith particle, w[i]

t , which accounts for how
the robot’s observation, zt match with the current map
estimate, m[i].

3) Map update: Update the particles’ map estimate,
m[i], conditioned on robot’s state, x

[i]
t and robot’s

observation, zt.
4) Density extraction: Calculate the density of Xt by

using weighted mean method. The density of Xt, is
the single state that represent the robot’s position state
estimate, xest. The map update for xest is computed
as well.

5) Resampling: Resample the particles proportionally to
the particles’ weight. Particles with higher weight will
be most likely to be resampled for the next generation
of particles.

B. Sampling from Motion Model

In the sampling step, the current set of particles, Xt

is sampled from a proposal distribution. In this paper, the
particles, Xt is sampled from motion model proposal dis-
tribution to predict robot’s state. Looking at the ideal case,
if particles can be sampled from a true target distribution,
the weight of all particles will be equal and the same set
of particles, Xt can be maintained without the resampling
step [14]. However, a closed form of this posterior is not
available in general. As a result, typical method is to sample
from motion model, p(xt|at, xt−1) as the proposal distribution
and use the observation model, p(zt|m,xt) as the importance
weight.

The motion model makes used of robot’s transition model
which can be modelled either using velocity information or
odometry measurements [15]. For this research, odometry-
based model is used by utilizing the wheel encoders’ measure-
ments in the robot system. A transition model for two wheels
robot from [16] is adapted.

Equation (1) describes the transition from previous state,
xt−1 = (x, y, θ)T to current state, x̄t = (x̄, ȳ, θ̄)T . The
notation x̄t is used (instead of xt) to denote that this is the

predicted value of current robot’s state. The robot movement is
illustrated in Fig. 1. Here, l and r are the traveled distance by
left wheel and right wheel respectively. While b is the distance
between two wheels. ∆θ is the change of robot orientation
where the calculation is ∆θ = (r − l)/b [16].

x̄
ȳ
θ̄

 =

(
x
y
θ

)
+

 r+l
2 cos(θ + r−l

2b )
r+l
2 sin(θ + r−l

2b )
r−l
b

 (1)

The essence of probabilistic SLAM is to model mea-
surements by taking into account the uncertainty that comes
with the measurements. The odometry measurements were
described using probabilistic motion model p(xt|xt−1, at). The
motion model defines uncertainties or noise from transition
model described earlier. p(xt | xt−1, at) gives the likelihood of
a robot current position, xt given that previously it was at xt−1.
Subsequently, it moves and odometry data, at is measured.
The odometry motion model makes used of robot’s odometry
data. Odometry motion model sampling is an approach where
the relative odometry at time t − 1 to t is divided into three
consecutive actions; initial turn, δrot1, a translation, δtrans, and
a second turn, δrot2 as illustrated in Fig. 2 [15].

Algorithm 1 shows the complete algorithm to sample from
motion model distribution. The relative odometry is calculated
using trigonometry (see line 4 to 6). At line 7 to 9, noise terms;
ϵrot1, ϵtrans, and ϵrot2 are sampled from Gaussian probability
distribution with mean zero and the standard deviation of
robot-specific parameters, α1 to α4. These parameters specify
the noise in robot motion where α1 and α4 are the rotational
errors or angular error, and α2 and α3 are the translational
errors. These errors come with the motion of relative odometry,
δrot1, δtrans, and δrot2. In the next subsection the computation
of importance weight of each particle is explained.

Fig. 1. Robot Moves from (x, y, θ)T to (x̄, ȳ, θ̄)T .
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Fig. 2. Relative Odometry shows Initial Turn, δrot1, a Translation, δtrans,
and a Second Turn, δrot2.

Algorithm 1 Sampling with Odometry Motion Model
Require: xt−1, at

1: x̄t = g(xt−1, at)
2: ⟨x, y, θ⟩ = xt−1

3: ⟨x̄, ȳ, θ̄⟩ = x̄t

4: δrot1 = atan2(ȳ − y, x̄− x)− θ̄
5: δtrans =

√
(x̄− x)2 + (ȳ − y)2

6: δrot2 = θ̄ − θ − δrot1
7: ϵrot1 ∼ N (0, α1|δrot1|+ α2δtrans)
8: ϵtrans ∼ N (0, α3δtrans + α4|δrot1|+ α4|δrot2|)
9: ϵrot2 ∼ N (0, α1|δrot2|+ α2δtrans)

10: δ̂rot1 = δrot1 + ϵrot1
11: δ̂trans = δtrans + ϵtrans
12: δ̂rot2 = δrot2 + ϵrot2
13: x′ = x+ δ̂trans cos(θ + δ̂rot1)
14: y′ = y + δ̂trans sin(θ + δ̂rot1)
15: θ′ = θ + δ̂rot1 + δ̂rot2
16: return xt = (x′, y′, θ′)T

C. Importance Weight with Map Matching

Map-matching algorithm is used to obtain the importance
weight of ith particle, w[i]

t at current time step, t. The map
matching method uses similarities of local and global map of
a particle. In this research, the map matching approach uses a
match function introduced in [17]. The function compares the
local map and the global map of each ith particle and recorded
the number of match values. The match number, match is
then applied to the function in equation 2. In this equation, f
is a parameter that will influence the distribution of particles’
weight.

w
[i]
t = w

[i]
t−1e

match[i]

f (2)

The if and else cases in (3) shows how match is calculated.
A local map denotes by ml and a global map denotes as
mg . p(mg,j) and p(ml,j) are the probability of occupancy for
global map and local map at jth cell respectively. While occ
and free are the threshold values that a cell is considered

occupied or free respectively. The match value is added by
one if the jth cell of both local and global map exceed the occ
threshold value. While for a contradict value of jth cell, the
match value is deducted by one.

match =


+1, p(mg,j) ≥ occ ∧ p(ml,j) ≥ occ

−1, p(mg,j) ≥ occ ∧ p(ml,j) ≤ free

−1, p(mg,j) ≤ free ∧ p(ml,j) ≥ occ

(3)

D. Selective Resampling

After the computation of weight for each particle, particles
are resampled proportionally to their weight. The resampling
step is executed based on a heuristic measure of how well
the proposal distribution approximates the target distribution
called number of effective sample size, Neff . Neff measures
the variance of particles’ weights. The Neff value is calculated
using equation (4), which is the reciprocal of the sum of
squares of all particles’ weight. Here, N is the number of
particles or sample size. Practically, the normalized value of
particles weight is used in the Neff calculation.

Neff =
1∑N

i=1(w
i)2

(4)

A lower Neff value reflects that there is high variance
in particle’s weight distribution. This signals that some of
the particles have significantly higher weight compared to the
others. Algorithm (2) shows integration of selective resampling
in particle filter algorithm whereas particles only resampled
when Neff value falls below a certain threshold. In this
research, the threshold is set to N/2 [18]. Thus, particles are
only resampled if Neff value falls below half of the number of
particles. This shows that the variance of particles’ weight is
significantly large and particles need to be resampled in order
not to waste the particles on particles with low weights. If Neff

value is still within the threshold, all the particles are kept, with
their normalized weights (see line 1 to 3). Normalization step
gives more significant weight values to all particles.

Algorithm 2 Selective Resampling Algorithm

Require: w
[i]
t , i ∈ {1, . . . , N}

1: while i ∈ N do
2: w

[i]
t = w

[i]
t × [

∑N
i w

[i]
T ]−1

3: end while
4: Neff = [

∑N
i=1(w

i)2]−1

5: if Neff < threshold then
6: Xt = {}
7: while i ∈ N do
8: draw x

[i]
t with probability ∝ w

[i]
t

9: Xt = Xt ∪ {⟨x[i]
t , 1⟩}

10: end while
11: end if
12: return Xt
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E. Particle Density

As particle filter maintains a set of hypotheses of robot’s
state, the estimates of robot’s state need to be represented.
In other words, from the set of particles, Xt, the density of
the particles, xest is computed to evaluate the performance of
the SLAM algorithm. There are multiple methods that can be
implemented to estimate particles’ density. One of the method
is to calculate the weighted mean of all particles as the overall
robot’s state estimate, xest. For the x and y state of xest,
equation (5) is used, where wi is the weight of each particle.
As for robot’s heading, θest, a separate equation (6) is used to
prevent discretization error in the mean heading.

xest =

N∑
i=1

wixi (5)

θest = arctan

∑N
i=1 cos(θ

i)wi∑N
i=1 sin(θ

i)wi
(6)

F. Neural Network Configuration

In this research, neural network served as the inverse
sensor model, p(mt|xt, zt) to evaluate the cell’s occupancy
value. p(mt|xt, zt) is termed as inverse sensor model because
the model reasons from effects to causes, where the model
provides world information (mt) from sensor measurements
(zt) instead of the other way around, p(zt|mt, xt). The cell’s
occupancy value is then converted into log odd notation in the
occupancy grid map algorithm which is part of the map update
step. The overall map update step implemented is described in
our previous work [19]. To interpret cell’s occupancy, selected
sensor measurements with encoded cell’s position were used
as the neural network inputs. The following describes the input
configuration of the neural network, N :

• Four sensors measurements, źkt , k ∈ {1, 2, 3, 4} that
are closest to the cell, mj .

• Encoded mj’s position using the distance, dmj
and

angle, θmj
.

Fig. 3 illustrates the measurements of dmj and θmj . In
the figure, array of infrared sensor on a mobile robot named
Khepera III was used. This array configuration has nine
infrared sensors, labelled as one until nine. The distance, dmj

and angle, θmj
are determined by the sensor that is closest

to cell mj . In this illustration, sensor three has the closest
distance. Thus, the position of cell mj is encoded using the
distance between mj and sensor three and the angle of mj

to the same sensor. The four closest sensor measurements in
this case will be sensor one, two, three and four, which are
selected to be the input of neural network, N .

At each time step, the sensor measurements and the pre-
dicted robot’s state from motion model are preprocessed to
determine the four closest sensor measurements, dmj , and θmj .
Hence, follows the configuration of the neural network, N
input. The output of N is interpreted as probability of cell’s
occupancy p(mj |xt, zt). This process is repeated for all cells
surrounding the Khepera III mobile robot, in order to build a
local occupancy grid map, G, with n× n cells as depicted in
Fig. 3.

Fig. 4 shows part of the configuration of the neural net-
work, N . The input layer consists of input nodes that received
the sensor measurements, encoded cell’s position, and one
bias node. There is no computation done on the input nodes
but rather just to pass the inputs to the hidden layer. In the
hidden layer, there are three neurons and one bias neuron. Bias
neuron is used to provide every node in the adjacent layer
with a constant value apart from the normal inputs that the
node receives. Following normal practice, the bias for neural
network, N is set to value 1. As for the output layer, since
there is only one output which is the cell’s occupancy value,
thus there is only one neuron is in the output layer.

In neural network, each neuron in connected to all neurons
in the adjacent layer as showed in Fig. 4. For each connection
that connect from a neuron in one layer to the adjacent layer,
there is a weight associated with the edge. Thus, in neural
network, N , there are 3×7 = 21 weights for the edges that
connect the input layer to the hidden layer and 1×4 = 4
weights that connect the hidden layer to the output layer.
Within these weights, four of them are associated with the
bias neuron. Initially all the edges weights are random values.

Fig. 3. The Position of Cell mj is Encoded using dmj and θmj Relative
to the Robot.

Fig. 4. Part of the Neural Network N Configuration.
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Then, during the training process, for every set of input in the
training dataset, each neuron in the hidden layer and the output
layer in the neural network, N (excluding the bias neuron) is
activated via an activation function. For example, for the first
neuron in the hidden layer, the output of the neuron is obtained
via equation (7).

y1 = F (w11ź
1
t + w12ź

2
t + w13ź

3
t + w14ź

4
t

+w15θmj
+ w16dmj

+ w17)
(7)

Here, wxx is referred to the weight associated with the
input neuron as illustrated in Fig. 4. While F is an activation
function that compute the output of that neuron, y1. The same
equation with respective weights is applied on all neurons in
the hidden layer which will produce the rest of the outputs,
y2 and y3. Then y1, y2, and y3, becomes the input to the
activation function for the neuron in the output layer using
equation (8). Here, wx, referred the weights on edges that
connects the hidden layer to the output layer as seen in Fig. 4
as well.

y = F (w1y1 + w2y2 + w3y3 + w4) (8)

The output, y, is then compared with the output in the
training data for that inputs. Then, the error is propagated
back to the previous layer. From the error, the weights for the
edges are adjusted. This process is known as backpropagation
technique. To analyze the performance of the RBPF SLAM
algorithm integrated with neural network N , implementation
of inverse sensor model with N will be tested and compared
with the RBPF SLAM algorithm without neural network in
simulation experiments.

G. Overall Grid-based SLAM Algorithm with Neural Network

Fig. 5 shows the overall algorithm for the RBPF SLAM
algorithm with neural network, N implemented. In summary,
the importance weight of the particles is the observation likeli-
hood p(zt|xt). The process and entities in red color describes
the integration of neural network, N . Initially, measurements
from infrared sensors and sampled particles are preprocessed to
build the inputs for N . In the preprocess step, encoded position
of cell, mj , and the measurement of four closest sensors, źkt ,
k ∈ {1, 2, 3, 4}, are calculated. Then, these values are fed into
N to build the local grid map, G. Note that global occupancy
grid map is maintained by each particle. Local map and global
map are then used to calculate the importance weight of the
particles by using the map matching algorithm.

The green boxes indicate selective resampling method
described in section II-C. The dotted arrow lines represent
the map update step which is executed after the particle’s
importance weight has been calculated. The final output is the
density of robot’s state estimate, xest and its map, M , showed
at the bottom part of the flowchart. The particles’ density, xest

then updates the overall robot’s trajectory, x1:t.

III. RESULT AND ANALYSIS

The experiment was divided into two main parts. In the
first part of the experiment, neural network, N was trained

with the input configuration described in section II-F. Then,
in the second part of the experiment, the resulting map and
robot’s state estimate are analyzed by comparing the results
to the ground truth occupancy grid map and the ground truth
robot’s trajectory.

A. Training Neural Network, N
A neural network tool in MATLAB named patternet was

used to train the neural network, N . At the end of the training,
the MSE value obtained was 0.0965. Table I shows the weights
of edges that connecting the input layer to the hidden layer
where y1, y2, and y3 are the neuron in the hidden layer. Table
II shows the weights for the edges connecting the hidden layer
to the output layer.

Next, the resulting map and robot’s state estimate from
the RBPF algorithm integrated with the neural network, N is
analyzed by comparing the result to the ground truth data.
The ground truth was obtained from the robot simulator
platform used in the simulation experiment named Webots
robot simulator [20].

B. Map Score and RMSE

Table III shows the performance of the RBPF with neural
network, N SLAM algorithm in terms of map’s accuracy and

Fig. 5. Overall Algorithm for RBPF SLAM Algorithm with Neural Network,
N .

TABLE I. WEIGHTS FOR EDGES CONNECTING THE INPUT LAYER TO
THE HIDDEN LAYER.

źt
1 źt

2 źt
3 źt

4 θmj
dmj

bias

y1 -6.427 0.325 -0.207 0.166 0.529 0.003 1.608
y2 -0.847 -0.615 -0.611 -0.23 1.992 -0.08 2.170
y3 0.303 -5.525 -0.206 0.519 0.802 0.054 1.076

TABLE II. WEIGHTS FOR EDGES CONNECTING THE HIDDEN LAYER
TO THE OUTPUT LAYER.

y1 y2 y3 bias

y 0.859 1.558 0.546 -1.325
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TABLE III. MAP ACCURACY AND ROBOT’S STATE ESTIMATE ERROR
OF RBPF SLAM ALGORITHM.

RBPF-SLAM focc fmap RMSE(cm)

Without NN 0.2311 0.7012 34.84
With NN 0.7365 0.8491 9.42

robot’s state accuracy. For the map state estimate, two methods
of analysis were adapted; a fitness score for occupied cells,
focc, and fitness score for all cells, fmap. While for robot’s
state accuracy, the root mean squared (RMSE) value was used
as performance measure. This analysis methods is described
in our previous work [19].

From Table III, it can be observed that the performance of
robot’s state estimate and map estimate are in agreement. Both
analysis show that the accuracy of RBPF algorithm with neural
network, N is better compared to RBPF algorithm without
neural network in terms of robot’s state estimate and map
estimate accuracy. By adding neural network integration, the
score of overall map estimate increases from 70.1% to 84.9%.
While the RMSE of the robot’s state estimate decreases from
34.84 cm to 9.42 cm.

C. Closing the Loop

Fig. 6 shows the test environment that was used in the
simulation experiment with the Khepera III mobile robot in
the middle. The rays of infrared sensors and ultrasonic sensors
are also shown in the simulator. Fig. 7 shows the resulting map
obtained from the simulation experiment. In the resulting map,
three trajectories are shown. The robot’s ground truth trajectory
is the green line. The trajectory of robot state estimate from
RBPF with neural network, N is shown in blue line, while the
red line is the trajectory obtained from robot’s odometry.

The visual observations of the resulting maps shows that
when the robot revisited a known place (i.e. closing the loop)
at approximately time step 1550, robot state estimate was able
to have better estimate compared to odometry’s trajectory. Fig.
7 shows robot’s state estimate of RBPF with N algorithm in
red rectangle managed to close the loop despite of robot’s
odometry begin to diverge from the actual path. This is a
significant improvement because by using high variance sensor
such as infrared sensor with sparse measurements, a grid-based
SLAM algorithm with ability to correct robot’s pose in indoor
environment with static condition is obtained.

D. Effect of Resampling

As mention in section II-D of the methodology section, the
resampling step was executed when the efficiency of particles,
Neff has become lower than half of number of particles, N
(i.e. Neff < N/2). In this experiment N = 20 was used.
Thus, whenever Neff has become lower than 10, the particles
will be resampled and particles’ weight will be equal again
with value 1. When resampling occurred, the particles that has
lower weights are eliminated probabilistically, and the higher
weight particles are duplicated. Hence, in some cases, good
particles (i.e. particles with better robot’s state estimate) are
deleted as well. This will cause the spikes in pose error of
robots’ state estimate.

Fig. 6. Test Environment Created in Webots Simulator.

Fig. 7. Map and Trajectory of Robot’s State of RBPF with N in Blue Line.

Fig. 8 shows the error of robot’s state estimate of the
RBPF algorithm with N along with the Neff value at each
time step throughout the robot’s exploration. In this figure,
some of the resampling steps are marked with black dashed
line. From the figure, it can be observed that, whenever Neff

value drop below 10 and increased abruptly to 20, this is when
the resampling steps occurred. If good particles were deleted,
the pose error will increase. However, if bad particles were
deleted, the robot’s state estimate is better, hence the pose
error decreases.
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Fig. 8. The Pose Error of RBPF with N Align to the Values of Neff at
Each Time Step.
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E. Number of Particles, N

The experiment is repeated multiple times and it is ob-
served that by using 20 particles the consistency of a converge
solution is not achieved. To achieve a more stable and con-
sistent result, a higher number of particles were used. In the
subsequent experiment, 100 particles were used with a longer
travelled path, where the robot was set to navigate the same
route twice in the test environment. Two methods of density
extraction is compared which is weighted mean, as described
in Section II-E and particle with the highest weight to represent
the particles’ density.

Fig. 9 shows the robot state estimate error for xest using
weighted mean, denotes as xmean and the highest weighted
particle, denoted as xmax. The robot finished navigate the
environment in the first round at approximately time step =
200 and continue on the same path afterwards. The value of
the time steps is lower in this experiment, as we increased the
time interval between each sensor and odometry measurements
taken. It can be observed that after time step 200, the state
estimate of both xmean and xmax gradually decrease. At this
point, robot is basically computing localization using particle
filter algorithm with known map. It is also noted that, after time
step 200, xmean and xmax has maintained below the error of
robot state from odometry, xodom. This is because, robot’s state
from odometry xodom is increasing and as it diverges from the
ground truth path.

Fig. 10 shows the resulting map obtained from particle
with the highest weighted, xmax. The robot’s trajectory uses
the same color notation, which are green, blue and red lines
referring to the ground truth trajectory, RBPF with N state
estimate, and robot’s odometry respectively. As the robot trav-
elled further, the error in robot’s state estimate accumulates.
From the figure, it is observed that in the second loop of the
robot’s trajectory, the robot state estimate from RBPF with
N (i.e. blue line) is able to localize itself within the map
as it travelled through the revisited area. This has contained
the error from accumulating further compared to odometry’s
trajectory (i.e. red line) that begin to diverge from the actual
path. As mentioned before, this outcome is also reflected in

Fig. 10. Map of xmax of RBPF with N Algorithm with Robot’s State
Estimate and Actual Trajectory.

the pose error graph in Fig. 9, where after half way of the
trajectory (i.e. approximately time step = 200) the robot state
estimate error of both xmean and xest are below the error of
odometry, xodom.

The average RMSE of xmean, xmax, and xodom after
completed the exploration is shown in the bar graph in Fig. 11.
The bar graph shows the average RMSE for the distance error,
denoted as x, y state, the x state, y state, and θ state. The x, y
state uses the calculation of pose error of robot’s From the bar
graph, it can be observed that both density; xmean and xmax

have significantly lower average RMSE error from xodom in
red bar for all element of robot’s state computed.

To test the consistency of the result, the experiment was
repeated 25 times by using the same data set. The average
RMSE of state estimate of all 25 trials is computed and shown
in Fig. 12. From the bar graph it can be seen that the error
of state estimate, xmean and xmax are greater than odometry,
xodom for all states, except the θ state. This shows a rather
different result compared to the one obtained in Fig. 11. It is
concluded that, although RBPF with neural network N can
achieve a lower error compared to odometry, xodom, but it is
not an entirely consistent result even with 100 particles. By
using noisy sensor such as array of infrared sensors, a good
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Fig. 11. Comparison of Average RMSE of xodom, and Particles’ Density
xmean and xmax.
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Fig. 12. Average RMSE of Robot’s State Estimate after the Robot has
Completed Navigation for 25 Trials of Experiment Conducted.

result can be obtained provided multiple trials were conducted.

IV. CONCLUSION

The first objective of this research was to develop grid-
based SLAM algorithm with Rao-Blackwellized Particle Filter
(RBPF) integrated with neural network for indoor environment.
The algorithm was developed with motion model proposal
distribution, a map matching function for particles’ weight
assignment and selective resampling method. The results show
that integration of neural network has managed to increase the
accuracy of map estimate and decrease the error of robot state
estimate.

By using selected sensor measurements and encoded cell’s
position as neural network input, the neural network config-
uration is more robust in multiple ways. The neural network
can be applied on robot platform with different sensors con-
figuration. This is because the configuration does not require
for sensors to be distributed equally apart or any specified

angle for each sensor. Furthermore, by using cells encoded
value (or polar coordinate) rather than Cartesian coordinate,
local occupancy grid can be resized according to the sensor’s
maximum range without having to retrain neural network. This
is because cell’s position is encoded independent of the size
of local map.

The consistency of the RBPF algorithm with neural net-
work N is tested with multiple trials of the experiments. It is
shown that the average RMSE of robot’s state estimate exceed
the RMSE of state computed from odometry even after the
number of particles N is increased from 20 particles to 100
particles. This concludes to obtain an adequate map and state
estimate from noisy sensors such as array of infrared sensors
using the RBPF with neural network algorithm multiple trials
should be conducted.
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