
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 11, 2022

Multi-Scale ConvLSTM Attention-Based Brain
Tumor Segmentation

Brahim AIT SKOURT
Laboratory of Intelligent Systems

and Applications
University of Sidi Mohammed Ben Abdellah

Fez, Morocco

Aicha MAJDA
University of Moulay Ismail

Networks and Computer Systems
research team

Meknes, Morocco

Nikola S. Nikolov
Computer Science and

Information Systems Department
University of Limerick

Limerick, Ireland

Ahlame BEGDOURI
Laboratory of Intelligent Systems and Applications

University of Sidi Mohammed Ben Abdellah
Fez, Morocco

Abstract—In computer vision, there are various machine
learning algorithms that have proven to be very effective. Con-
volutional Neural Networks (CNNs) are a kind of deep learning
algorithms that became mostly used in image processing with
a remarkable success rate compared to conventional machine
learning algorithms. CNNs are widely used in different computer
vision fields, especially in the medical domain. In this study, we
perform a semantic brain tumor segmentation using a novel deep
learning architecture we called multi-scale ConvLSTM Attention
Neural Network, that resides in Convolutional Long-Short-Term-
Memory (ConvLSTM) and Attention units with the use of
multiple feature extraction blocks such as Inception, Squeeze-
Excitation and Residual Network block. The use of such blocks
separately is known to boost the performance of the model, in
our case we show that their combination has also a beneficial
effect on the accuracy. Experimental results show that our
model performs brain tumor segmentation effectively compared
to standard U-Net, Attention U-net and Fully Connected Network
(FCN), with 79.78 Dice score using our method compared to 78.61,
73.65 and 72.89 using Attention U-net, standard U-net and FCN
respectively.
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semantic brain tumor segmentation; convolutional long short term
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I. INTRODUCTION

In recent years, there have been a large number of con-
tributions to the field of deep learning. Year after year, deep
learning proves its superiority by surpassing state-of-the-art
solutions in various domains such as computer vision [1],
natural language processing [2], speech recognition [3] and
many other application domains. In particular, in the field of
computer vision, which is the main focus of this paper, deep
learning has been enormously successful for tasks such as im-
age classification [4], face recognition [5], object detection [1]
and image segmentation [6]. The significant improvement in
the field of deep learning is due to multiple factors. High-
performance computational resources (GPU, TPU) have be-
come more easily available. At the same time, the investments

made in research as well as the amounts of collected data have
also increased.

Deep learning algorithms, like other machine learning
algorithms are categorized into two main categories: super-
vised and unsupervised algorithms. Unsupervised algorithms,
an example of which is Deep Belief Network (DBN), work
with unlabeled data. They use a greedy layer-wise learning
strategy to fine-tune the network’s parameters. This learning
strategy, which is based on a contrastive version of the wake-
sleep algorithm [7], performs quickly and can find a good set
of parameters, even with relatively very deep architectures.
Supervised algorithms, an example of which is Convolutional
Neural Network (CNN), work with labeled data. CNNs have
been particularly successful for solving computer vision tasks.
The fine-tuning phase of a CNN is composed of consecutive
convolution and pooling operations for extracting fine-tuned
features, which are then used in the discriminative phase of the
training process. This automated process of extracting features
is what made deep learning algorithms powerful, as opposed
to conventional machine learning algorithms that use hand-
crafted features.

Nowadays, the use of CNNs is widespread across industries
and businesses. In healthcare, CNNs achieve very promising
results due to their robust feature extraction capabilities. For
example, in medical image segmentation, they have achieved
state-of-the-art performance [8] with a significant margin com-
pared to conventional machine learning models, which makes
them the most popular choice in different medical imaging
fields. They also dominate the health informatics literature
on brain [9], lung nodule [10], spleen [11], and cardiac [12]
medical imaging issues, to mention a few.

In this work, we perform brain tumor semantic segmenta-
tion using a novel deep learning architecture. Brain tumors
are considered one of the deadliest cancers in the world.
There are various brain tumor types, but gliomas are the
most common ones among adults. Furthermore, gliomas can
be present with different degrees of aggressiveness with an
average survival time for patients diagnosed with glioma lesser
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than 14 months [13]. Therefore, time is a critical factor for
doctors to act regarding gliomas. To diagnose a brain tumor,
there are different types of medical image acquisition involved,
such as MRI, CT scans and X-Ray, each having its pros and
cons. For example, CT scans have the advantage of speed of
tissue acquisition at the cost of lower quality of tissue contrast
and higher radiation risk. On the other hand, MRIs are slow
compared to CT scans but they are best suitable for capturing
abnormal tissues with more details due to their accuracy in
acquiring different types of contrasts. After the acquisition of
the brain region, radiologists perform a manual segmentation
of brain tumors from MRI images, which is time-consuming.
Therefore, designing an automatic brain tumor segmentation
is mostly desirable.

In this paper, we propose a novel deep neural network,
called Multi-Scale ConvLSTM Attention Neural Network
(MSConvLSTM-Att), to automatize brain tumor semantic seg-
mentation. Our architecture is multi-scale-attention based with
each level using Convolutional Long Short Term Memory
(ConvLSTM) [14], Squeeze and Excitation-inception (SE-
inception) [15] and Squeeze and Excitation-Residual-Network
(SE-ResNet) [15]. The motivation behind using such archi-
tecture is to gather state-of-the-art feature extraction methods,
the LSTM and the attention mechanism in one multi-scale
architecture and perform brain tumor semantic segmentation
efficiently compared to conventional deep learning based ar-
chitectures.

The use of such multi-scale architecture, which is com-
posed of multiple stages, is to generate multiple versions of
the same image with different resolutions, each containing
diverse semantics. The first low-level stage serves to model
the spatially sequential relationship between different parts
of each MRI modality (FLAIR, T1w,T1gd,T2w)1, while the
next stage manages the extraction of local features in addition
to decreasing the size of the images for computational opti-
mization. Finally, the third high-level stage captures the global
representations. Thereafter, at each level, we introduce a stack
of attention modules to gradually emphasize the regions that
contain a large number of semantic features.

The integration of attention mechanism in the image seg-
mentation of natural scenes has been widely adopted [16],
[17], [18], [19]. However, in medical imaging, the inclusion
of attention mechanism is rare [20], [21], [22], [23]. For
this reason, we investigate the impact of a simple attention
module in boosting the performance of standard deep networks
for brain tumor semantic segmentation. Experimental results
show that our proposed method improves the segmentation
performance by modeling a combination of rich contextual
features with local features.

The remainder of this paper is organized as follows. Next
section presents related works. In Section III we introduce our
proposed method in detail. Thereafter, we present and discuss
the obtained results in section IV. Finally, we conclude our
paper in section V.

II. RELATED WORK

Most of the state-of-the-art deep learning architectures used
for automatic medical image segmentation are inspired from

1https://case.edu/med/neurology/NR/MRI Basics.htm

Fully Convolutional Networks (FCN) [24] or U-Net [25].
Many variants of these architectures have been proposed to
perform semantic segmentation in different application do-
mains [26], [27], [28], [29].

FCN is an architecture in which fully connected layers
are replaced by deconvolution layers to generate segmentation
masks [24]. Jesson et al. [30] proposed a variant of the standard
FCN with a multi-scale loss function. With this approach it is
possible to model the context in both the input and output
domains. A limitation of this approach is that FCN is not able
not explicitly model the context in the label domain. Compared
to U-Net, FCN does not use skip connections between the
contracting (i.e feature extraction path) and the expanding
paths (i.e data reconstruction path).

The U-Net architecture was introduced by Ronneberger
et al. in 2015 [25]. It overcomes the limitations of FCN
by including features from the contracting path. In order to
obtain the missing feature-contexts, multi-scale features are
concatenated in a mirroring way. Many works have adopted
this architecture to perform medical image segmentation over
different parts of the human body. In a previous work of
ours [26], we also adopted the U-Net architecture to perform
lung CT image segmentation.

A limitation of both FCN and U-Net is that they both do
not perform very well in multi-class segmentation tasks [31].
To overcome this issue, cascaded architectures can be used.
They have the beneficial effect of decomposing a multi-
class segmentation problem into multiple binary segmentation
problems. This approach is also used in various medical image
segmentation works. For example, Chen et al. [32] adopted
a cascaded classifier to perform a multi-class segmentation.
Furthermore, in [33] authors proposed a cascaded architecture
to merge different feature extraction methods. Nonetheless,
these models still face a problem of focusing on pixel level
classification while ignoring adjacent pixels’ connections. To
overcome this issue, Generative models were adopted. A
widely used variant of generative models is Generative Adver-
sarial Network (GAN) [34]. GANs are employed for semantic
segmentation in the following way: a convolutional semantic
segmentation network is trained along with an adversarial
network to discriminate segmentation maps [35]. That is, two
models are trained; the first captures data distribution, while
the second is used for a discriminative purpose.

To capture sequence patterns in medical imaging, Recurrent
Neural Networks (RNNs) are typically used as they they
are well suited for handling sequential data. Specifically in
medical image segmentation, RNNs are used to keep track of
features in previous image slices in order to better generate
the corresponding segmentation maps. There are various RNN
architectures mentioned in the literature, and amongst them
Gated Recurrent Units (GRU) [36] and Long-Short Term
Memory (LSTM) [37] are likely the most robust and widely
used. GRU is memory efficient, nonetheless not very suitable
for keeping track of long-term features. LSTM is better adapted
to such tasks due to the forget gate that preserves features from
previous sequences to use in upcoming sequences. [38], [39],
[40] are some examples of employing RNNs for performing
image segmentation for sclerosis lesions and brain tumors
respectively.
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In the last few years, a new concept called attention
mechanism was introduced into computer vision tasks. At-
tention mechanism was introduced first in neural machine
translation [41] to help remember long range context from
long source sentences. The added value brought by attention
modules is the creation of shortcuts between the input sentence
and the context vector. Attention in deep learning can be
interpreted as a vector of weights that represent the importance
of an element within a context. The attention vector is used to
estimate how strongly is an element related to other elements
(elements in this context are image pixels), it takes the sum of
these elements’ values weighted by the attention vector as the
approximation of the target context.

The success of the attention mechanism for neural ma-
chine translation has encouraged its application to computer
vision immediately [42]. In medical image segmentation, the
attention mechanism was adopted in many works and various
variants of attention modules have been introduced. In [43],
authors propose a combination of FCN with a Squeeze and
Excitation (SE) attention-based module to perform whole-
brain and whole-body segmentation. They integrate the SE
block in three ways: channel SE (cSE), spatial SE (sSE) and
concurrent spatial-channel SE (csSE). In [20], Wang et al.
perform prostate segmentation in ultrasound images using deep
attentional features. They use an attention module to extract
refined features at each layer, eliminate non-prostate noise and
focus on more prostate details at deep layers. Furthermore, Li
et al. propose an auto-encoder CNN-based architecture, called
hierarchical aggregation network (HAANet) [21], which com-
bines the attention mechanism and hierarchical aggregation to
perform 3D left atrial segmentation. In another work, Oktay et
al. propose an attention U-net [44] which extends the U-Net
architecture by incorporating an attention gate in the expanding
path in order to accurately segment the pancreas area.

III. METHOD

In this section, we describe our proposed architecture for
brain tumor segmentation. Our method combines different
techniques in order to extract relevant features and keep track
of them during the entire process of segmentation.

We combine Inception, ResNet and Squeeze-Excitation
blocks in one part of our architecture for relevant feature ex-
traction, and attention modules in another part to perform brain
tumor segmentation. The combination of Inception, ResNet
and Squeeze-Excitation is known as the most successful ar-
chitecture in the ImageNet challenge. With this combination,
the team Trimps-Soushen achieved 2.99% error rate in object
classification in the ImageNet challenge2.

We first feed our network different modalities of brain
MRI images (FLAIR, T1w, T1gd, T2w) to include various
intensities and to better perform the semantic segmentation.
Each modality is split into four patches, then for each modality,
three scales of feature extraction are performed. The motiva-
tion behind this multi-scale mixture is to best separate each
tumor label (enhancing tumor, tumor core, whole tumor and
background).

2https://image-net.org/challenges/beyond ilsvrc

At the first scale, ConvLSTM is used over each of the four
patches to preserve the correlation among features. ConvL-
STM are best suitable for catching spatiotemporal information
without any much redundancy [14]. At the second scale, an
SE-inception [45] module is used over the output of the first
scale to extract low level features and decrease the computation
cost. Fig. 1 shows the inception module [46] and Fig. 2 shows
the SE-inception block.

Fig. 1. Inception Block.

Fig. 2. SE-Inception Block.

At the third scale, we extract high level features by inte-
grating an SE-ResNet module [45]. The use of such block
increases computational complexity with a thin margin but
in exchange of increasing the accuracy [45]. The ResNet
block [47] and SE-ResNet are described in Fig. 3 and Fig.
4 respectively.

At each scale (different scales are highlighted by green
color in Fig. 6), we combine the four outputs to form what
we call single-scale features as stated in Fig. 6. These three
single-scale features are then concatenated and convolved to
form multi-scale features as mentioned in the same figure. We
then take the multi-scale features and we combine them with
each single-scale feature.

At this stage, our model holds general context feature-maps
that contain different levels of features, from low to high level
features. Thereafter, we add a convolution layer to refine these
features.

Furthermore, in order to explore more global contextual
characteristics by building connections among features, we
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Fig. 3. ResNet Block.

Fig. 4. SE-ResNet Block.

include attention mechanism in the form of a location-based
attention module, we call it Spatial Attention Module (SAM).
The attention mechanism is presented in the Fig. 5.

Fig. 5. Spatial Attention Module.

In Fig. 5, we assume the input to the SAM module is
V , which is a 3D shaped input (W, H, C), here W, H and
C represent the width, height and depth respectively. In the
red branch, we perform a convolution operation, resulting in
a feature map B0 with same width and height but with depth
equals to C/8. B0 is then reshaped to (W, H, C). The same
operation is applied to the blue branch B1. Thereafter, we
perform a matrix multiplication B0 ∗BT

1 and apply a softmax
operation to calculate the spatial attention map following the
formula in (1), where Si, j represents the impact of the pixel in
the ith position on the pixel in the jth position.

Si, j =
exp(B0 ∗B1)

W∗H
∑

i=1
exp(B0 ∗B1)

(1)

The yellow branch performs a convolution and results in
B2 with the same shape as V . B2 is then reshaped to (C, W, H)

then it is multiplied by the transpose of the spatial attention
map S. Furthermore, the output R is reshaped to C× (W ×H)
and multiplied by a parameter λ and then an element-wise sum
with input V is performed to obtain the output O as expressed
in (2).

O = λ

W∗H

∑
i=1

exp(Si, j ∗B2)+V (2)

In (2), λ is initialized by 0 and gradually updated to give
more weight to the spatial attention map, as adopted in [17].

At the last level, we perform a convolution operation to
generate the final prediction map for each scale and then
average all these maps to output the segmentation map. Fig. 6
presents an overview of our proposed architecture.

IV. EXPERIMENTS AND RESULTS

To evaluate our architecture, we are using BRATS’18 data
set for brain tumor segmentation, provided in the Medical
Segmentation Decathlon Challenge3. This data set contains
multimodal MRI data (FLAIR, T1w,T1gd,T2w)4. Furthermore,
it contains 210 High Grade Glioma (HGG) scans and 75 Low
Grade Glioma (LGG) scans. In this data set, the focus is
mainly on the segmentation of different sub-regions of the
glioma. First, the enhancing tumor (ET), the tumor core (TC)
and finally the whole tumor (WT) as can be seen in Fig. 7.
Each one of these sub-regions have some specific characteris-
tics regarding their intensities, hence different modalities are
responsible for capturing different characteristics. For example,
the ET is described by areas that are hyper-intense in T1gd.
The appearance of the non-enhancing tumor (NET) (solid
parts) and the necrotic (NCR) (fluid-filled) is represented by
areas that show hypo-intensity in T1gd when compared to T1.
The WT describes the whole disease and it contains the TC
and the peritumoral edema (ED), which is characterized by
hyper-intensity in the FLAIR modality. The provided labels
in this data set are as follows: 1 for NCR and NET, 2 for
ED, 3 for ET and finally 0 for other parts of the brain. The
annotations were created by domain experts and approved by
other domain experts as described in [48].

Given the presence of different features related to gliomas
in different modalities, we feed the four modalities as input to
our architecture, then we get the semantic segmentation that
belongs to these inputs. The loss function we use is the dice
loss optimized using the Adam optimizer [49]. The learning
rate is initially set to 0.001 and then multiplied by 0.5 after
each 30 epochs. We used 500 epochs to train our network.
Due to limitations in computational resources, we reduced the
input size to 190×190 by cropping some of the background
area and we only took from the 30th slice to the 120th given
that most of the brain information is present in that interval.
Furthermore, we normalize the inputs to have zero mean and
unit standard deviation.

In addition, given that each session of the notebook used
for training has 12 hours lifetime, we use the following strategy
to train our network. We save our model and its weights after
each 50 epochs and we reload it and continue training with

3http://medicaldecathlon.com
4https://case.edu/med/neurology/NR/MRI Basics.htm
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Fig. 6. Overview of our Proposed Architecture.

new data. For development, we shuffled and randomly split
the images into training (225 patients), validation (30 patients),
and test (30 patients). Experiments were performed in a server
equipped with a single 12GB NVIDIA Tesla K80 GPU.

We compare our method with the standard UNet [25],
standard FCN [24] and the Attention U-Net [44] architectures.
And we evaluate their performance using the dice coefficient
(DSC) as a comparison metric. Table I contains experimental
results obtained using the different segmentation methods
described above, and compared regarding their DSC score. Our
proposed architecture achieved the best score with 64.95, 88.16
and 86.50 in ET, WT, and TC respectively and a mean score

of 79.87.

It can be observed that both our method and AttUnet,
which also includes attention modules, perform better than the
other ones without attention modules. This proves that adding
attention modules surely enhances the segmentation procedure
by putting more attention into the tumor location. Oktay et
al. have reported the same observation in their work with
MSConvLSTM-Att [44].

Our architecture outperforms AttUNet with a significant
margin, this is mainly due to the focus on location atten-
tion modules, besides the use of powerful feature extraction
modules (ConvLSTM, SE-Inception and SE-ResNet) in the
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Fig. 7. Segmentation Results Sample: (a) is the Input MRI Images, (b) is the Ground Truth and (c) is the Segmentation Results using our Proposed Architecture.

TABLE I. PROPOSED METHOD’S DSC SCORE COMPARED TO THOSE OF U-NET, ATT-UNET AND FCN

Labels ET WT CT Mean

U-Net 0.563 0.848 0.797 0.736
Att-UNet 0.637 0.875 0.845 0.786
FCN 0.551 0.853 0.781 0.728
ours 0.649 0.881 0.865 0.798

first part of the architecture, which is beneficial in eliminating
irrelevant features. Our proposed architecture can be implicitly
considered as a cascaded architecture even though we do not
explicitly use multiple cascaded architectures.

Fig. 7 displays a sample of the input MRI images, ground
truth and the segmentation results using our proposed architec-
ture. As seen in Table I, the ET segmentation has the smallest
DSC value. It can be seen also in Fig. 7, where the ET region
is not well detected especially in the first and third row.

It has to be mentioned that our method is slightly slower

compared to the other methods, which is normal given the fact
that complex building blocks has been used in order to ensure
a better segmentation result.

V. CONCLUSION

In this paper, we propose a novel deep learning architecture
for brain tumor segmentation we call multi-scale ConvLSTM
Attention Neural Network, and we compare its performance
to various deep learning architectures that are tailored to such
kind of tasks. Our proposed method is built as a multi-scale
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architecture composed of different state-of-the-art feature ex-
traction blocks such as Inception, Squeeze-Excitation, Residual
Network, ConvLSTM and finally Attention units. We compare
the performance of our architecture to standard U-net, AttU-
net and FCN that have shown effective results in semantic
segmentation. Experimental results show that our proposed
model outperforms standard U-net, AttU-net and FCN in terms
of dice score. Our model reached 79.78 as a mean dice score
for the three parts of the brain tumor, while Attention U-
net, standard U-net and FCN reached 78.61, 73.65 and 72.89
respectively. We observe that both our method and the AttU-net
perform better than the other ones, which can be explained that
the integration of attention modules enhances the segmentation
procedure. Besides, our method outperforms the AttU-net, and
this is due to the use ConvLSTM, SE-Inception and SE-
ResNet.
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[36] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[38] S. Andermatt, S. Pezold, and P. C. Cattin, “Automated segmentation
of multiple sclerosis lesions using multi-dimensional gated recurrent
units,” in International MICCAI Brainlesion Workshop. Springer, 2017,
pp. 31–42.

[39] T. H. N. Le, R. Gummadi, and M. Savvides, “Deep recurrent level set
for segmenting brain tumors,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, 2018,
pp. 646–653.

[40] X. Zhao, Y. Wu, G. Song, Z. Li, Y. Zhang, and Y. Fan, “A deep learning
model integrating fcnns and crfs for brain tumor segmentation,” Medical
image analysis, vol. 43, pp. 98–111, 2018.

[41] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[42] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image
caption generation with visual attention,” in International conference
on machine learning. PMLR, 2015, pp. 2048–2057.

[43] A. G. Roy, N. Navab, and C. Wachinger, “Concurrent spatial and
channel ‘squeeze & excitation’in fully convolutional networks,” in
International conference on medical image computing and computer-
assisted intervention. Springer, 2018, pp. 421–429.

[44] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa,
K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz et al., “Atten-
tion u-net: Learning where to look for the pancreas,” arXiv preprint
arXiv:1804.03999, 2018.

[45] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[48] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T.
Shinohara, C. Berger, S. M. Ha, M. Rozycki et al., “Identifying the best
machine learning algorithms for brain tumor segmentation, progression
assessment, and overall survival prediction in the brats challenge,” arXiv
preprint arXiv:1811.02629, 2018.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

www.ijacsa.thesai.org 856 | P a g e


	Introduction
	Related Work
	Method
	Experiments and Results
	Conclusion
	References

